From:
 Jamie Hanson

 To:
 Michael Henderson

 Cc:
 Eric de Waal; Neil Struthers

Subject: Fwd: Yards Neighbourhood Plan- WSP Servicing and TIA Studies

**Date:** Friday, May 13, 2022 8:13:34 AM

Attachments: 2019-05-17 - RRI RRP Servcing Report - large Footprint Builiding (WSP 2018).pdf

image001.jpg

2018-02-01 - Servicing Report.pdf

Servicing Templates.pdf

Railyard Renewal Project TIA Final (2018-03-02).pdf

RPT-151-09273-02-Railyard Renewal TIA Update-20190516-signed FINAL.pdf

### Hi Michael,

Please find attached the additional information related to the Yards as per our discussion yesterday.

Thanks, Jamie

From: Robert Mosiondz < RMOSIOND@regina.ca>

**Sent:** Thursday, May 12, 2022 3:50:48 PM **To:** Jamie Hanson < JHANSON@regina.ca>

Subject: Yards Neighbourhood Plan- WSP Servicing and TIA Studies

### Hi Jamie

Attached are the 2018/2019 WSP Reports relating to the Yards Servicing and TIA for the original mixed-use residential/commercial concept plan referenced in the 2018 report, as well as the large footprint building on the westerly side of the yards site. The Yards Neighbourhood Plan (OCP- Part B.18) focuses primarily on policy around development of the mixed use plan, but does make accommodation within the Policy Section [i.e. 4. 2. c) ii.] the alternate land uses such as "recreation, sports, entertainment, convention centre, or similar" on lands noted as Area B (see Figure 2- Land Use Plan).

The underground infrastructure currently being reviewed/designed by KGS as part of the Dewdney Avenue Corridor Rehabilitation (DACR) Project are based on worse case scenarios to accommodate either development provision.

Let me know if you need additional info or wish to discuss.

### Rob Mosiondz, B.Sc.

A/Manager, Land Development Branch Land, Real Estate & Facilities

306-570-6386 rmosiond@regina.ca Regina.ca



Treaty 4 Territory and homeland of the Métis

### **CITY OF REGINA**

## REGINA REVITALIZATION INITIATIVE RAILYARD RENEWAL PROJECT TRANSPORTATION IMPACT ANALYSIS FOR LARGE FOOTPRINT FACILITY









# REGINA REVITALIZATION INITIATIVE RAILYARD RENEWAL PROJECT TRANSPORTATION IMPACT ANALYSIS FOR LARGE FOOTPRINT FACILITY

CITY OF REGINA

FINAL

PROJECT NO.: 151-09273-02 DATE: MAY 2019

WSP 395 MAXWELL CRESCENT REGINA, SK CANADA S4N 5X9

T: +1 306 585-1990 F: +1 306 585-9113 WSP.COM

### REVISION HISTORY

| VERSION | DATE           | DESCRIPTION      |
|---------|----------------|------------------|
| 1       | April 26, 2019 | Draft for Review |
| 2       | May 16, 2019   | Final Report     |
|         |                |                  |

### SIGNATURES

PREPARED BY

Destiny Piper, P. Eng. Transportation Planner

**REVIEWED BY** 

Bruce Belmore, P. Eng., PTOE, AVS Director – Canada West Transportation Planning B.C. BELMORE Z MEMBER 9064 IIII Q 2019-05-16 YR. MN. DAY

Int. n

This report was prepared by WSP for the account of City of Regina, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document



### TABLE OF CONTENTS

| 1                     | INTRODUCTION1                                                      |
|-----------------------|--------------------------------------------------------------------|
| 1.1                   | Study Purpose and Objectives1                                      |
| 1.2                   | Background1                                                        |
| 1.3                   | Methodology2                                                       |
| 2                     | WEEKDAY TRAFFIC FORECAST3                                          |
| 2.1                   | Background Traffic Growth3                                         |
| 2.2<br>2.2.1<br>2.2.2 | Weekday Trip Generation3 Internal and Passby Trips6 Commute Trips7 |
| 2.2.3<br>2.3          | Trip Generation Summary8  Trip Distribution and Assignment9        |
| 2.4                   | Combined Traffic9                                                  |
| 3                     | EVENT TRAFFIC FORECAST17                                           |
| 3.1                   | Event Background Traffic Volumes17                                 |
| 3.2                   | Event Trip Generation17                                            |
| 3.3                   | Event Trip Distribution and Assignment18                           |
| 4                     | TRAFFIC OPERATIONS ASSESSMENT 22                                   |
| 4.1                   | Albert Street / Dewdney Avenue22                                   |
| 4.2                   | McIntyre Street / Dewdney Avenue24                                 |
| 4.3                   | Lorne Street / Dewdney Avenue25                                    |
| 4.4                   | Cornwall Street / Dewdney Avenue26                                 |
| 4.5                   | Scarth Street / Dewdney Avenue28                                   |
| 4.6                   | Hamilton Street / Dewdney Avenue29                                 |
| 4.7                   | Rose Street / Dewdney Avenue30                                     |
| 4.8                   | Broad Street / Dewdney Avenue31                                    |
| 5                     | ROADWAY NETWORK                                                    |
| 5.1                   | Railyard Site Internal Roadway Network34                           |



| 5.2 | Dewdney Avenue Cross Sections (Albert Street to Broad Street)35 |
|-----|-----------------------------------------------------------------|
| 5.3 | Dewdney Avenue (City Limits to Broad Street)37                  |
| 6   | PARKING REQUIREMENTS                                            |
| 6.1 | City of Regina Parking Requirements38                           |
| 6.2 | Event Parking Requirements39                                    |
| 7   | TRANSPORTATION DEMAND MEASURES 42                               |
| 7.1 | Alternative Routes42                                            |
| 7.2 | Public Transit42                                                |
| 7.3 | Pedestrian Facilties43                                          |
| 7.4 | Cycling Facilities43                                            |
| 7.5 | Ride Sharing Strategies44                                       |
| 7.6 | Parking Management46                                            |
| 7.7 | Education47                                                     |
| 8   | CONCULSIONS AND RECOMMENDATIONS                                 |
|     | 48                                                              |



| <i>TABLES</i>          |                                                          |
|------------------------|----------------------------------------------------------|
| TABLE 2-1              | PROPOSED DEVELOPMENT SUMMARY                             |
| TABLE 2-2              | CORRESPONDING ITE LAND USE5                              |
| TABLE 2-3              | TRIP GENERATION – RESIDENTIAL BUILDING                   |
| TABLE 2-4              | (3 TO 10 LEVELS)5 TRIP GENERATION – RESIDENTIAL BUILDING |
| IADLL Z-4              | (MORE THAN 10 LEVELS)5                                   |
| TABLE 2-5              | TRIP GENERATION – RETAIL5                                |
| TABLE 2-6              | TRIP GENERATION – OFFICE6                                |
| TABLE 2-7              | TRIP GENERATION - COMMUNITY6                             |
| TABLE 2-8              | TRIP GENERATION – LARGE FOOTPRINT                        |
|                        | FACILITY6                                                |
| TABLE 2-9              | INTERNAL CAPTURE RATES7                                  |
| TABLE 2-10             | TRIP GENERATION SUMMARY8                                 |
| TABLE 2-11             | POPULATION AND EMPLOYMENT                                |
|                        | DISTRIBUTION9 EVENT TRAFFIC DISTRIBUTION18               |
| TABLE 3-1<br>TABLE 4-1 | ALBERT STREET / DEWDNEY AVENUE 2040                      |
| IADLE 4-1              | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (AM & PM PEAK HOUR)23                            |
| TABLE 4-2              | ALBERT STREET / DEWDNEY AVENUE 2040                      |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (OFF-PEAK & POST-EVENT PEAK                      |
|                        | HOUR)23                                                  |
| TABLE 4-3              | MCINTYRE STREET / DEWDNEY AVENUE 2040                    |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (AM & PM PEAK HOUR)24                            |
| TABLE 4-4              | MCINTYRE STREET / DEWDNEY AVENUE 2040                    |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (OFF-PEAK & POST-EVENT PEAK HOUR)25              |
| TABLE 4-5              | LORNE STREET / DEWDNEY AVENUE 2040                       |
| TABLE 4-5              | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (AM & PM PEAK HOUR)26                            |
| TABLE 4-6              | LORNE STREET / DEWDNEY AVENUE 2040                       |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY26                                                |
| TABLE 4-7              | CORNWALL STREET / DEWDNEY AVENUE 2040                    |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (AM & PM PEAK HOUR)27                            |
| TABLE 4-8              | CORNWALL STREET / DEWDNEY AVENUE 2040                    |
|                        | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (OFF-PEAK & POST-EVENT PEAK                      |
| TABLE 4-9              | HOUR)27<br>SCARTH STREET / DEWDNEY AVENUE 2040           |
| 1 ADLL 4-8             | POST-DEVELOPMENT TRAFFIC OPERATIONS                      |
|                        | SUMMARY (AM & PM PEAK HOUR)28                            |
|                        |                                                          |



| TABLE 4-10 | SCARTH STREET / DEWDNEY AVENUE 2040<br>POST-DEVELOPMENT TRAFFIC OPERATIONS<br>SUMMARY (OFF-PEAK & POST-EVENT PEAK                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE 4-11 | HOUR)28 HAMILTON STREET / DEWDNEY AVENUE 2040 POST-DEVELOPMENT TRAFFIC OPERATIONS                                                           |
| TABLE 4-12 | SUMMARY (AM & PM PEAK HOUR)29 HAMILTON STREET / DEWDNEY AVENUE 2040 POST-DEVELOPMENT TRAFFIC OPERATIONS SUMMARY (OFF-PEAK & POST-EVENT PEAK |
| TABLE 4-13 | HOUR)30 ROSE STREET / DEWDNEY AVENUE 2040 POST-DEVELOPMENT TRAFFIC OPERATIONS SUMMARY (AM & PM PEAK HOUR)                                   |
| TABLE 4-14 | ROSE STREET / DEWDNEY AVENUÉ 2040<br>POST-DEVELOPMENT TRAFFIC OPERATIONS<br>SUMMARY (OFF-PEAK & POST-EVENT PEAK                             |
| TABLE 4-15 | HOUR)                                                                                                                                       |
| TABLE 4-16 | BROAD STREET / DEWDNEY AVENUE 2040<br>POST-DEVELOPMENT TRAFFIC OPERATIONS<br>SUMMARY (OFF-PEAK & POST-EVENT PEAK                            |
| TABLE 6-1  | HOUR)32 PARKING REQUIREMENTS BY CITY OF REGINA BYLAW38                                                                                      |
| TABLE 6-2  | PARKING SUPPLY SUMMARY40                                                                                                                    |
| FIGURES    |                                                                                                                                             |
| FIGURE 1-1 | PROPOSED LARGE FOOTPRINT FACILITY LOCATION2                                                                                                 |
| FIGURE 2-1 | 2040 BACKGROUND TRAFFIC4                                                                                                                    |
| FIGURE 2-2 | TRIP DISTRIBUTION – RESIDENTIAL10                                                                                                           |
| FIGURE 2-3 | TRIP DISTRIBUTION – OFFICE, RETAIL, AND COMMUNITY11                                                                                         |
| FIGURE 2-4 | TRIP ASSIGNMENT - RESIDENTIAL12                                                                                                             |
| FIGURE 2-5 | TRIP ASSIGNMENT – OFFICE, RETAIL, AND COMMUNITY13                                                                                           |
| FIGURE 2-6 | PASS-BY (RETAIL)14<br>2040 POST-DEVELOPMENT TRAFFIC15                                                                                       |
| FIGURE 2-7 |                                                                                                                                             |
| FIGURE 2-8 | 2040 POST-DEVELOPMENT TRAFFIC (RIGHT-IN / RIGHT-OUT)                                                                                        |
| FIGURE 3-1 | / RIGHT-OUT)                                                                                                                                |
|            | TRAFFIC FORECAST (9:00 P.M 10:00 P.M.) . 19                                                                                                 |



| FIGURE 3-2               | ARENA-GENERATED TRAFFIC VOLUMES (POST-EVENT)20                                                                                 |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 3-3               | 2040 WEEKDAY EVENING POST-EVENT                                                                                                |
|                          | TRAFFIC FORECAST (POST EVENT - 9:00 P.M                                                                                        |
|                          | 10:00 P.M.)21                                                                                                                  |
| FIGURE 5-1               | RRP INTERNAL ROAD NETWORK34                                                                                                    |
| FIGURE 5-2               | PROPOSED MID-BLOCK CROSS SECTION 36                                                                                            |
| FIGURE 5-3               | PROPOSED CROSS SECTION AT SIGNALIZED                                                                                           |
|                          |                                                                                                                                |
|                          | INTERSECTION36                                                                                                                 |
| FIGURE 5-4               | INTERSECTION                                                                                                                   |
| FIGURE 5-4<br>FIGURE 6-1 |                                                                                                                                |
|                          | DEWDNEY AVENUE CORRIDOR37 AREA ACCESSIBLE WITHIN 10-MINUTE WALK                                                                |
|                          | DEWDNEY AVENUE CORRIDOR37                                                                                                      |
| FIGURE 6-1               | DEWDNEY AVENUE CORRIDOR37 AREA ACCESSIBLE WITHIN 10-MINUTE WALK (NO PEDESTRIAN BRIDGE)39 AREA ACCESSIBLE WITHIN 10-MINUTE WALK |
| FIGURE 6-1               | DEWDNEY AVENUE CORRIDOR37 AREA ACCESSIBLE WITHIN 10-MINUTE WALK (NO PEDESTRIAN BRIDGE)39                                       |

### **APPENDICES**

- A INTERNAL CAPTURE SUMMARY
- B SYNCHRO REPORTS

### 1 INTRODUCTION

WSP Canada Inc. was retained by the City of Regina to update the transportation impact analysis for the Railyard Renewal Project (RRP) to include a large footprint facility that would be used for an entertainment facility or arena within the Rail District Neighbourhood Plan. The RRP is one of the primary components of the Regina Revitalization Initiative (RRI).

The Railyard Renewal Project is located at the old CP Intermodal Land site, north of the City's downtown area and is bounded by CP rail main line to the south, Dewdney Avenue to the north, Albert Street to the west, and Broad Street to the east.

### 1.1 STUDY PURPOSE AND OBJECTIVES

The purpose of this study is to identify and assess the potential transportation impacts at the study intersections associated with the large footprint facility on the RRP site, and to identify required mitigation measures (if any) to allow the adjacent roadways to safely accommodate traffic generated by the proposed development. The objectives of this study are to:

- Identify required infrastructure improvements including road network, intersection lane configuration, signals, pedestrian and transit access to facilitate traffic and pedestrian flow, and to improve safety and operational performance along Dewdney Avenue based on the development including a large footprint facility; and,
- Identify the potential impacts to Dewdney Avenue and the required modifications (if any) to accommodate traffic during an event at the large footprint facility.

### 1.2 BACKGROUND

The Regina Revitalization Initiative is the largest urban revitalization project ever undertaken in the City of Regina and consists of three (3) primary components: the Stadium Project; Railyard Renewal Project; and, the redevelopment of Taylor Field Neighbourhood.

The City of Regina previously completed the Rail District Neighbourhood Plan and accompanying technical reports for the Railyard Renewal Project. The original 17.5-acre mixed use neighbourhood plan consisted primarily of residential development with small retail, office, and associated community/cultural developments.

In 2019, the City of Regina requested that WSP evaluate the development site and review the potential impacts of incorporating a large footprint facility on the Railyard Renewal development site. For the purpose of this study, the large footprint facility is assumed to be an arena with a seating capacity of 10,000 people. The large footprint facility will be located on the western portion of the site, as illustrated in **Figure 1-1.** 

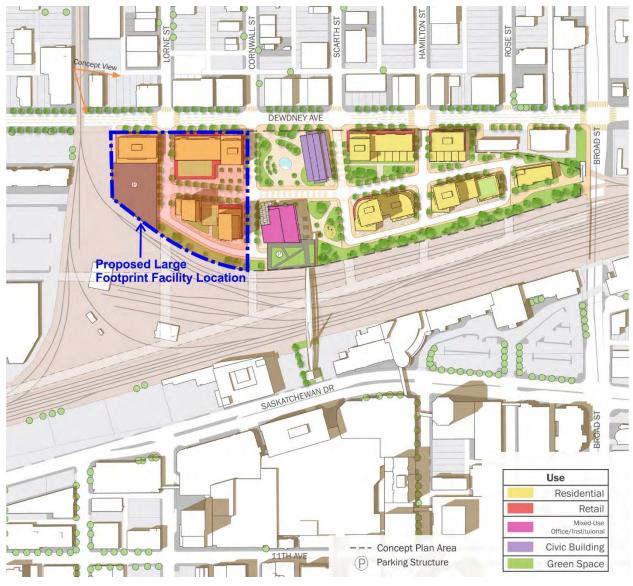



Figure 1-1 Proposed Large Footprint Facility Location

### 1.3 METHODOLOGY

In order to meet the study objectives, the following methodology was used:

- Estimate the trips generated by the updated land use plan based on ITE's Trip Generation Manual (9th Edition).
- Analyze the delay, LOS and queue lengths of the study intersections at weekday AM, PM, and Off-peak periods for the analysis horizon traffic using Synchro Studio 10 (Synchro).
- Analyze the delay, LOS and queue lengths of the study intersections during a weekday evening event for the analysis horizon traffic using Synchro Studio 10 (Synchro).
- Review internal traffic circulation, public transit, pedestrian traffic, and parking needs for the RRP development.
- Identify any improvements necessary for the intersections and pedestrian facilities to accommodate the forecasted vehicle and pedestrian volumes.

### 2 WEEKDAY TRAFFIC FORECAST

This section presents the forecasted future traffic volumes for the updated land use plan for the RRP development for the subject roadways and study intersections.

### 2.1 BACKGROUND TRAFFIC GROWTH

Background traffic (non-site traffic) is the traffic that exists without the addition of the trips generated by the proposed development.

The background traffic forecast prepared in the original *Regina Revitalization Initiative Railyard Renewal Project Transportation Impact Analysis* dated March 2, 2018 was used for the morning and afternoon hour background traffic volumes. The background traffic was based on the City of Regina's 2040 EMME model outputs.

The forecasted future 2040 background traffic turning movements at each study intersection are illustrated in **Figure 2-1.** 

### 2.2 WEEKDAY TRIP GENERATION

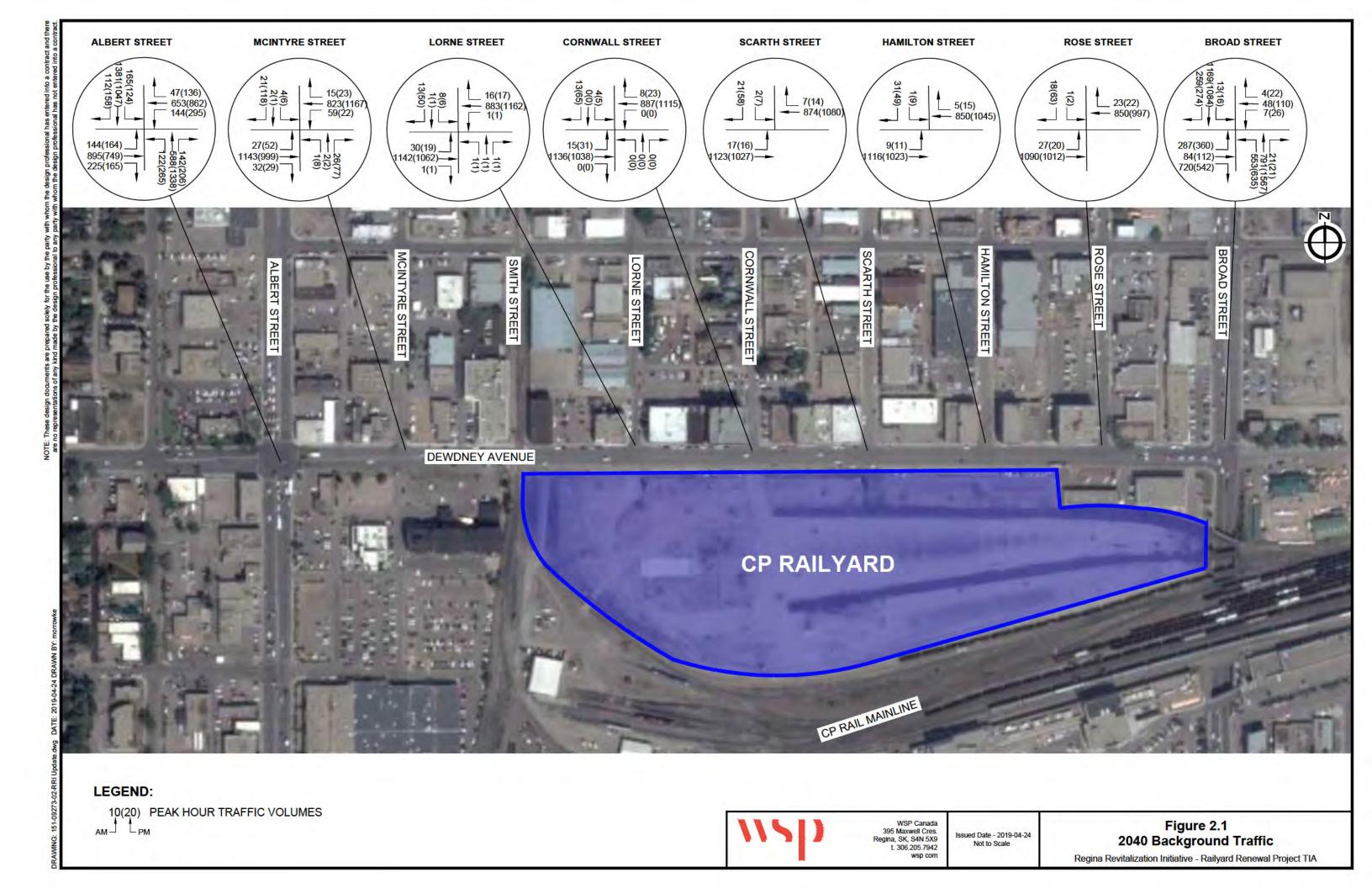

**Table 2-1** summarizes the revised development details for the proposed development in the RRP site. The major land uses identified for the RRP site include residential, retail, office, community and cultural uses, as well as a large footprint facility assumed to be a 10,000-seat arena.

Table 2-1 Proposed Development Summary

| DEVELOPMENT              | UNITS                 | PREVIOUS LAND USE<br>PLAN (MARCH 2018) | REVISED LAND USE<br>PLAN<br>(APRIL 2019) |
|--------------------------|-----------------------|----------------------------------------|------------------------------------------|
| Residential              | Dwelling Units        | 1,071                                  | 652                                      |
| Retail                   | Gross Floor Area (m²) | 10,000                                 | 4,000                                    |
| Office                   | Gross Floor Area (m²) | 8,800                                  | 6,400                                    |
| Community                | Gross Floor Area (m²) | 3,200                                  | 3,200                                    |
| Cultural                 | Gross Floor Area (m²) | 4,100                                  | 4,100                                    |
| Large Footprint Facility | Gross Floor Area (m²) |                                        | 12,250                                   |

The Institute of Transportation Engineers (ITE) Trip Generation Manual (9<sup>th</sup> Edition) was used in this study to estimate the traffic generated by the proposed development. The ITE Trip Generation Manual 10<sup>th</sup> Edition was used for the large footprint facility.

The corresponding land uses in the ITE Trip Generation Manual that were used to estimate the traffic generated by the proposed developments are summarized in **Table 2-2**.



### Table 2-2 Corresponding ITE Land Use

### PROPOSED DEVELOPMENT

### ITE LAND USE (CODE)

| Residential Buildings (3 to 10 Levels)      | Mid-Rise Apartment (223)            |
|---------------------------------------------|-------------------------------------|
| Residential Buildings (More than 10 Levels) | High-Rise Apartment (222)           |
| Retail                                      | Speciality Retail Centre (826)      |
| Office                                      | General Office (710)                |
| Community                                   | Recreational Community Centre (495) |
| Cultural                                    | No Corresponding ITE Land Use       |
| Large Footprint Facility                    | Arena (460)*                        |

<sup>\*</sup> ITE Trip Generation Manual 10th Edition was utilized for the Arena Land Use

As indicated in the *Regina Revitalization Initiative Railyard Renewal Project Transportation Impact Analysis* (March 2, 2018), it is anticipated that most of the traffic generated by the proposed cultural development would be internal trips and travelling on weekends when events typically are occurring. Therefore, the cultural development generated trips would be negligible and were not included in this study.

Tables 2-3 to 2-8 summarize the estimated trips that would be generated by the proposed RRP development.

Table 2-3 Trip Generation – Residential Building (3 to 10 Levels)

| LINETS, 224              | A     | AM PEAK HOUR |      |       | PM PEAK HOUR |      |  |
|--------------------------|-------|--------------|------|-------|--------------|------|--|
| UNITS: 324               | TOTAL | IN           | OUT  | TOTAL | IN           | OUT  |  |
| Directional Distribution | 100%  | 31%          | 69%  | 100%  | 58%          | 42%  |  |
| Rates (Trips/Unit)       | 0.30  | 0.09         | 0.21 | 0.39  | 0.23         | 0.16 |  |
| Total Trips              | 97    | 30           | 67   | 126   | 73           | 53   |  |

Table 2-4 Trip Generation – Residential Building (More Than 10 Levels)

| LINITE, 220              | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|--------------------------|--------------|------|------|--------------|------|------|
| UNITS: 328               | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution | 100%         | 25%  | 75%  | 100%         | 61%  | 39%  |
| Rates (Trips/Unit)       | 0.30         | 0.08 | 0.23 | 0.35         | 0.21 | 0.14 |
| Total Trips              | 98           | 25   | 74   | 115          | 70   | 45   |

Table 2-5 Trip Generation – Retail

| TOTAL GFA: 43,056 ft <sup>2</sup>   | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|-------------------------------------|--------------|------|------|--------------|------|------|
| 101AL GFA: 45,050 II                | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution            | 100%         | 62%  | 38%  | 100%         | 44%  | 56%  |
| Rates (Trips/1,000ft <sup>2</sup> ) | 0.96         | 0.60 | 0.36 | 2.71         | 1.19 | 1.52 |
| Total Trips                         | 41           | 26   | 16   | 117          | 51   | 55   |

Table 2-6 Trip Generation – Office

| TOTAL CEA. 60 000 82                | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|-------------------------------------|--------------|------|------|--------------|------|------|
| TOTAL GFA: 68,890 ft <sup>2</sup>   | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution            | 100%         | 88%  | 12%  | 100%         | 17%  | 83%  |
| Rates (Trips/1,000ft <sup>2</sup> ) | 1.56         | 1.37 | 0.19 | 1.49         | 0.25 | 1.24 |
| Total Trips                         | 107          | 95   | 13   | 103          | 17   | 85   |

Table 2-7 Trip Generation – Community

| TOTAL GFA: 34,440 ft <sup>2</sup>   | A     | M PEAK HOU | R    | PM PEAK HOUR |      |      |  |
|-------------------------------------|-------|------------|------|--------------|------|------|--|
|                                     | TOTAL | IN         | OUT  | TOTAL        | IN   | OUT  |  |
| Directional Distribution            | 100%  | 66%        | 34%  | 100%         | 49%  | 51%  |  |
| Rates (Trips/1,000ft <sup>2</sup> ) | 2.05  | 1.35       | 0.70 | 2.74         | 1.34 | 1.40 |  |
| Total Trips                         | 70    | 46         | 24   | 94           | 47   | 48   |  |

The ITE Trip Generation Manual does not have a corresponding trip rate for the arena land use for the weekday morning peak hour. For this assessment, it was assumed that the morning peak hour rate would be 80% of the afternoon peak hour rate and the directional distribution would be reversed.

Table 2-8 Trip Generation – Large Footprint Facility

| TOTAL GFA: 131,860 ft <sup>2</sup>  | A     | M PEAK HOU | R    | PM PEAK HOUR |      |      |  |
|-------------------------------------|-------|------------|------|--------------|------|------|--|
|                                     | TOTAL | IN         | OUT  | TOTAL        | IN   | OUT  |  |
| Directional Distribution            | 100%  | 64%        | 36%  | 100%         | 36%  | 64%  |  |
| Rates (Trips/1,000ft <sup>2</sup> ) | 0.38  | 0.24       | 0.14 | 0.47         | 0.17 | 0.30 |  |
| Total Trips                         | 50    | 32         | 18   | 62           | 22   | 40   |  |

### 2.2.1 INTERNAL AND PASSBY TRIPS

Internal trips should be considered for a multi-use development. According to the ITE Trip Generation Handbook, a multi-use development is typically a single real-estate project that consists of two or more ITE land use classifications between which trips can be made without using the off-site road system. The internal trips can be made either by walking or by vehicles using internal roadways. In this study, the proposed development is deemed to be a multi-use development (residential, office, and retail), thus to estimate the trips made on the external streets, the internal trips that are not made on the major street system should be deducted from the total trips. To account for the internal trips, ITE NCHRP 684 Internal Trip Capture Estimation Tool was used in this study. **Table 2-9** summaries the estimated internal trip capture percentages by land uses and the detailed analysis results were attached in **Appendix A**. ITE does not provide an internal trip capture rate for community land use, therefore the average internal capture rate for residential, retail, and office was applied to the community development.

Table 2-9 Internal Capture Rates

| LANDICE     | AM PEA | K HOUR | PM PEAK HOUR |     |  |
|-------------|--------|--------|--------------|-----|--|
| LAND USE    | IN     | IN OUT |              | OUT |  |
| Residential | 2%     | 3%     | 11%          | 7%  |  |
| Retail      | 19%    | 31%    | 14%          | 23% |  |
| Office      | 7%     | 31%    | 29%          | 7%  |  |
| Community   | 9%     | 22%    | 18%          | 12% |  |

Pass-by trips are trips made as intermediary stops along the course of a trip between an origin and a primary trip destination. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site (i.e. Dewdney Avenue). Although these trips will be included in the driveway volumes to the site, they will not increase the overall traffic volumes on the study roads. The ITE Trip Generation Handbook (ITE, August 2014) reports the average pass-by trip by land use.

In accordance with the ITE Trip Generation Handbook, an average of 34% of the trips generated by a shopping center are pass-by trips. In this study, it is assumed that 35%, to be consistent with the original traffic impact assessment of the development, of the total trips generated by the retail development will be pass-by trips for the afternoon peak hour.

The ITE Trip Generation Handbook does not indicate a pass-by rate for the morning peak hour. In addition, the draft Rail District Neighbourhood Plan (November 27, 2017) indicates that the following land uses will not be permitted within the neighbourhood: gas stations, automobile repair, car washes, car dealerships, or drive-through establishments such as restaurants or banks. As such, no pass-by was assumed for the morning peak hour.

It is estimated that the pass-by trips will account for 26 trips (13 trips entering and 13 trips exiting) during the afternoon peak hour.

### 2.2.2 COMMUTE TRIPS

The RRP site is located close to the downtown core which is currently served by Regina public transit. A pedestrian connection over the CP rail tracks is proposed to link the railyard site to the downtown core.

The original traffic impact assessment completed for the RRP development site, in consultation with the City, estimated that that approximately 20% of commute trips would be made by public transit, walking, and bicycle.

This traffic impact assessment will also assume that 20% of trips will be completed by public transit, walking or by bicycle for the weekday assessment.

### 2.2.3 TRIP GENERATION SUMMARY

Table 2-10 summarizes the estimated new vehicle trips that will be generated by the proposed railyard development at full build out.

Table 2-10 Trip Generation Summary

| DEVEL OBMENT                                                                    | AN    | I PEAK HOU | R   | PM PEAK HOUR |     |     |  |
|---------------------------------------------------------------------------------|-------|------------|-----|--------------|-----|-----|--|
| DEVELOPMENT                                                                     | TOTAL | IN         | OUT | TOTAL        | IN  | OUT |  |
| Site-Generated Trips                                                            |       |            |     |              |     | V   |  |
| Residential                                                                     | 196   | 55         | 141 | 241          | 143 | 98  |  |
| Retail                                                                          | 41    | 26         | 16  | 117          | 51  | 65  |  |
| Office                                                                          | 107   | 95         | 13  | 103          | 17  | 85  |  |
| Community/Culture                                                               | 70    | 46         | 24  | 94           | 47  | 48  |  |
| Large Footprint Facility                                                        | 50    | 32         | 18  | 62           | 22  | 40  |  |
| Total Trips                                                                     | 465   | 253        | 211 | 617          | 281 | 336 |  |
| Trip Reductions                                                                 | ,     |            | •   |              |     |     |  |
| Internal Trips                                                                  | 37    | 20         | 17  | 74           | 34  | 40  |  |
| External Trips                                                                  | 427   | 233        | 194 | 543          | 247 | 296 |  |
| Public Transit Trips                                                            | 85    | 47         | 38  | 109          | 49  | 60  |  |
| Pass-by Trips (Retail)                                                          | -     | -          | -   | 26           | 13  | 13  |  |
| Total Reduced Trips                                                             | 549   | 300        | 249 | 752          | 343 | 409 |  |
| External Site-Generated Trips                                                   |       |            | ,   |              |     |     |  |
| External Vehicle Trips<br>(Residential)                                         | 152   | 43         | 109 | 175          | 102 | 73  |  |
| External Vehicle Trips<br>(Retail/Office/Community/Large<br>Footprint Facility) | 190   | 144        | 46  | 233          | 82  | 151 |  |
| Total Development Trips                                                         | 342   | 187        | 155 | 408          | 184 | 224 |  |

The overall number of trips entering and exiting the development site during the morning and afternoon peak hour is expected to be lower with the large footprint facility, when compared to the original land use plan. The morning peak hours is anticipated to have approximately 100 fewer total trips and the afternoon peak hours is anticipated to have approximately 120 fewer total trips.

### 2.3 TRIP DISTRIBUTION AND ASSIGNMENT

Since the proposed RRP development will include a mix of residential, retail, and office land uses; trip distribution for the proposed development was estimated based on the population and employment distribution within Regina and the road network in the vicinity of the RRP site. Population distribution was estimated based on the current main residential areas in the City, while employment distribution was estimated based on the size and location of major employment centers in Regina. The population and employment distribution estimates are shown in **Table 2-11**.

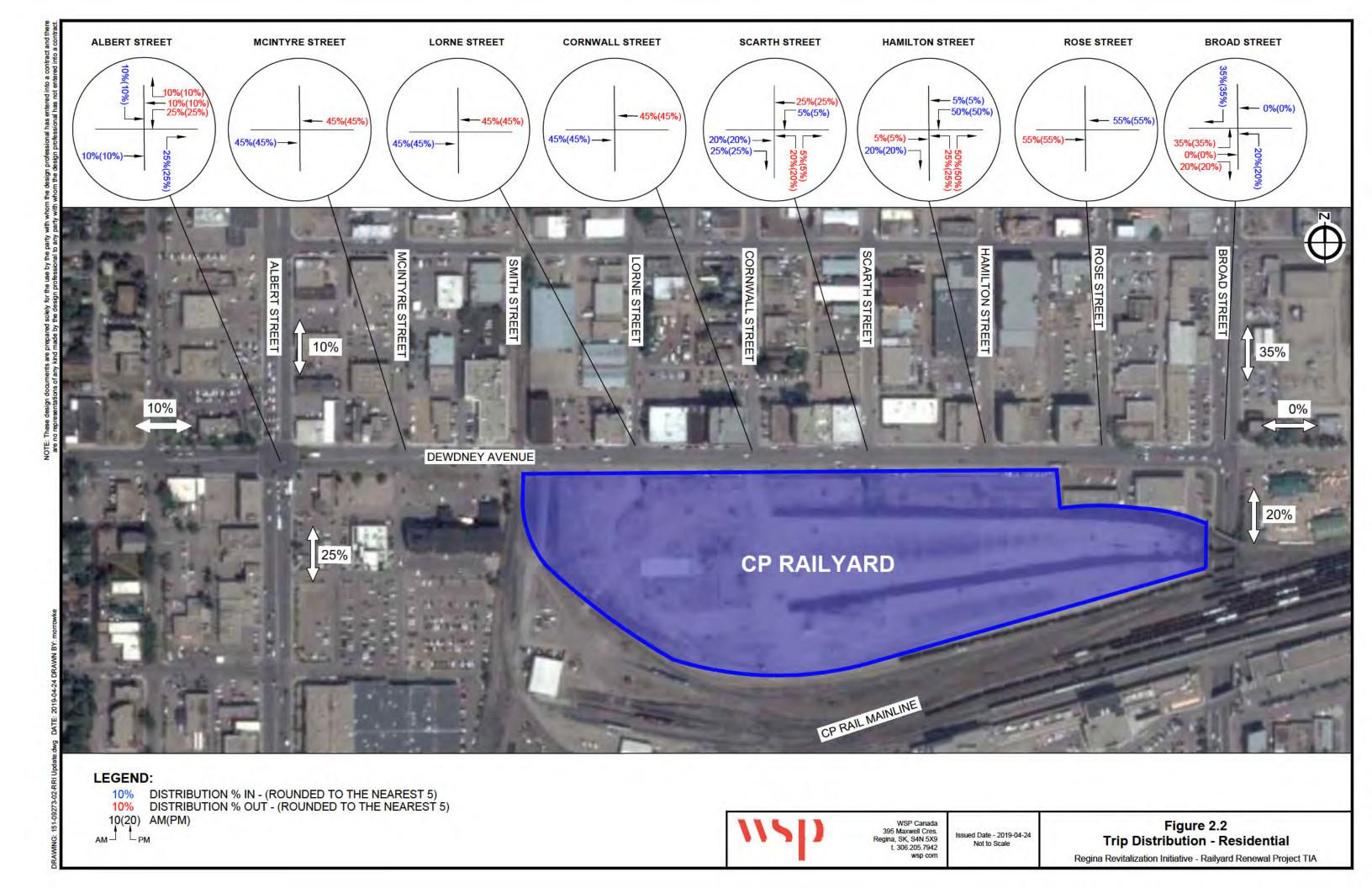
POPULATION DISTRIBUTION EMPLOYMENT DISTRIBUTION

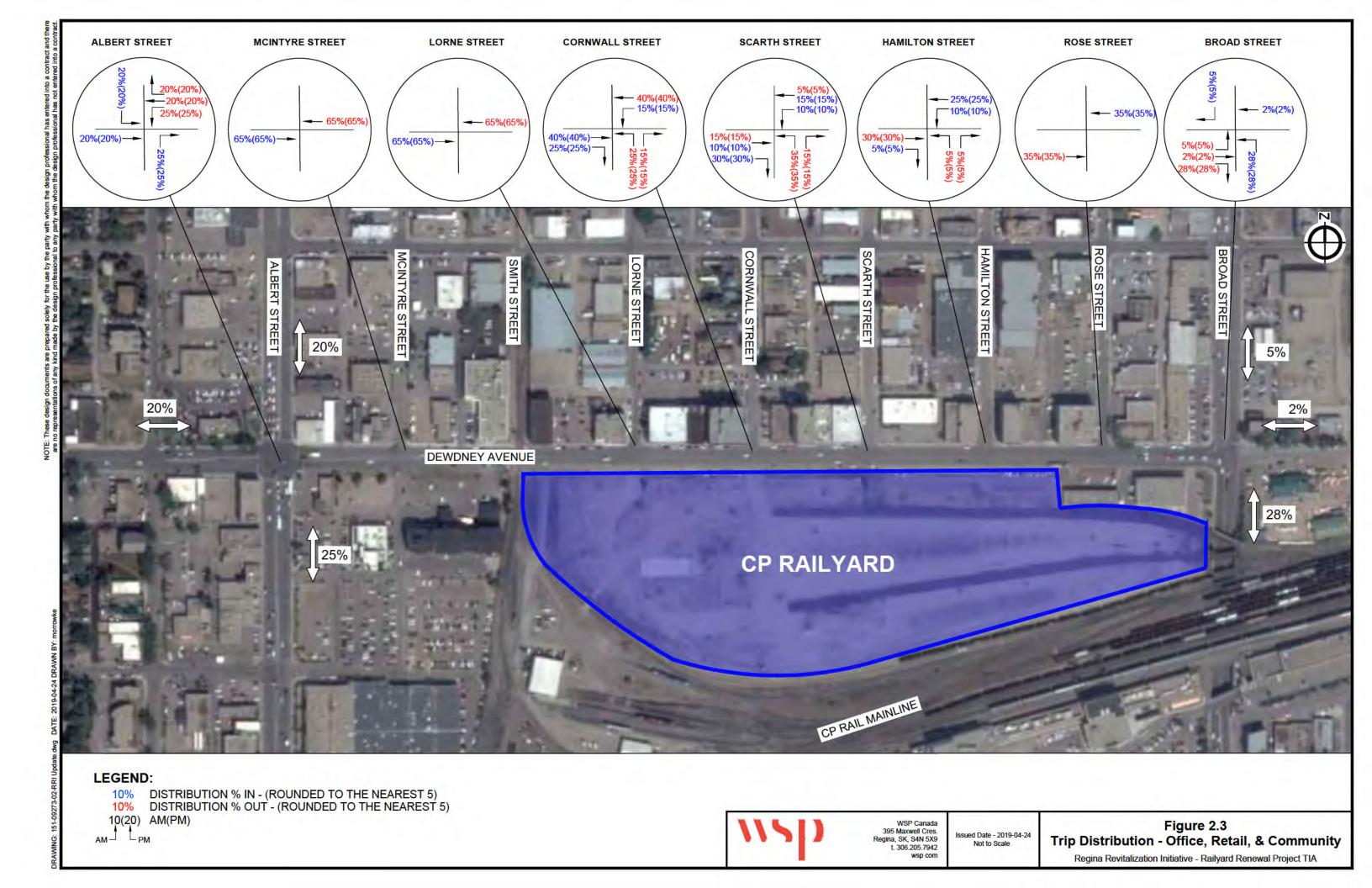
Table 2-11 Population and Employment Distribution

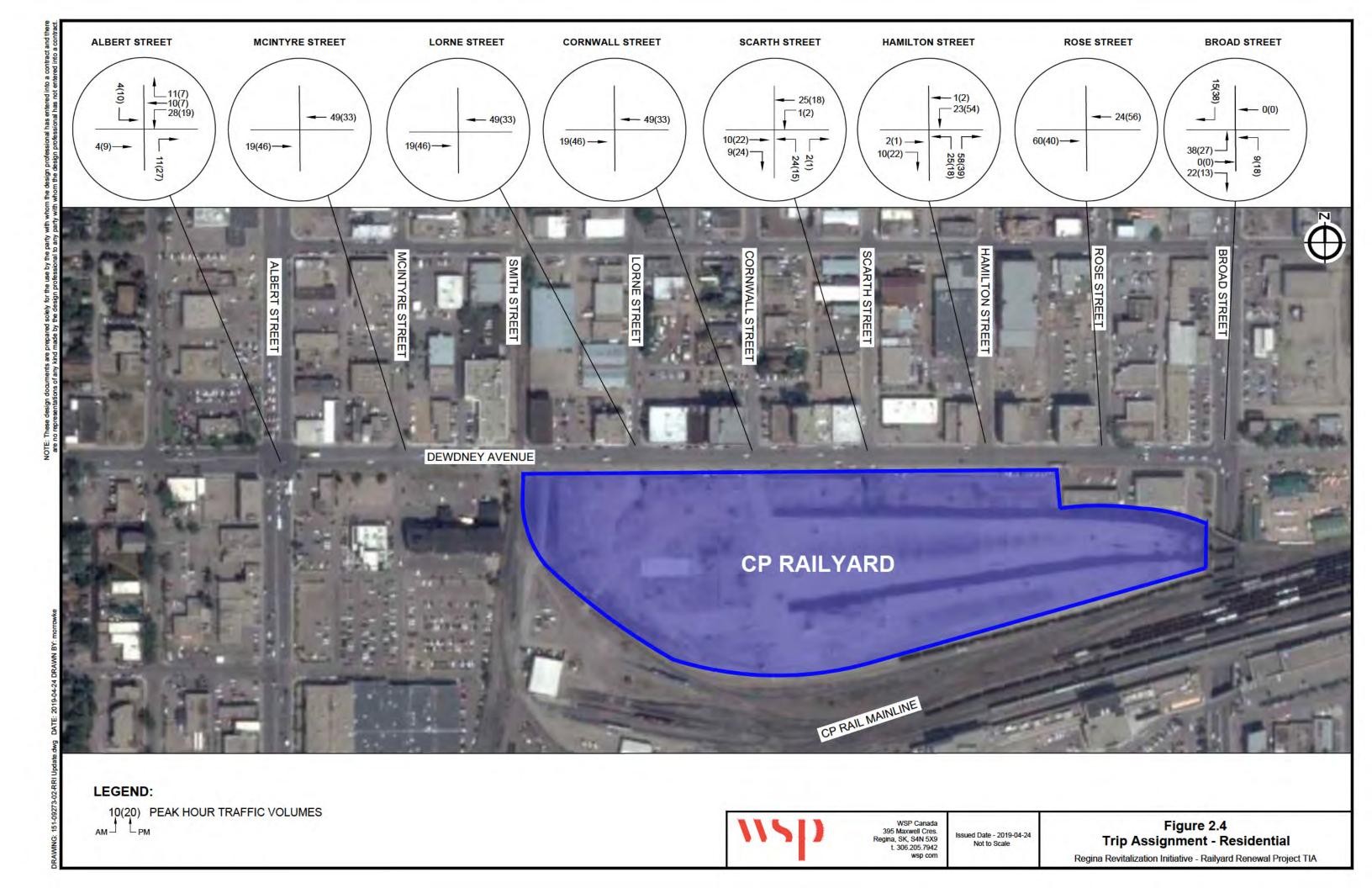
DIRECTIONS FROM THE SITE

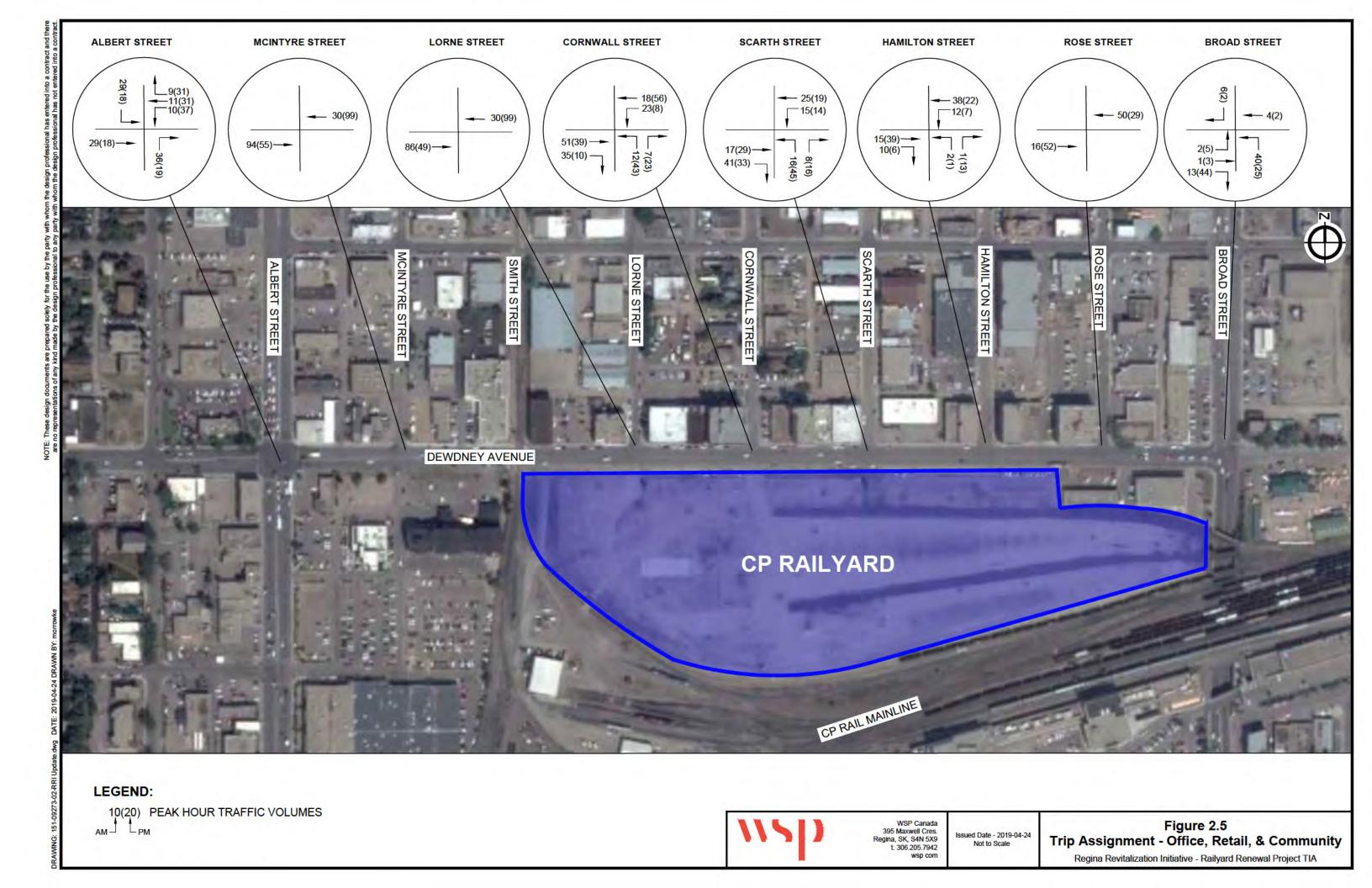
| North | 25% | 45% |
|-------|-----|-----|
| West  | 20% | 10% |
| South | 40% | 25% |
| East  | 15% | 20% |

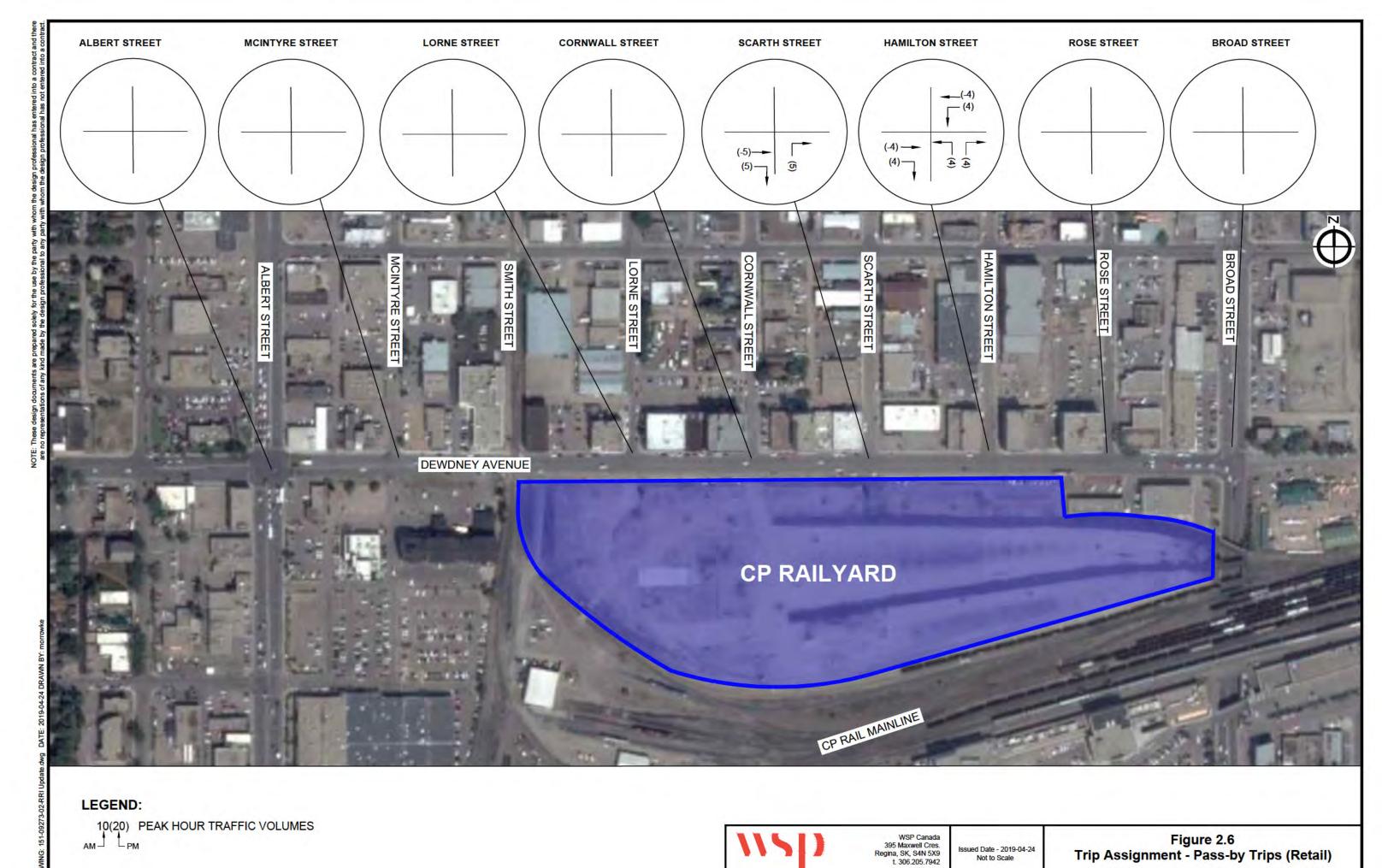
The proposed retail, office, and large footprint facility development will attract trips from residential areas, so these trips were distributed to the road network using population distribute splits. The trips generated by the proposed residential development were distributed to the road network using employment distribution splits. The trip distribution for pass-by trips generated by the proposed retail development was estimated based on the existing eastbound and westbound traffic volumes on Dewdney Avenue.


Trip distributions for the proposed residential, retail, office, and large footprint facility developments are illustrated in **Figures 2-2** to **2-3**. **Figures 2-4** to **2-6** illustrate the estimated trip assignment at the study intersections during both the morning and afternoon peak hours.

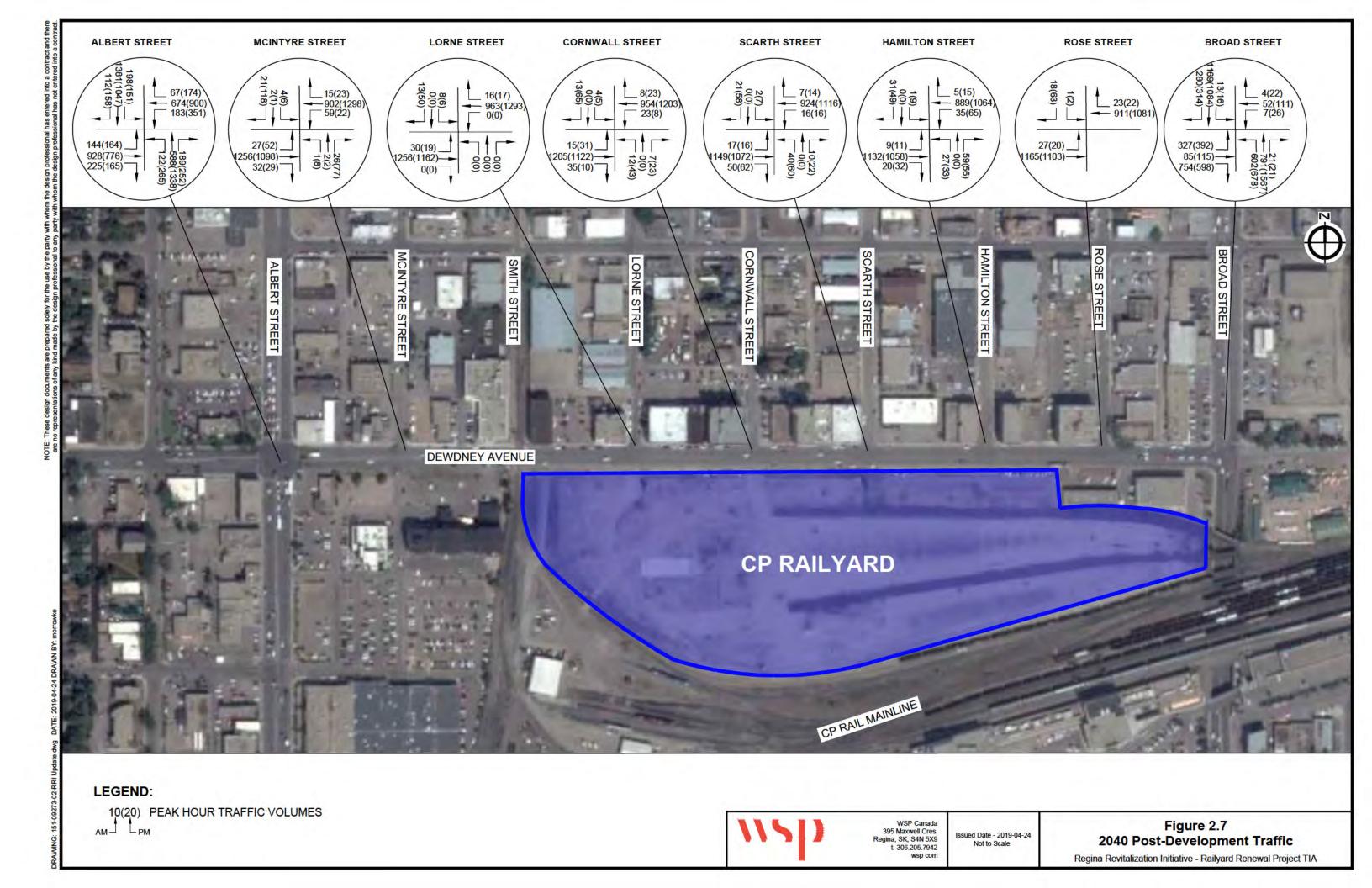

### 2.4 COMBINED TRAFFIC

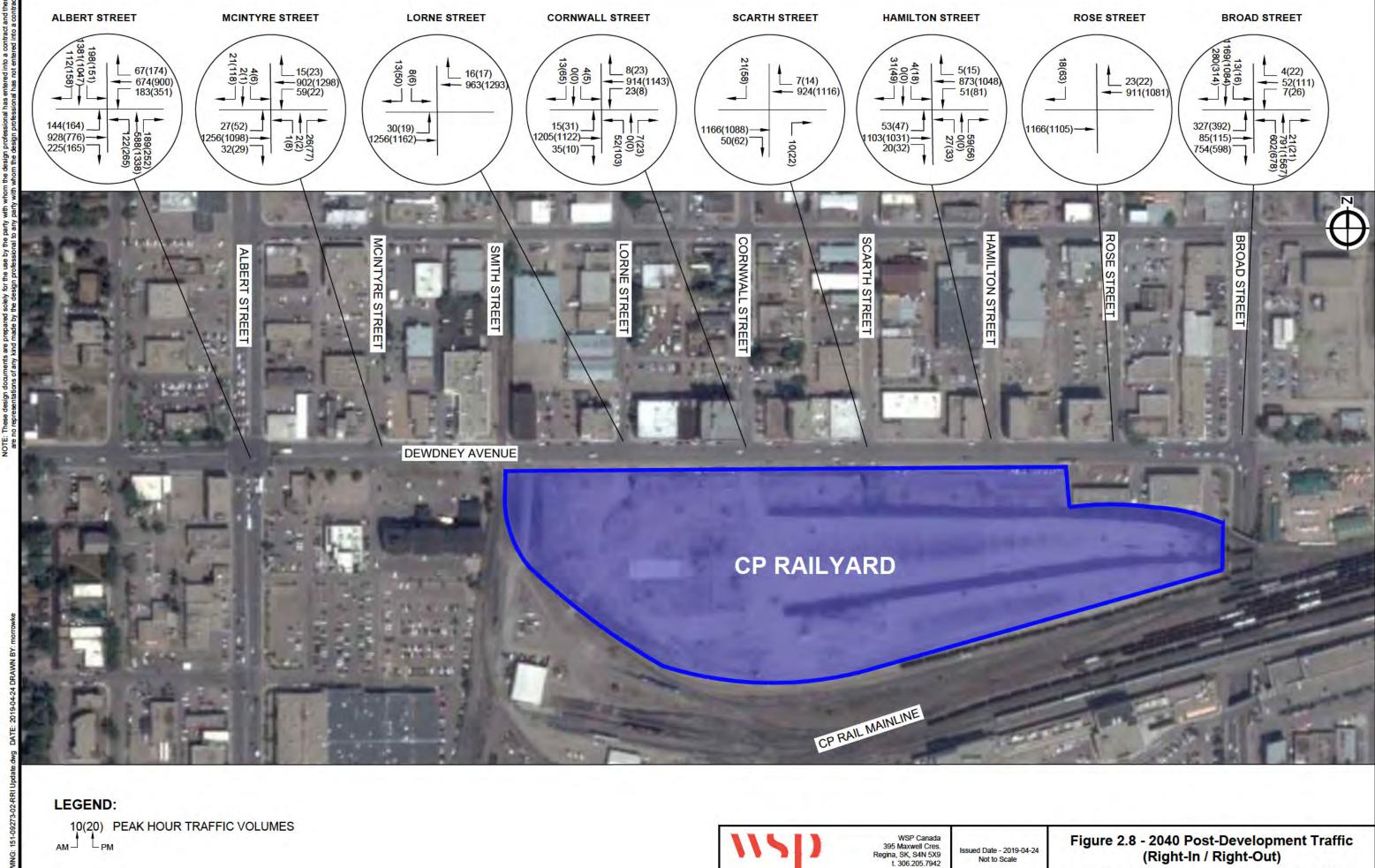

Combined traffic volumes (post-development traffic) include both background traffic and the traffic generated by the proposed development. Combined traffic volumes were calculated by superimposing the trips generated by the proposed development onto the future background traffic volumes. The forecasted 2040 morning and afternoon peak hour post-development traffic volumes are shown in **Figure 2-7**.


**Figure 2-8** shows the traffic turning movements at the study intersections with the proposed right-in / right-out intersection treatment at the Scarth Street and Rose Street intersections as recommended in the in the original *Regina Revitalization Initiative Railyard Renewal Project Transportation Impact Analysis (March 2, 2018*).


Note that the Cornwall Street intersection is now proposed to be a full movement signalized intersection due to the closure of the south leg at the Lorne Street intersection as a result of including the large footprint facility.










Regina Revitalization Initiative - Railyard Renewal Project TIA





Regina Revitalization Initiative - Railyard Renewal Project TIA

### 3 EVENT TRAFFIC FORECAST

This section presents the forecasted future traffic volumes for a weekday evening event hosted at the large footprint facility for the subject roadways and study intersections.

### 3.1 EVENT BACKGROUND TRAFFIC VOLUMES

The event background traffic volume is the traffic that exists without the additional of the trips generated by the event occurring on the RRP development site. This will include a portion of the background traffic growth and the RRP development itself.

The following assumptions were used to develop the event background traffic volumes:

- It is anticipated that attendees will arrive overall a greater time period pre-event.
- The critical peak hour of the event will occur at the end of the event when attendees are leaving at the same time.
- The critical peak hour is anticipated to occur between 9:00 p.m. and 10:00 p m. This time frame was chosen as arena events typically start around 7:00 p m. and have a duration of just over 2 hours.

The City of Regina's 2018 Traffic Count Data for Dewdney Avenue was utilized to determine the time of day variance for the Dewdney Avenue Corridor. It was estimated that the amount of traffic on Dewdney Avenue between 9:00 p.m. and 10:00 p m. is approximately 34% when compared to the afternoon peak hour.

For this assessment, the event background traffic volume was estimated by taking 34% of the 2040 afternoon peak hour post-development (Right-in / Right-out) traffic volumes.

The 2040 evening event background traffic volumes are illustrated in Figure 3-1.

### 3.2 EVENT TRIP GENERATION

For the purposes of the event trip generation analysis, an event with an attendance of 10,000, equal to 100 percent of the seating capacity, was chosen for a conservative analysis.

The mode split (i.e. how attendees will arrive/depart from an event) is needed to estimate the number of vehicular trips generated by the large footprint facility during an event. At the old Mosaic Stadium, approximately 1.0% of the event attendees arrived by transit and another 3% arrived by the Football Express. At the new Mosaic Stadium, approximately 1.0% arrive by regular transit and another 25% to 30% of attendees arrive by the Mosaic Stadium Shuttle.

For this assessment, it is assumed that 3.5% of attendees would depart by transit from the event. A larger mode split for transit was not chosen (i.e. different than the new Mosaic Stadium), because it is not known if a shuttle service will be offered at this facility and it is anticipated that fewer attendees will arrive by transit during the winter months. The chosen transit mode split provides a conservative analysis for the Dewdney Avenue corridor during an event.

The 5% mode split for walking and cycling is consistent with the assumptions used during the Mosaic Stadium analysis.

The measured vehicle occupancy rate for people per vehicle in Canadian locations range from 2.4 to 2.6 for sporting events.<sup>1</sup>

\_

<sup>&</sup>lt;sup>1</sup> ND LEA Engineers & Planners Inc. True North Centre Transportation Review, (November 2001).

To estimate the traffic demand generated from an attendance of 10,000 people, the following factors were assumed:

- 3.5% mode split to transit;
- 5% mode split to walking/cycling;
- average of 2.4 people per vehicle; and
- 90 percent of traffic departs in one-hour period.

The resultant traffic demand during the one-hour departure after an event is approximately 3,430 vehicle trips. It is assumed that 3,430 vehicle trips will be exiting post-event.

### 3.3 EVENT TRIP DISTRIBUTION AND ASSIGNMENT

The proposed large footprint facility will attract trips from the residential areas around the city. The event trips were distributed to the road network using the population distribution splits, as summarized in **Table 3-1**.

Table 3-1 Event Traffic Distribution

### DIRECTIONS FROM THE SITE

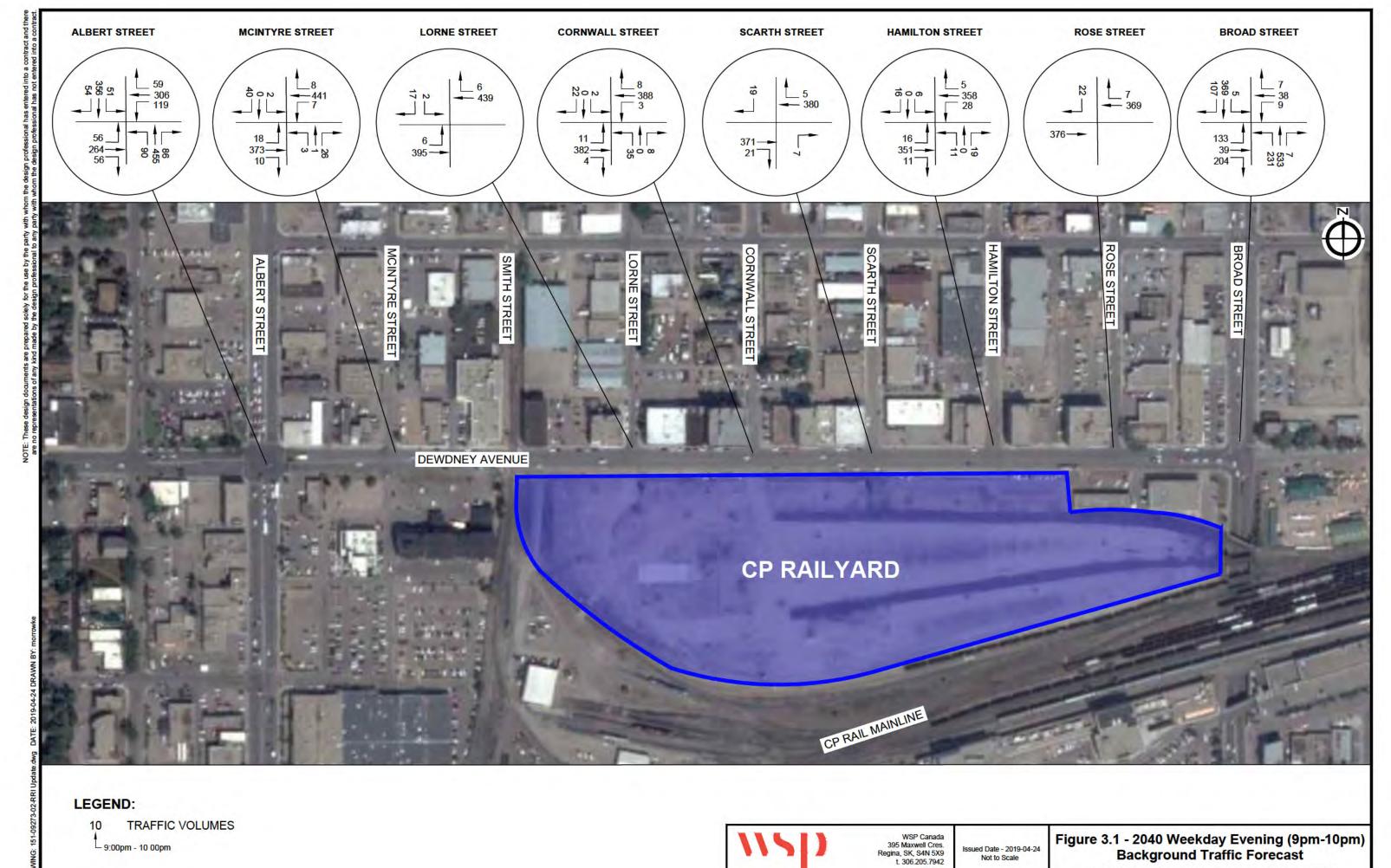
### POPULATION DISTRIBUTION

| North | 25% |
|-------|-----|
| West  | 20% |
| South | 40% |
| East  | 15% |

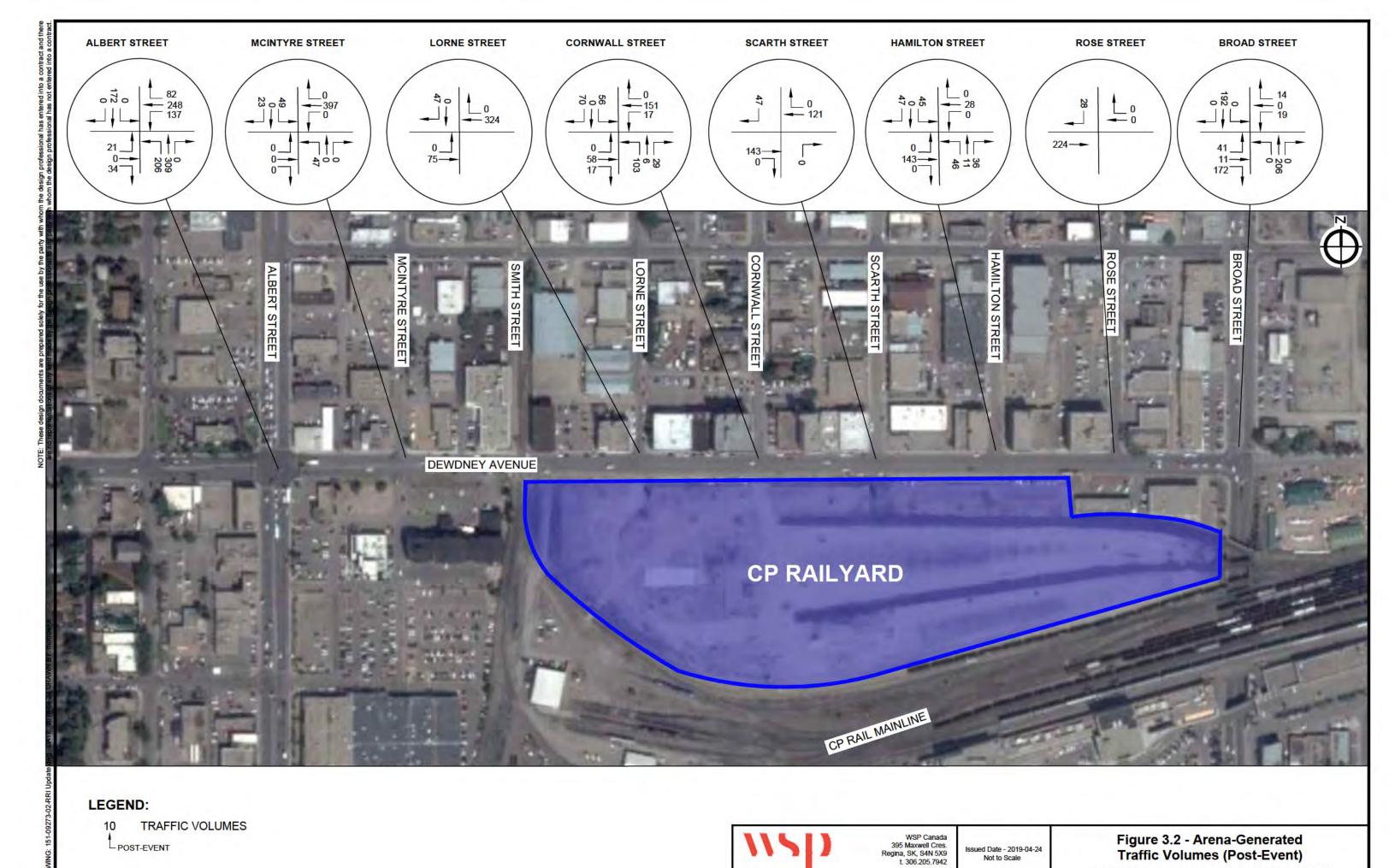
The event traffic trip assignment was completed by evaluating the available parking within a 10-minute walking distance of the large footprint facility. Section 6.2 Event Parking Requirements discusses the details of the available parking in the surrounding area.

To determine the traffic assignment generated from an attendance of 10,000 people, the following factors were assumed:

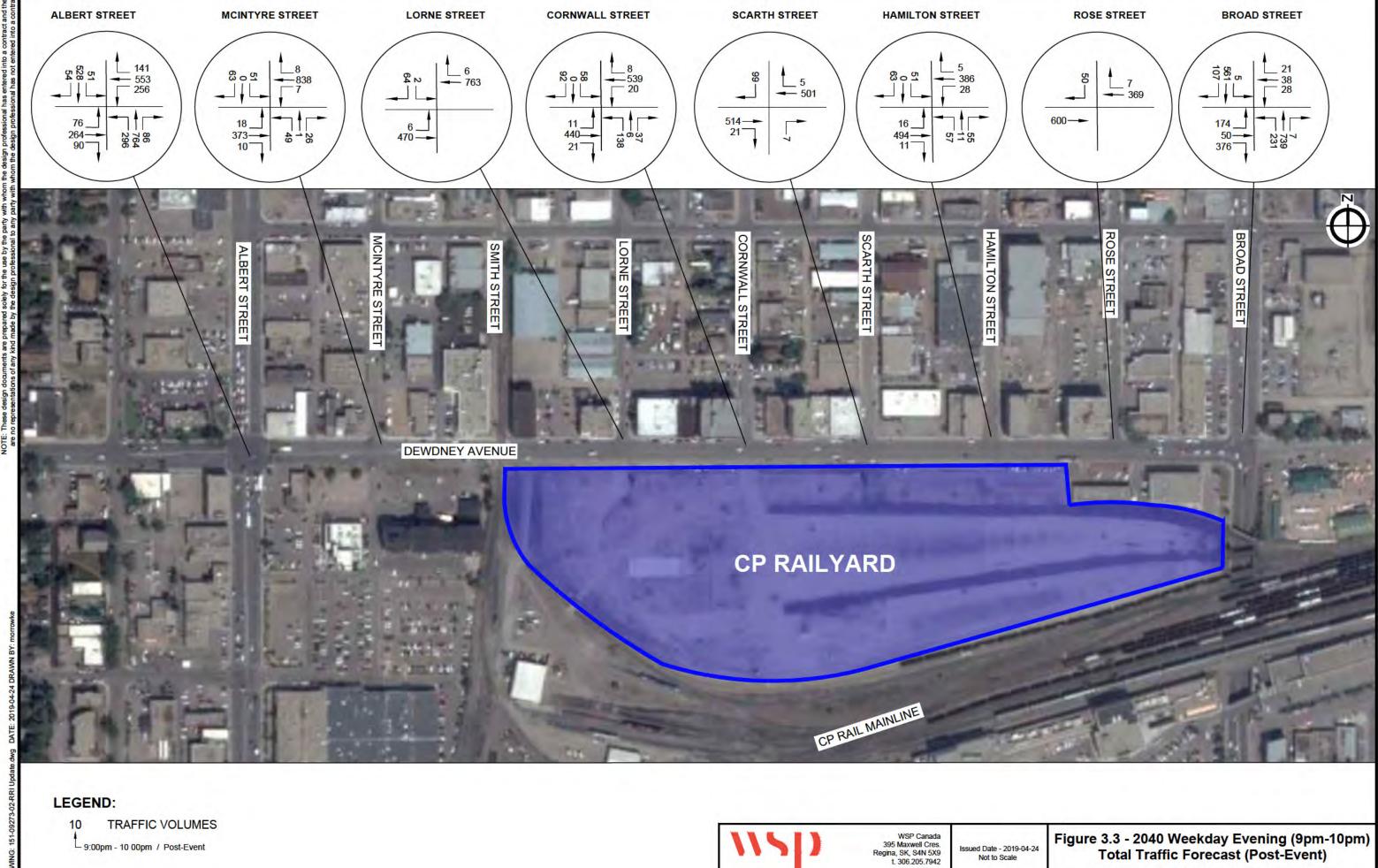
- The pedestrian bridge linking the RRP site to the downtown was in place;
- 40% of attendees parked north of the railway tracks (i.e. on-site and within the Warehouse District); and,
- 60% of attendees parked south of the railway tracks (i.e. Downtown).


### Therefore:

- 1,370 vehicle trips are exiting from the site/Warehouse District; and,
- 2,060 vehicle trips are exiting from the downtown area.


The event vehicle trips were assigned to the network based on the residential distribution and parking origins. The vehicle assignment accounts for the routes that drivers will use to reach their destination. All trips were assumed to be able to circulate freely and would choose the travel path that was most convenient. Additional assignment assumptions include that vehicles will opt to use 6<sup>th</sup>, 7<sup>th</sup> or 8<sup>th</sup> Avenue to exit the Warehouse District and trips destined to the west will use both Dewdney Avenue and Saskatchewan Drive.

The assigned event-generated trips for the large footprint facility are illustrated in Figure 3-2.


The event-generated trips (**Figure 3-2**) were added to the event background traffic volumes (**Figure 3-1**) to obtain the 2040 Weekday Evening Post-Event Traffic Forecast, illustrated in **Figure 3-3**.



Regina Revitalization Initiative - Railyard Renewal Project TIA



Regina Revitalization Initiative - Railyard Renewal Project TIA



Total Traffic Forecast (Post-Event)

Regina Revitalization Initiative - Railyard Renewal Project TIA

Not to Scale

### 4 TRAFFIC OPERATIONS ASSESSMENT

This section presents the intersection assessment results for each study intersection and the proposed intersection control type (i.e., stop or signal control) and required lane configurations to meet the future traffic demand.

To evaluate the traffic operational performance, the following factors were assumed:

- The off-peak hour volume was considered at 80% of the afternoon peak hour post-development volumes, which
  is based on the time of day traffic distribution for Dewdney Avenue.
- Dewdney Avenue was analyzed as a 4-lane cross-section during the morning and afternoon peak hours.
- Dewdney Avenue was reduced to a 2-lane cross-section during the off-peak and evening event hours to allow on-street parking.
- The intersections of Dewdney Avenue and Cornwall Street and Dewdney Avenue and Hamilton Street were analyzed at signalized intersections.
- The intersections of Dewdney Avenue and Scarth Street and Dewdney Avenue and Rose Street were analyzed as right-in/right-out intersections.

Detailed Synchro reports are provided in **Appendix B**.

### 4.1 ALBERT STREET / DEWDNEY AVENUE

The Albert Street / Dewdney Avenue intersection is currently controlled by signals. **Table 4-1** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-2** summaries the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-1 Albert Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

### Signalized Intersection

| TRAFFIC<br>MOVEMENTS |           |     | PM PEAK HOUR |                                      |           |     |      |                                      |  |  |
|----------------------|-----------|-----|--------------|--------------------------------------|-----------|-----|------|--------------------------------------|--|--|
|                      | Delay (s) | LOS | v/c          | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | Los | v/c  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |
| EB-L                 | 30.2      | c   | 0.60         | 36                                   | 40.4      | D   | 0.73 | 42                                   |  |  |
| EB-T,T               | 57.0      | E   | 0.94         | 160                                  | 59.4      | E   | 0.92 | 132                                  |  |  |
| EB-R                 | 14.4      | В   | 0.43         | 38                                   | 8.8       | A   | 0.35 | 20                                   |  |  |
| WB-L                 | 74.9      | E   | 0.93         | 77                                   | 78.0      | E   | 0.99 | 133                                  |  |  |
| WB-T,T               | 39.3      | D   | 0.67         | 101                                  | 40.7      | D   | 0.79 | 132                                  |  |  |
| WB-R                 | 1.3       | A   | 0.13         | 2                                    | 11.5      | В   | 0.30 | 27                                   |  |  |
| NB-L                 | 63.5      | E   | 0.83         | 55                                   | 75.6      | E   | 0.96 | 105                                  |  |  |
| NB-T,T,TR            | 31.1      | c   | 0.52         | 71                                   | 67.1      | E   | 1.02 | 183                                  |  |  |
| SBL                  | 28.6      | С   | 0.66         | 45                                   | 71.1      | E   | 0.89 | 64                                   |  |  |
| SB-T,T,TR            | 39.1      | D   | 0.86         | 147                                  | 59.5      | E   | 0.96 | 139                                  |  |  |
| INT Summary          | 40,9      | D   | 0.94         | 1-1                                  | 57.4      | E   | 1.02 |                                      |  |  |

Table 4-2 Albert Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

### Signalized Intersection

| TRAFFIC     |           |     | Weekday Evening Post-Event Peak Hour |                                      |           |     |      |                                     |  |  |
|-------------|-----------|-----|--------------------------------------|--------------------------------------|-----------|-----|------|-------------------------------------|--|--|
| MOVEMENTS   | Delay (s) | Los | v/c                                  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | Los | v/c  | 95 <sup>th</sup> Queue<br>Length (m |  |  |
| EB-L        | 32.3      | С   | 0.61                                 | 31                                   | 33.7      | С   | 0.43 | 21                                  |  |  |
| EB-T,T      | 54.0      | D   | 0.85                                 | 99                                   | 48.3      | D   | 0.53 | 41                                  |  |  |
| EB-R        | 6.0       | A   | 0.31                                 | 13                                   | 2.3       | A   | 0.26 | 2                                   |  |  |
| WB-L        | 62.7      | Е   | 0.91                                 | 97                                   | 48.3      | D   | 0.79 | 65                                  |  |  |
| WB-T,T      | 40.0      | D   | 0.73                                 | 103                                  | 45.3      | D   | 0.70 | 77                                  |  |  |
| WB-R        | 8.6       | A   | 0.27                                 | 19                                   | 10.8      | В   | 0.33 | 19                                  |  |  |
| NB-L        | 44.5      | D   | 0.81                                 | 78                                   | 19.7      | В   | 0.65 | 68                                  |  |  |
| NB-T,T,TR   | 35.7      | D   | 0.76                                 | 129                                  | 18.8      | В   | 0.37 | 71                                  |  |  |
| SBL         | 49.4      | D   | 0.74                                 | 51                                   | 14.6      | В   | 0.17 | 14                                  |  |  |
| SB-T,T,TR   | 36.8      | D   | 0.66                                 | 98                                   | 24.8      | С   | 0.30 | 58                                  |  |  |
| INT Summary | 39.7      | D   | 0.91                                 | 72                                   | 29.0      | С   | 0.79 | +                                   |  |  |

The above capacity analysis reveals that the existing lane configuration at the Albert Street / Dewdney Avenue intersection is nearing its limits of available capacity during the forecasted 2040 afternoon peak hour post-development traffic scenario. Vehicles are anticipated to experience delay and congestion during the afternoon peak hour. The Albert Street / Dewdney Avenue intersection is expected to operate at acceptable levels of service during the morning peak hours and off-peak hours.

Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way constraints and the existing nearby developments. Transportation demand management strategies and active transportation programs to reduce future traffic demand should be considered by the City.

The Railyard Renewal Secondary Plan area identifies the future east extensions of 9<sup>th</sup> Avenue and 10<sup>th</sup> Avenue into the proposed RRP development site. These roadway extensions will provide two more access points on Albert Street for the Railyard site. These two future access points are anticipated to reduce the traffic burden at the Albert Street / Dewdney Avenue intersection. Additional traffic analysis will be required if further developments are proposed and when the two roadway extensions are constructed in the Secondary Plan area.

The Albert Street / Dewdney Avenue intersection is anticipated to operate well, with individual movements operating at a LOS D or better during the weekday event post-event peak hour.

#### 4.2 MCINTYRE STREET / DEWDNEY AVENUE

The McIntyre Street / Dewdney Avenue intersection is currently controlled by stop signs on McIntyre Street. Left turn lanes are provided for the east and westbound traffic. Two eastbound through lanes and two westbound through lanes are anticipated to be maintained during off-peak hours at this intersection. **Table 4-3** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-4** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-3 McIntyre Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

#### Stop-controlled Intersection

| TRAFFIC     |           |     | PM PEAK HOUR |                          |           |     |      |                          |
|-------------|-----------|-----|--------------|--------------------------|-----------|-----|------|--------------------------|
| MOVEMENTS   | Delay (s) | LOS | v/c          | 95th Queue<br>Length (m) | Delay (s) | LOS | v/c  | 95th Queue<br>Length (m) |
| EB-L        | 10.5      | В   | 0.04         | 1                        | 13.4      | В   | 0.11 | 3                        |
| EB-T,TR     | 0.0       | A   | 0.54         |                          | 0.0       | A   | 0.45 |                          |
| WB-L        | 13.7      | В   | 0.13         | 4                        | 11.5      | В   | 0.04 | 1                        |
| WB-T,TR     | 0.0       | Α   | 0.38         |                          | 0.0       | A   | 0.54 |                          |
| NB-LT       | >150      | F   | 0.15         | 3                        | >300      | F   | 0.55 | 11                       |
| NB-R        | 15.3      | С   | 0.08         | 2                        | 14.9      | В   | 0.18 | 5                        |
| SB-LT       | >150      | F   | 0.23         | 5                        | >250      | F   | 0.39 | 8                        |
| SB-R        | 12.3      | В   | 0.04         | 1                        | 18.9      | С   | 0.33 | 11                       |
| INT Summary | 1.4       | Α   | 0.53         |                          | 3.5       | A   | 0.53 |                          |

Table 4-4 McIntyre Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

#### Stop-controlled Intersection

| TRAFFIC     |           | Off Peak Hour |      |                                      |           | Weekday Evening Post-Event Peak Hour |      |                                      |  |
|-------------|-----------|---------------|------|--------------------------------------|-----------|--------------------------------------|------|--------------------------------------|--|
| MOVEMENTS   | Delay (s) | LOS           | v/c  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS                                  | v/c  | 95 <sup>th</sup> Queue<br>Length (m) |  |
| EB-L        | 11.6      | В             | 0.08 | 2                                    | 10.1      | В                                    | 0.03 | 1                                    |  |
| EB-T,TR     | 0.0       | A             | 0.38 |                                      | 0.0       | A                                    | 0.16 |                                      |  |
| WB-L        | 10.4      | В             | 0.03 | 1                                    | 8.2       | A                                    | 0.01 | 0                                    |  |
| WB-T,TR     | 0.0       | Α             | 0.45 |                                      | 0.0       | A                                    | 0.36 |                                      |  |
| NB-LT       | 118.4     | F             | 0.22 | 5                                    | 31.6      | D                                    | 0.29 | 8                                    |  |
| NB-R        | 13.0      | В             | 0.13 | 3                                    | 9.7       | A                                    | 0.04 | 1                                    |  |
| SB-LT       | 115.0     | F             | 0.17 | 4                                    | 48.6      | Е                                    | 0.41 | 14                                   |  |
| SB-R        | 15.3      | С             | 0.23 | 7                                    | 12.6      | В                                    | 0.13 | 3                                    |  |
| INT Summary | 2.1       | Α             | 0.45 |                                      | 3.7       | A                                    | 0.41 |                                      |  |

The McIntyre Street / Dewdney Avenue intersection is anticipated to operate well overall during the morning, afternoon and off-peak hours. However, the northbound and southbound left/through movements are expected to experience longer delays (LOS F) during the morning, afternoon, and off-peak hours. The 95<sup>th</sup> percentile queue lengths indicate that during these time periods it is expected that one to two vehicles could be queued waiting to complete the northbound or southbound left or through movement.

The McIntyre Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) overall, with individually movements operating at a LOS E or better, during the weekday evening post-event peak hour.

Considering the traffic volumes of the north and southbound left/through movements are anticipated to be low, it is anticipated that the existing intersection treatment and traffic control type at this intersection will be adequate to accommodate the forecasted future traffic.

#### 4.3 LORNE STREET / DEWDNEY AVENUE

The Lorne Street / Dewdney Avenue intersection will be converted to a three-leg stop-controlled intersection since the large footprint facility is anticipated to remove the south leg of the intersection. Full movements are recommended at this intersection to allow traffic to divert from Lorne Street in the event that there is a train to the west.

On-street parking is recommended to be restricted to allow two through lanes (one way) on Dewdney Avenue during the morning and afternoon peak hours. On-street parking will be permitted on the curb lanes during the off-peak hours and one through lane will be provided on Dewdney Avenue during this time. The curb lanes in the vicinity of the intersection will function as right turn lanes.

**Table 4-5** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-6** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-5 Lorne Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

#### Stop-controlled Intersection

| TRAFFIC     |           |     | PM PEAK HOUR |                          |           |     |      |                          |
|-------------|-----------|-----|--------------|--------------------------|-----------|-----|------|--------------------------|
| MOVEMENTS   | Delay (s) | LOS | v/c          | 95th Queue<br>Length (m) | Delay (s) | LOS | v/c  | 95th Queue<br>Length (m) |
| EB-LT       | 10.9      | В   | 0.05         | 2                        | 12.7      | В   | 0.04 | 1                        |
| EB-T,T      | 1.1       | A   | 0.54         |                          | 0.8       | A   | 0.48 |                          |
| WB-T,TR     | 0.0       | A   | 0.41         |                          | 0.0       | A   | 0.53 |                          |
| SB-LTR      | 41.2      | Е   | 0.19         | 5                        | 28.7      | D   | 0.28 | 8                        |
| INT Summary | 1.1       | Α   | 0.54         |                          | 1.1       | A   | 0.53 |                          |

Table 4-6 Lorne Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

#### Stop-Controlled Intersection

| TRAFFIC     | Off Peak Hour |     |      |                                      | Weekday Evening Post-Event Peak Hour |     |      |                                      |
|-------------|---------------|-----|------|--------------------------------------|--------------------------------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s)     | LOS | v/c  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)                            | LOS | v/c  | 95 <sup>th</sup> Queue<br>Length (m) |
| EB-LT       | 11.1          | В   | 0.03 | 1                                    | 9.6                                  | A   | 0.01 | 0                                    |
| WB-R        | 0.0           | Α   | 0.01 |                                      | 0.0                                  | A   | 0.0  |                                      |
| WB-T        | 0.0           | Α   | 0.67 |                                      | 0.0                                  | A   | 0.49 |                                      |
| SB-LTR      | 35.8          | E   | 0.30 | 9                                    | 17.7                                 | С   | 0.20 | 5                                    |
| INT Summary | 0.9           | Α   | 0.67 |                                      | 0.9                                  | A   | 0.49 |                                      |

The above capacity analysis reveals that the Lorne Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) overall, with individual movements operating at a LOS E or better during the morning and afternoon peak hours with two through lanes (one way) on Dewdney Avenue and LOS E or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configuration with minor-street stop-control at this intersection can accommodate the forecasted future traffic.

The Lorne Street / Dewdney Avenue intersection is anticipated to operate well during the weekday evening postevent scenario with one through lane on Dewdney Avenue.

#### 4.4 CORNWALL STREET / DEWDNEY AVENUE

The Cornwall Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the west. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements. On-street parking is recommended to be restricted during peak hours. Thus, two through lanes (one way) will be available on Dewdney Avenue in the morning and afternoon peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted on the curb lanes. The curb lanes in the vicinity of the intersection will function as right turn lanes.

**Table 4-7** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-8** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-7 Cornwall Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

|                      | Signalized Intersection |        |        |                          |           |        |        |                          |  |  |
|----------------------|-------------------------|--------|--------|--------------------------|-----------|--------|--------|--------------------------|--|--|
| TRAFFIC<br>MOVEMENTS | -                       | AM PEA | K HOUR |                          |           | PM PEA | K HOUR |                          |  |  |
|                      | Delay (s)               | Los    | v/c    | 95th Queue<br>Length (m) | Delay (s) | Los    | v/c    | 95th Queue<br>Length (m) |  |  |
| EB-L                 | 7.3                     | Α      | 0.04   | 4                        | 9.0       | A      | 0.13   | 7                        |  |  |
| EB-T,TR              | 9.2                     | A      | 0.56   | 123                      | 9.0       | A      | 0.53   | 84                       |  |  |
| WB-L                 | 8.6                     | Α      | 0.11   | 6                        | 7.8       | A      | 0.03   | 2                        |  |  |
| WB-T,TR              | 6.5                     | A      | 0.42   | 68                       | 9.2       | A      | 0.55   | 88                       |  |  |
| NB-LTR               | 15.1                    | В      | 0.23   | 10                       | 26.1      | С      | 0.45   | 26                       |  |  |
| SB-LTR               | 6.1                     | A      | 0.07   | 3                        | 9.6       | A      | 0.23   | 10                       |  |  |
| INT Summary          | 8.2                     | A      | 0.56   | 1 <del>11</del>          | 9.9       | A      | 0.55   | -                        |  |  |

Table 4-8 Cornwall Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

|                      | Signalized Intersection |     |           |                                      |           |           |      |                                     |  |  |
|----------------------|-------------------------|-----|-----------|--------------------------------------|-----------|-----------|------|-------------------------------------|--|--|
| TRAFFIC<br>MOVEMENTS |                         |     | Weekday 1 | Evening P                            | ost-Event | Peak Hour |      |                                     |  |  |
|                      | Delay (s)               | Los | v/c       | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | Los       | v/c  | 95 <sup>th</sup> Queue<br>Length (m |  |  |
| EB-L                 | 7.0                     | A   | 0.11      | 6                                    | 7.9       | A         | 0.03 | 3                                   |  |  |
| EB-T                 | 24.5                    | С   | 0.89      | 276                                  | 11.2      | В         | 0.51 | 74                                  |  |  |
| EB-R                 | 1.9                     | A   | 0.01      | 1                                    | 3.8       | A         | 0.02 | 3                                   |  |  |
| WB-L                 | 6.2                     | Α   | 0.03      | 2                                    | 7.8       | A         | 0.05 | 5                                   |  |  |
| WB-T                 | 33.6                    | С   | 0.90      | 284                                  | 14.5      | В         | 0.63 | 115                                 |  |  |
| WB-R                 | 3.2                     | A   | 0.02      | 3                                    | 1.9       | A         | 0.01 | 1                                   |  |  |
| NB-LTR               | 36.6                    | D   | 0.47      | 30                                   | 29.6      | С         | 0.67 | 30                                  |  |  |
| SB-LTR               | 11.2                    | В   | 0.23      | 10                                   | 12.3      | В         | 0.46 | 16                                  |  |  |
| INT Summary          | 28.2                    | С   | 0.90      | 1-1                                  | 14.8      | В         | 0.67 | -                                   |  |  |

The Cornwall Street / Dewdney Avenue intersection is anticipated to operate well (LOS C or better) overall, with individual movements operating at a LOS Cor better during the morning and afternoon peak hours with two through lanes (one way) on Dewdney Avenue and LOS D or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configuration and traffic control at this intersection will be capable of accommodating the forecasted future traffic.

The Lorne Street / Dewdney Avenue intersection is anticipated to operate well (LOS B) during the weekday evening post-event scenario with one through lane on Dewdney Avenue.

#### 4.5 SCARTH STREET / DEWDNEY AVENUE

The Scarth Street / Dewdney Avenue intersection is recommended to be stop-controlled with free flow conditions on Dewdney Avenue. To maintain adequate flow on Dewdney Avenue and minimize collision risks, traffic movements from/to Scarth Street are recommended to be restricted to right-in and right-out movements.

**Table 4-9** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-10** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-9 Scarth Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

| TRAFFIC     |           |     | PM PEAK HOUR |                          |           |     |      |                          |
|-------------|-----------|-----|--------------|--------------------------|-----------|-----|------|--------------------------|
| MOVEMENTS   | Delay (s) | LOS | v/c          | 95th Queue<br>Length (m) | Delay (s) | LOS | v/c  | 95th Queue<br>Length (m) |
| EB-T,TR     | 0.0       | A   | 0.50         |                          | 0.0       | A   | 0.45 |                          |
| WB-T,TR     | 0.0       | A   | 0.39         |                          | 0.0       | A   | 0.46 |                          |
| NB-R        | 14.2      | В   | 0.03         | 1                        | 13.7      | В   | 0.05 | 2                        |
| SB-R        | 12.4      | В   | 0.05         | 1                        | 14.4      | В   | 0.14 | 4                        |
| INT Summary | 0.2       | Α   | 0.39         |                          | 0.5       | A   | 0.46 |                          |

Table 4-10 Scarth Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

#### Stop-controlled, Right-in/Right-out Intersection

| TRAFFIC     | Off Peak Hour |     |      |                                      | Weekday Evening Post-Event Peak Hour |     |      |                                      |
|-------------|---------------|-----|------|--------------------------------------|--------------------------------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s)     | LOS | v/c  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)                            | LOS | v/c  | 95 <sup>th</sup> Queue<br>Length (m) |
| EB-R        | 0.0           | Α   | 0.03 |                                      | 0.0                                  | A   | 0.01 |                                      |
| EB-T        | 0.0           | Α   | 0.56 |                                      | 0.0                                  | A   | 0.33 |                                      |
| WB-R        | 0.0           | Α   | 0.01 |                                      | 0.0                                  | A   | 0.0  |                                      |
| WB-T        | 0.0           | A   | 0.58 |                                      | 0.0                                  | A   | 0.32 |                                      |
| NB-R        | 17.4          | С   | 0.06 | 2                                    | 11.9                                 | В   | 0.01 | 0                                    |
| SB-R        | 19.4          | С   | 0.17 | 5                                    | 12.8                                 | В   | 0.13 | 4                                    |
| INT Summary | 0.6           | Α   | 0.58 |                                      | 0.8                                  | A   | 0.33 |                                      |

The Scarth Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) overall, with individual movements operating at a LOS B or better during the morning and afternoon peak hours with two through lanes (one way) on Dewdney Avenue and LOS C or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configuration and traffic control at this intersection will be capable of accommodating the forecasted future traffic.

The Scarth Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) during the weekday evening post-event scenario with one through lane on Dewdney Avenue.

#### 4.6 HAMILTON STREET / DEWDNEY AVENUE

The Hamilton Street / Dewdney Avenue intersection will be the first intersection accessing to the railyard site from the east. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue. On-street parking is recommended to be restricted during peak hours. Thus, two through lanes (one way) will be available on Dewdney Avenue in the morning and afternoon peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted on the curb lanes. The curb lanes in the vicinity of the intersection will function as right turn lanes.

**Table 4-11** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-12** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-11 Hamilton Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

#### Signalized Intersection

| TRAFFIC     |           | AM PEA | K HOUR |                          | PM PEAK HOUR |     |      |                          |
|-------------|-----------|--------|--------|--------------------------|--------------|-----|------|--------------------------|
| MOVEMENTS   | Delay (s) | LOS    | v/c    | 95th Queue<br>Length (m) | Delay (s)    | LOS | v/c  | 95th Queue<br>Length (m) |
| EB-L        | 7.0       | Α      | 0.14   | 8                        | 9.0          | A   | 0.17 | 11                       |
| EB-T,TR     | 16.1      | В      | 0.61   | 134                      | 8.0          | A   | 0.50 | 79                       |
| WB-L        | 7.5       | Α      | 0.17   | 8                        | 11.6         | В   | 0.30 | 20                       |
| WB-T,TR     | 13.1      | В      | 0.48   | 83                       | 8.0          | A   | 0.50 | 80                       |
| NB-LTR      | 9.3       | Α      | 0.26   | 11                       | 13.7         | В   | 0.29 | 11                       |
| SB-LTR      | 2.0       | Α      | 0.10   | 2                        | 11.0         | В   | 0.22 | 9                        |
| INT Summary | 14.0      | В      | 0.61   |                          | 8.4          | A   | 0.50 |                          |

Table 4-12 Hamilton Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

#### Signalized Intersection

| TRAFFIC     |           |     | Weekday Evening Post-Event Peak Hour |                                      |           |     |      |                                      |
|-------------|-----------|-----|--------------------------------------|--------------------------------------|-----------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS | v/c                                  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS | v/c  | 95 <sup>th</sup> Queue<br>Length (m) |
| EB-L        | 7.7       | A   | 0.14                                 | 8                                    | 7.3       | A   | 0.03 | 4                                    |
| EB-T        | 19.9      | В   | 0.80                                 | 233                                  | 11.9      | В   | 0.52 | 103                                  |
| EB-R        | 3.8       | A   | 0.02                                 | 4                                    | 2.4       | A   | 0.01 | 1                                    |
| WB-L        | 9.0       | A   | 0.23                                 | 14                                   | 6.6       | A   | 0.06 | 5                                    |
| WB-T        | 19.6      | В   | 0.81                                 | 238                                  | 10.1      | В   | 0.40 | 84                                   |
| WB-R        | 2.7       | A   | 0.01                                 | 2                                    | 0.6       | A   | 0.00 | 1                                    |
| NB-LTR      | 14.7      | В   | 0.26                                 | 14                                   | 13.8      | В   | 0.38 | 13                                   |
| SB-LTR      | 13.0      | В   | 0.20                                 | 11                                   | 11.6      | В   | 0.35 | 12                                   |
| INT Summary | 18.5      | В   | 0.81                                 |                                      | 11.2      | В   | 0.52 |                                      |

The Hamilton Street / Dewdney Avenue intersection is anticipated to operate well (LOS B or better) overall during both the morning and afternoon peak hours with two through lanes (one way) on Dewdney Avenue. The intersection is anticipated to operate well (LOS B) in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configuration and traffic control at this intersection will be capable of accommodating the forecasted future traffic.

The Scarth Street / Dewdney Avenue intersection is anticipated to operate well (LOS B) during the weekday evening post-event scenario with one through lane on Dewdney Avenue.

#### 4.7 ROSE STREET / DEWDNEY AVENUE

The Rose Street / Dewdney Avenue intersection is a three-legged intersection and is recommended to be controlled by a stop sign on Rose Street. Traffic movements from/to Rose Street are recommended to be restricted to right-in and right-out.

**Table 4-13** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-14** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-13 Rose Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

Stop-Controlled, Right-in/Right-out Intersection

| TRAFFIC     | AM PEAK HOUR |     |      |                          | PM PEAK HOUR |     |      |                          |
|-------------|--------------|-----|------|--------------------------|--------------|-----|------|--------------------------|
| MOVEMENTS   | Delay (s)    | LOS | v/c  | 95th Queue<br>Length (m) | Delay (s)    | LOS | v/c  | 95th Queue<br>Length (m) |
| EB-T,T      | 0.0          | Α   | 0.37 |                          | 0.0          | A   | 0.34 |                          |
| WB-T,TR     | 0.0          | A   | 0.39 |                          | 0.0          | A   | 0.45 |                          |
| SB-R        | 12.4         | В   | 0.04 | 1                        | 14.3         | В   | 0.15 | 4                        |
| INT Summary | 0.1          | Α   | 0.39 | -                        | 0.4          | A   | 0.45 |                          |

Table 4-14 Rose Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

Stop-Controlled, Right-in/Right-out Intersection

|             |           |         | _      |                                      |           |           |           |                                      |
|-------------|-----------|---------|--------|--------------------------------------|-----------|-----------|-----------|--------------------------------------|
| TRAFFIC     |           | Off Pea | k Hour |                                      | Weekday 1 | Evening P | ost-Event | Peak Hour                            |
| MOVEMENTS   | Delay (s) | LOS     | v/c    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS       | v/c       | 95 <sup>th</sup> Queue<br>Length (m) |
| EB-T        | 0.0       | A       | 0.57   |                                      | 0.0       | A         | 0.38      |                                      |
| WB-T        | 0.0       | A       | 0.37   |                                      | 0.0       | A         | 0.24      |                                      |
| WB-R        | 0.0       | A       | 0.20   |                                      | 0.0       | A         | 0.00      |                                      |
| SB-R        | 12.6      | В       | 0.11   | 3                                    | 11.1      | В         | 0.08      | 2                                    |
| INT Summary | 0.3       | A       | 0.57   |                                      | 0.5       | A         | 0.38      |                                      |

The Rose Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) overall, with individual movements operating at a LOS B or better during the morning and afternoon peak hours with two through lanes (one way) on Dewdney Avenue and LOS B or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configuration and traffic control at this intersection will be capable of accommodating the forecasted future traffic.

The Rose Street / Dewdney Avenue intersection is anticipated to operate well (LOS A) during the weekday evening post-event scenario with one through lane on Dewdney Avenue.

#### 4.8 BROAD STREET / DEWDNEY AVENUE

The Broad Street / Dewdney Avenue intersection is currently controlled by signals. **Table 4-15** summarizes the traffic operational performance at this intersection during the morning and afternoon peak hours under the 2040 post-development traffic conditions and **Table 4-16** summarizes the off-peak traffic and weekday evening post-event traffic operational performance.

Table 4-15 Broad Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (AM & PM Peak Hour)

#### Signalized Intersection

| TRAFFIC     |           | AM PEA | K HOUR |                          |           | PM PEAK HOUR |      |                          |  |
|-------------|-----------|--------|--------|--------------------------|-----------|--------------|------|--------------------------|--|
| MOVEMENTS   | Delay (s) | LOS    | v/c    | 95th Queue<br>Length (m) | Delay (s) | Los          | v/c  | 95th Queue<br>Length (m) |  |
| EBL         | 46.3      | D      | 0.76   | 121                      | >300      | F            | 1.66 | 182                      |  |
| EBT         | 29.8      | С      | 0.15   | 30                       | 43.5      | D            | 0.35 | 39                       |  |
| EBR         | 39.8      | D      | 0.97   | 194                      | 20.1      | С            | 0.86 | 67                       |  |
| WBL         | 24.9      | С      | 0.02   | 5                        | 30.3      | С            | 0.09 | 10                       |  |
| WBTR        | 33.2      | С      | 0.15   | 21                       | 47.4      | D            | 0.50 | 43                       |  |
| NBL         | >250      | F      | 1.51   | 271                      | 94.5      | F            | 1.09 | 293                      |  |
| NBT,TR      | 16.2      | В      | 0.46   | 76                       | 17.0      | В            | 0.73 | 205                      |  |
| SBL         | 30.4      | С      | 0.08   | 8                        | 41.4      | D            | 0.22 | 10                       |  |
| SBT,T       | 129.8     | F      | 1.18   | 231                      | 120.2     | F            | 1.15 | 208                      |  |
| SBR         | 13.0      | В      | 0.51   | 41                       | 12.8      | В            | 0.56 | 42                       |  |
| INT Summary | 93.0      | F      | 1.51   |                          | 77.9      | E            | 1.66 | +                        |  |

Table 4-16 Broad Street / Dewdney Avenue 2040 Post-Development Traffic Operations Summary (Off-Peak & Post-Event Peak Hour)

#### Signalized Intersection

| TRAFFIC     |           | Off Pea | ık Hour |                                      |           | Event P | eak Hour |                                     |
|-------------|-----------|---------|---------|--------------------------------------|-----------|---------|----------|-------------------------------------|
| MOVEMENTS   | Delay (s) | LOS     | v/c     | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | Los     | v/c      | 95 <sup>th</sup> Queue<br>Length (m |
| EB-L        | >250      | F       | 1.51    | 135                                  | 51.7      | D       | 0.71     | 52                                  |
| EB-T        | 46.9      | D       | 0.34    | 33                                   | 42.2      | D       | 0.19     | 20                                  |
| EB-R        | 11.3      | В       | 0.76    | 29                                   | 12.6      | В       | 0.70     | 37                                  |
| WB-L        | 33.2      | С       | 0.09    | 9                                    | 33.5      | С       | 0.13     | 11                                  |
| WB-TR       | 51.1      | D       | 0.51    | 36                                   | 33.8      | С       | 0.29     | 18                                  |
| NB-L        | 40.3      | D       | 0.85    | 231                                  | 10.6      | В       | 0.46     | 46                                  |
| NB-T,TR     | 11.7      | В       | 0.59    | 148                                  | 8.7       | A       | 0.34     | 73                                  |
| SB-L        | 35.8      | D       | 0.14    | 8                                    | 19.2      | В       | 0.01     | 4                                   |
| SB-T,T      | 63.7      | Е       | 0.97    | 159                                  | 16.4      | В       | 0.31     | 77                                  |
| SB-R        | 8.1       | A       | 0.47    | 25                                   | 4.5       | A       | 0.14     | 12                                  |
| INT Summary | 50.4      | D       | 1.51    | -                                    | 16.0      | В       | 0.71     | +                                   |

The Broad Street / Dewdney Avenue intersection is expected to operate poorly (LOS E or worse) during the morning and afternoon peak hours. Lengthy delays and congestion are anticipated for the northbound left and southbound through movements during both the morning and afternoon peak hours, as well as the eastbound left during the afternoon peak hour. The intersection is anticipated to operate with delay (LOS D) during the off-peak hours. The eastbound left turn movement is expected to operate poorly (LOS F) in the off-peak hours.

The above capacity analysis reveals that the existing lane configuration at the Broad Street / Dewdney Avenue intersection are not expected to be capable of accommodating the forecasted 2040 peak hour traffic volumes.

Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way constraints and the railway overpass bridge on Broad Street to the south. Transportation demand management strategies and active transportation programs to reduce future traffic demand should be considered by the City.

The Broad Street / Dewdney Avenue intersection is anticipated to operate well (LOS B) during the weekday evening post-event, with individual movements operating at a LOS C or better.

#### 5 ROADWAY NETWORK

#### 5.1 RAILYARD SITE INTERNAL ROADWAY NETWORK

The internal roadway network within the Railyard site is based on a grid system with the extension of existing north-south local streets and walkways (Cornwall Street, Scarth Street and Hamilton Street) south across Dewdney Avenue into the site. Due to the placement of the large footprint facility, Lorne Street will not extend into the RRP development site and will terminate at Dewdney Avenue. A site access will be provided just west of the Lorne Street intersection that will provide access to parking for the large footprint facility, as illustrated in **Figure 5-1**.



Figure 5-1 RRP Internal Road Network

The north-south local streets will be linked by an east-west local street, extending from Cornwall Street to Rose Street, to facilitate movement throughout the site for pedestrians, cyclists and drivers. These internal streets will be contained within a 22-meter right-of-way with 11 meters assigned to the street for two vehicle travel lanes and parking on both sides and 5.5-meters on each side for pedestrian amenities. The pedestrian boulevards will accommodate 2.5-meter sidewalks and zones for street trees, furnishings, utility boxes and streetlights. Pedestrian crossings and traffic control (signage and pavement markings) should be designed to enhance pedestrian safety to create safe interfaces between different modes of travel and a comfortable environment for circulation. The internal streets and intersections should be designed to accommodate the movement of emergency vehicles (e.g., fire truck) and garbage trucks.

Items that will require additional review if the large footprint facility is chosen to be included on the RRP site plan include:

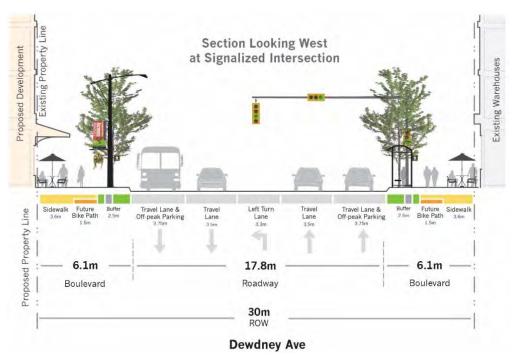
- Emergency services will require a circulation route around the entire facility for fire suppression and ambulance access;
- Adequate clear-throat distances should be provided at the facilities parking lot entrances to maintain on-site circulation and reduce the blocking of vehicles entering or exiting the site;

- Parallel parking should be considered at the main entrance instead of 90-degree parking to ensure uninterrupted traffic flow;
- An Event Traffic and Parking Management Plan will need to be completed to identify the pick-up and drop-off locations, on-site circulation, and clear pedestrian paths for pre- and post-event.

### 5.2 DEWDNEY AVENUE CROSS SECTIONS (ALBERT STREET TO BROAD STREET)

The Regina Revitalization Initiative Railyard Renewal Project Transportation Impact Analysis (March 2, 2018) presented the Dewdney Avenue cross sections for the corridor in front of the RRP development site. These cross-sections utilized complete streets principles help to balance the use of cars, bicycles, pedestrians and public transit vehicles in the right-of-way. The proposed mid-block road cross section is illustrated in **Figure 5-2** and the road cross section at signalized intersections is shown in **Figure 5-3**.

The traffic operations analysis completed in **Section 4** of this report utilized these original cross sections to evaluate the study intersections and the Dewdney Avenue Corridor. The study intersections located in front of the RRP development (Lorne Street, Cornwall Street, Scarth Street, Hamilton Street, Rose Street) operated well overall during the morning, afternoon, off-peak, and the weekday evening post-event peak hours.


The weekday evening post-event traffic analysis assumed that on-street parking will be permitted on the curb lanes during the off-peak hours and one through lane would be provided on Dewdney Avenue during this time. The study intersections located in front of the RRP development are anticipated to operate well during the weekday evening post-event scenario.

If it is found that the delay or congestion reaches unacceptable levels post-event, parking can be restricted along Dewdney Avenue during an event to accommodate the traffic pre- and post-event. This strategy has already been implemented in Regina around Mosaic Stadium during events.

The Dewdney Avenue cross sections presented in **Figure 5-2** and **Figure 5-3** are expected to continue to be adequate to accommodate the RRP development.



Figure 5-2 Proposed Mid-Block Cross Section



Source: WSP and Urban Strategies Inc.

Figure 5-3 Proposed Cross Section at Signalized Intersection

#### 5.3 DEWDNEY AVENUE (CITY LIMITS TO BROAD STREET)

Dewdney Avenue is one of the key east-west arterials within the city of Regina. Dewdney Avenue connects the Railyard Renewal Project, the Warehouse District, the new Mosaic Stadium, redevelopment of Taylor Field Neighbourhood, the Pasqua Hospital (as one of the two main hospitals in Regina), the RCMP depot, the North Central community, Westerra (one of our newest neighbourhoods planned with cycling amenities), future First Nations development, and the Global transportation hub, as illustrated in **Figure 5-4.** 



Figure 5-4 Dewdney Avenue Corridor

While the cross sections along this corridor will vary to meet the various needs of each neighbourhood, there exists an opportunity to develop the corridor with continuity between the various sections and modes. Opportunities that exist, include but are not limited to:

- Identify multimodal solutions for pedestrians and cyclist such as, the incorporation of cycling lanes from the
  Devonian Park pathway to the off-street cycling lanes are planned for Dewdney Avenue between Albert Street
  and Broad Street);
- Identify transit priority measures and Bus Rapid Transit measures along Dewdney Avenue to provide alternative transportation choices for both work and play;
- Provide shuttle buses to improve parking at the Hospital, game day at Mosaic Stadium, the large footprint facility, or other transit priority measures;
- Support alternative mode choices for providing a safe ride home can also be included in the development plan
  for those attending sporting events or enjoying the nightlife in the Warehouse District;
- Identify key locations for traffic calming measures to provide a safe environment for pedestrians; and,
- Prepare for the inclusion of micro-mobility options, such as electric scooters as a form of transportation.

#### 6 PARKING REQUIREMENTS

A priority of the redevelopment is to support walking, cycling, and use of public transportation while ensuring the needs of the site are met but not oversupplied in terms of parking and loading spaces/areas – this means providing an appropriate number of parking stalls and ensuring safety of users during loading.

Parking demand is subject to many elements including the neighbourhood design, and availability and quality of infrastructure for alternative modes of transportation (e.g. walking, cycling, and transit). Research indicates that in urban areas with mixed uses and good transit access, and where the city's goals include increasing mode share for walking, cycling, and transit, limited parking should be provided with an "efficiency-based" parking approach. This approach is based in the idea that parking supply is designed to fill to capacity on a regular basis, rather than designed to provide an oversupply. Urban neighbourhoods with a variety of land uses, and quality active modes and transit infrastructure can successfully apply an efficiency-based parking approach.

#### 6.1 CITY OF REGINA PARKING REQUIREMENTS

Parking requirements for the proposed RRP development was determined using the City of Regina's Zoning Bylaw No. 9250 [1992/9250].

The City's Zoning Bylaw specifies the number of parking stalls required based on the type of uses and the associated GFA. **Table 6-1** summarizes the total number of stalls required for each land use, as specified by the Zoning Bylaw – Parking and Loading Regulations for Commercial Uses (Section 14B.5.3).

Table 6-1 Parking Requirements by City of Regina Bylaw

City of Regina Zoning Bylaw 9250

| . 1                      |                      |                               |                                           |
|--------------------------|----------------------|-------------------------------|-------------------------------------------|
| Land Use                 | Units                | Rates (No. of Spaces per Unit | Minimum No. of Parking<br>Stalls Required |
| Residential              | 652 Dwelling Units   | 1 Space per Dwelling Unit     | 652                                       |
| Retail                   | 4,000 m <sup>2</sup> | 1 Space per 20 m² GFA         | 200                                       |
| Office                   | 6,400 m <sup>2</sup> | 1 Space per 60 m² GFA         | 107                                       |
| Community                | 3,200 m <sup>2</sup> | 1 Space per 20 m² GFA         | 160                                       |
| Cultural                 | 4,100 m <sup>2</sup> | 1 Space per 20 m² GFA         | 410                                       |
| Large Footprint Facility | 10,000 seats         | No Requirement                |                                           |
| Total                    |                      |                               | 1,529                                     |

The City's Zoning Bylaw indicates that sports stadia, over 10,000 seats, have no requirements for the minimum number of parking spaces that must be provided. **Figure 5-2** illustrates that some parking will be provided surrounding the large footprint facility. Initial estimates show approximately 200 parking stalls; however, this number is subject to change as the plan becomes more defined. The final plan should maintain some parking for the large footprint facility for day-to-day operations. The presented parking minimum do not include event parking.

In total, the City's Zoning Bylaw indicates that 1,529 parking stalls should be provided on the RRP development site. These rates do not take into consideration the efficiencies that can be achieved with a blend of land uses. These rates also do not reflect the accessibility of this site by modes other than private vehicle.

-

<sup>&</sup>lt;sup>2</sup> Parking Management: Strategies, Evaluation and Planning, Victoria Transport Policy Institute, 2016

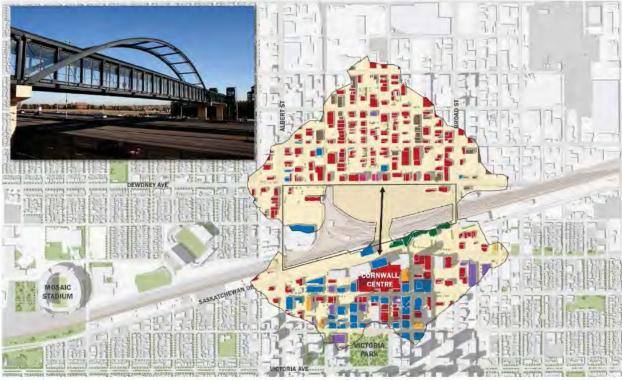
In additional to vehicle parking stalls, the development will also need to comply with the City's Zoning Bylaws for bicycle and accessible parking needs.

To reduce the number of parking stalls needed on-site, several Transportation and Parking Demand Management Strategies can be implemented. Further details are discussed in **Section 8.0.** 

#### 6.2 EVENT PARKING REQUIREMENTS

For the purposes of the event parking requirements, an event with an attendance of 10,000, equal to 100 percent of the seating capacity, was chosen for a conservative analysis. To determine the traffic demand generated from an attendance of 10,000 people, the following factors were assumed:

- 3.5 percent mode split to transit;
- 5 percent mode split to walking/cycling;
- average of 2.4 people per vehicle; and


The resultant parking demand is approximately 3,800 vehicles. This parking demand is considered to be on the conservative side, given that no event transit shuttle is assumed and measured values for people per vehicle for Canadian locations range from 2.4 to 2.6 for sporting events.

The potential parking destinations was evaluated surrounding the RRP development site. **Figure 6-1** illustrates the area currently accessible within a 10-minute walk of the RRP development, without the pedestrian bridge, and **Figure 6-2** illustrates the area accessible with the construction of a pedestrian bridge.



Source: Urban Strategies Inc.

Figure 6-1 Area Accessible within 10-minute Walk (No Pedestrian Bridge)



Source: Urban Strategies Inc.

Figure 6-2 Area Accessible within 10-minute Walk (with Pedestrian Bridge)

Note that the construction of the pedestrian bridge will put much of the downtown within a short walking distance of the RRP development site.

The on-street public parking was estimated to determine where event attendees may park. **Table 6-2** summarizes the on-street public parking supply within a 10-minute walk from the RRP development. The percent occupied representations the percentage of vehicles that would normally be parked on the street if an event was not occurring. The percentage used from this analysis was estimated from previous parking occupancy studies completed for Mosaic Stadium in 2017.

Table 6-2 Parking Supply Summary

| LOCATION                | PARKING SUPPLY | PERCENT OCCUPIED | ESTIMATED PARKING<br>AVAILABILITY |
|-------------------------|----------------|------------------|-----------------------------------|
| On-site                 | 214            | 0%               | 214                               |
| Warehouse District      | 1,900*         | 35%              | 1,240*                            |
| Downtown Public Parking | 5,000*         | 35%              | 3,250*                            |

<sup>\*</sup> On-street Public Parking Estimates

Not included in the summary, but also available is the off-street private parking in the Warehouse District and in the Downtown. The number of off-street private parking stalls in the Warehouse District was not available at the time of this study; however, the Downtown Off-Street Private Parking estimated at +7,000 parking stalls.

**Table 6-2** summarizes estimated on-street public parking available within a 10-minute walk from the large footprint facility. Without a pedestrian bridge to the downtown, there is approximately 1,450 parking spaces available, which results in an estimated shortfall of 2,350 parking stalls.

With the construction of a pedestrian bridge, the estimated parking supply available is estimated at 4,700 parking spaces. The pedestrian bridge is a crucial component in providing an adequate amount of parking for the large footprint facility during an event.

Based on the on-street public parking availability it is estimated that 40% of attendees will park on-site or in the Warehouse District and 60% of attendees will park in the Downtown.

The presented parking demand is based on the information available at the time of this study. Several considerations that may influence the parking demand during an event including:

- A Transit Shuttle Service, similar to the service provided for Mosaic Stadium, may reduce the demand for event
  parking. However, considering that events may be held during the winter months, attendee's desires to wait for
  a transit shuttle at night and in the cold may be limited.
- Providing safe and secure bicycle parking may reduce the parking demand for events that are held during the temperate months.
- An effective communication plan can alter attendee's mode choice and travel patterns.
- Event planning pre- and post-event can attract attendees to come sooner and stay longer which will reduce the immediate traffic demand pre- and post-event.
- An Event Traffic and Parking Plan is recommended to address the parking demand and identify mitigation measures needed to safely accommodate traffic and pedestrians pre- and post-event.
- Off-street parking in the Warehouse District is not taken into account in the supply calculations.

## 7 TRANSPORTATION DEMAND MEASURES

Transportation Demand Management (TDM) is one of the approaches that Canadian municipalities and regional transportation authorities are using to create sustainable, more efficient and reliable transportation systems. By definition, TDM is a multi-faceted and multi modal approach used to reduce or redistribute transportation demand. The primary purpose of TDM is to reduce the number of vehicles using the road network by influencing individual travel behaviour and providing a wide variety of mobility options to those who wish to travel. TDM is a key tool in transportation planning and operations and represents a cost-effective way to ease congestion, expand transportation choice, and reduce the need to expand capacity.

The City's Transportation Master Plan (2015) depicts TDM policies and actions that the City should adopt and implement. These policies and actions are expected to influence travel behaviour towards more sustainable choices including shifting modes away from single occupant vehicles (SOVs) to active modes, transit, and carpooling; reducing the number of trips they make (e.g. telecommuting), and travelling more efficiently (e.g. travelling outside of peak hours).

The forecasted future traffic volumes are expected to exceed the existing intersection capacity at the two major intersections on Albert Street and Broad Street. The following TDM strategies can be considered to minimize infrastructure needs by reducing the number and length of auto trips, and by shifting vehicle trips away from Dewdney Avenue.

#### 7.1 ALTERNATIVE ROUTES

The existing traffic flow patterns indicate that approximately 75% of the trips on Dewdney Avenue between Albert Street and Broad Street are pass-by trips (origins or destinations are outside of the corridor area).

If alternate routes with suitable traffic operation performance (less congestion, shorter delay, and fewer stops) are available, commuters may use alternative routes to reach their destinations instead of using Dewdney Avenue. Saskatchewan Drive to the south and 7th Avenue to the north are potential roadways that commuters may use as alternate routes to Dewdney Avenue. 7th Avenue is located approximately 350 m north of and parallel to Dewdney Avenue and is a two-lane collector road in the City's Warehouse District. 7th Avenue could possess capacity to accommodate diverted traffic from Dewdney Avenue. If access management strategies (minimize number of accesses along the corridor) is applied and on-street parking is restricted during the morning and afternoon peak hours, 7th Avenue may attract more traffic and result in reduced traffic demand on Dewdney Avenue. Between Albert Street and Broad Street, Saskatchewan Drive is a divided arterial road running through the City's downtown area. Saskatchewan Drive may not be an ideal alternate route to divert the traffic from Dewdney Avenue as it is anticipated to be congested already in the peak hours. However, some low-cost methods could be implemented to improve traffic operation performance along the corridor, such as restricting on-street parking during peak hours and optimizing traffic signal timing.

#### 7.2 PUBLIC TRANSIT

Public transit presents a realistic alternative to private automobile travel because it provides accessible service for long and short commutes, and is comfortable in inclement weather.

The City of Regina currently provides several transit routes surrounding the CP railyard site, including:

- Bus Routes #1, 2, 3, and 5 are available on Albert Street;
- Bus Routes #1 and 10 are available on Broad Street; and

Bus Routes #4 and 5 are available on Dewdney Avenue.

#### INCREASED SERVICE FREQUENCY

The City could consider increasing the transit service frequency on Dewdney Avenue to meet the future transit patron demand as a result of the Railyard Renewal Project. In addition, the City should provide safe, secure bike parking at major transit stops and stations. Valuing the people who ride public transit with proper provision of shelters and services is essential to increasing ridership.

#### SUBSIDIZE TRANSIT USE

Subsidizing transit tickets or transit passes for tenants/residents/visitors would incentivize greater transit use and reduce parking demand.

#### 7.3 PEDESTRIAN FACILTIES

Walking is the simplest and most sustainable form of transportation. It carries zero cost, is versatile and is impervious to congestion or delay on the roads. Except in the most extreme temperatures, walking is a viable means of travel for all short trips.

Sidewalks are provided along both sides of Albert Street and Broad Street, except at the Broad Street underpass where only the west side sidewalk is provided. There is no sidewalk on the east side. Sidewalks are provided only on the north side of Dewdney Avenue between Albert Street and Broad Street.

Trails or lanes dedicated to cyclists are not provided in the RRP surrounding area.

#### PEDESTRIAN FACILITY IMPROVEMENTS

To encourage walking within the City centre, in addition to improving the existing pedestrian facility conditions, more pedestrian facilities such as sidewalks, crosswalks and shared pathways should be developed. Pedestrian accessibility features, such as ramps, audible signals and countdown timers that make walking an easy choice for everyone should also be added.

#### **PEDESTRIAN BRIDGE**

The pedestrian bridge will be an critical linkage between the downtown and the RRP development site. The proposed pedestrian bridge linking the railyard with downtown is anticipated to reduce the automobile traffic demand from the RRP development. It will also provide a direct connection between the parking available in the downtown and the large footprint facility during events. This pedestrian bridge will help meet the parking demands generated by the large footprint facility.

#### 7.4 CYCLING FACILITIES

Cycling plays an important role in transportation demand management and can substitute directly for automobile trips. Communities that improve cycling conditions often experience significant increases in bicycle travel and related reductions in vehicle travel.

#### CYCLING IMPROVEMENTS

Providing adequate bicycle facilities, including Bike Lanes, Bicycle Boulevards, Cycle Tracks, Bicycle End-of-Trip Facilities and other infrastructure, will encourage cycling as a daily mode of transportation.

It is recommended that the City of Regina create more bicycle-friendly infrastructure throughout the City including the RRP and Downtown areas and integrate it with the City policies, practices and programs. A Pedestrian and

Bicycle Master Plan is recommended to be developed to assess the existing pedestrian and bicycle facilities within the City and to create a comprehensive City-wide pedestrian and cycling network, as well as to provide supporting policies and programs to encourage walking and cycling. A dedicated bike lane is recommended to be provided on the pedestrian bridge linking the railyard with downtown.

#### **SECURE BIKE PARKING**

Bike thefts can make biking unattractive and can result in a decrease in bike users. Provision of convenient and secure bicycle parking is an important part of cycling infrastructure. The City may require private parking lots and garages for cars, as well as commercial and residential buildings to provide bicycle parking. Effective bicycle parking requires a properly designed rack in an appropriate location.

#### **END OF TRIP FACILITIES**

Providing change rooms equipped with showers and lockers encourages bike use to and from the site. These should have sufficient capacity to support the anticipated number of active modes users across the site. They should be located within each building for user convenience.

#### **BIKE-SHARE PROGRAM**

Running a small bike-share program at the site would allow for small to medium distance trips to be made via bike even for people that do not own their own or prefer not to use theirs for some trips. The service could be set up to be accessed only by certain tenants during specific times, and the bikes potentially stored in secure bike storage. This service is a growing trend at certain offices and campuses within Canada.

#### 7.5 RIDE SHARING STRATEGIES

The use of cars as the main mode of mobility is beginning to decline. Data from the US Department of Transportation shown in **Figure 7-1** shows that driving peaked around 2005, and the trend shows a downward projection since then for vehicle kilometres travelled. There is also a steady decrease in the number of 17-year olds with licences.

Many reasons likely underlie this data, some of which include: the changing preferences of the younger generation, higher fuel prices, increasing congestion in urban areas and the lowering utility of the motor vehicle as the fastest means of mobility. Policies encouraging urban development and redevelopment near city centres and the relationship with land values and parking costs, etc. may also contribute to the decline of cars as the main mode of mobility.

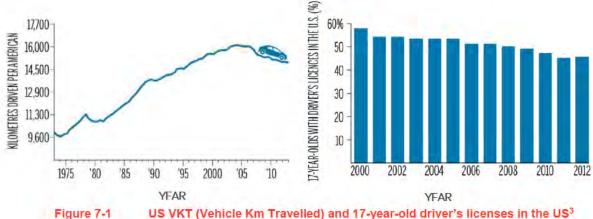



Figure 7-1

New technologies and changing personal preferences are impacting the means of mobility. New technologies like GPS and smart mobile phones enable us to have access to a large volume and variety of data and on-demand applications. This is aligning with today's younger generation preferring more urban lifestyles, the resulting in many new forms of urban mobility that do not include private motor vehicle use, such as:

- Ride-sharing or carpooling
- Bike-sharing
- Scooters
- Car-sharing
- Ride-sourcing through Transport Network Companies (TNCs) like Uber and Lyft
- Ride-sourcing and ride-sharing together via one app

Car-sharing is growing significantly. Overall in Canada, car-sharing memberships have increased by 50% from 2014 to 2015, and fleets grew 26%. Bike share is also becoming increasingly popular around the world.

Ridesharing Strategies play an important role in transportation demand management. Ride Sharing strategies can reduce congestion and reduce the required parking supply of a development.

#### CARPOOLING

Carpooling is a form of ridesharing and can reduce traffic congestion. For example, if every citizen in Regina carpooled with one other person for their trip to work, the number of autos on the road would be reduced by up to half, there would be substantial reductions in fuel consumption, congestion and delays, and the costs associated with such delays would diminish. While this is not likely to happen, it does illustrate the positive impact that can result from carpooling.

Carpooling is most effective when it is undertaken on a company-wide or office-wide/specific location basis, with formal monitoring and website support to "match" appropriate people. Although there are some start-up costs, it should largely be a self-sustaining system once fully operational. It is recommended that the City develop a website to support carpooling.

<sup>&</sup>lt;sup>3</sup> Office of Highway Policy Information, Highway Statistics Series via Macleans: http://www.macleans.ca/economy/business/young-and-carless/

<sup>&</sup>lt;sup>4</sup> Innovative Mobility Carsharing Outlook, Transportation Sustainability Research Centre, University of California Berkeley (2015) http://tsrc.berkeley.edu/sites/default/files/Summer%202015%20Carsharing%20Outlook Final%20(1)\_0.pdf

#### **CAR-SHARING STALLS**

Dedicated stalls for car-sharing services may encourage site users to use car-share and reduce the parking demand (with respect to the City's existing bylaws).

Car-sharing should be encouraged in any on-site parkades through collaborations with car-share operators. Precedents exist Canada-wide where public parkade operators work with car-share operators and permit car-share users to end trips within the parkades both in designated stalls and generally elsewhere in the parkade – just not too deep underground to lose the wireless signal. This necessitates public access into the parkade to allow other car-share users to enter the facility to get the vehicle. Clearly, if the parkade were to have gated areas with further controlled access, this area would not work for car-share parking.

#### RIDE-SHARING/RIDE-SOURCING STALLS

Creating a loading zone dedicated to ride-share/ride-sourcing provides an added convenience.

#### 7.6 PARKING MANAGEMENT

Parking Management is a term for strategies that encourage more efficient use of existing parking facilities, reduce parking demand and shift travel to non-single-occupant-vehicle modes. Managing parking helps to reduce the undesirable impacts of parking demand on local and regional traffic levels and the resulting impacts on community livability and design. At the same time, smart management of parking helps to ensure access to retail businesses, provides access for visitors to regional and neighborhood attractions and supports neighborhood vitality.

#### **REMOVE PARKING MINIMUMS**

There are a number of land use/zoning bylaws, policy reviews and documents across Canada and from European organizations that support a large reduction in parking requirements. There is a general trend towards reducing the requirement for parking and allowing supply of parking to be commercially driven, determined based on operational models and parking available nearby.

For example, removing parking minimums is a common tactic used in Calgary, along with many other major cities, to change how people travel. Reduced parking requirements can also be achieved by implementing provisions for a transit orientated development.

#### SHARED PARKING STRATEGY

Shared parking is a strategy in transportation planning that allows a parking space to serve multiple land uses without conflict, made possible by temporal variations in parking demand of these land uses. Parking bylaws and traditional parking generation approaches can often overestimate the required amount of parking within a mixed land use development, and result in costly buildout of unnecessary parking stalls – effectively encouraging private vehicle use. The goal of shared parking is to provide adequate parking to support a development, while minimizing negative outcomes such as increased development cost and land requirements, and to encourage sustainable modes of transportation.

A shared parking analysis is most accurate when specific information regarding each land use is known, as a specific temporal variation in demand exists between many land uses. Considerations include: parking can be shared between land uses peaking at different times of day, reserved stalls should be minimized, and joint use public facilities – rather than single land use parking areas – should be maximized to facilitate the most efficient use of this resource.

#### **UNBUNDLED FLOOR SPACE AND PARKING SUPPLY**

Parking is often included in rents/unit sales whether the user wants it or not – creating an inefficient allocation of this resource. Unbundling it involves users choosing to pay for a stall or not. Building developers and managers sell/rent parking stalls separately from the main floor space allowing only those who want parking to have it.

Informal unbundling can occur also wherein a building manager maintains a list of unused stalls to be rented by other tenants or other users as mentioned earlier.

#### COST BASED PARKING STRATEGY AND SETTING TIME LIMITS

The supply of free or inexpensive parking at the destination is a key decision factor cited for choosing to drive a personal auto rather than taking a bus, bike, walk or carpool. When free or inexpensive parking is offered, it leads to overuse, often by long-term or all-day parkers who occupy valuable spaces at the expense of short-term parkers, limiting access to retail businesses and service industries catering to short-term users.

Cost based parking strategies that link parking rates directly to demand are very effective in reducing total parking demand, shifting travel to other modes, and reducing vehicle kilometer traveled (VKT). To implement this strategy, parking meters may be installed along Dewdney Avenue with variable parking rates that fluctuate with parking demand.

Time limits also help to efficiently allocate the parking among the land uses and the types of user e.g. commercial space visitors/customers often only need a parking stall for a few hours or less.

#### 7.7 EDUCATION

This would include providing information on-site and within tenant agreements about alternative modes of transportation such as the cycle network, transit routes, and what is within walking distance.

A public education component identifying the available mode choices can also alter peoples travel mode choice. The education and communication piece was a pivotal component for the success at the new Mosaic Stadium.

## 8 CONCULSIONS AND RECOMMENDATIONS

This study has examined the traffic impacts associated with the updated land use plan for the Railyard Renewal Project, which is one of the primary components of the Regina Revitalization Initiative (RRI). The updated land use plan included a large footprint facility assumed to be a 10,000-seat arena. This study has concluded the following:

#### REVISED LAND USE WITH LARGE FOOTPRINT FACILITY

- The updated RRP development plan includes residential, retail, office, community, cultural, and a large footprint facility such as a 10,000-seat arena.
- The updated land use plan for the RRP development is estimated to generate 342 trips (187 entering and 155 exiting) during the weekday morning peak hour, and 408 trips (184 entering and 184 exiting) during the afternoon peak hour. The updated land use plan generates approximately 100 fewer total trips during the morning peak hour and approximately 120 fewer total trips during afternoon peak hour, when compared to the original land use plan.

#### CONCEPTUAL CROSS SECTIONS ON DEWDNEY AVENUE

- The proposed Dewdney Avenue cross sections, illustrated in Figure 5-1 and Figure 5-2, were used to analyze
  the network with the updated land use plan for the proposed RRP development site.
- The proposed cross sections included four through lanes (two-way) on Dewdney Avenue to carry traffic during the morning and afternoon peak hours and a reduction to operate with two through lanes during the off-peak hours.
- The network analysis indicates that the proposed Dewdney Avenue cross sections are expected to accommodate the 2040 post development forecast traffic volumes.
- In addition, it was found that the study intersections operated well overall with the proposed Dewdney Avenue cross sections during the weekday evening post-event peak hour. Note that, if it is found that the delay or congestion reaches unacceptable levels pre- or post-event, parking can be restricted, allowing four through lanes on Dewdney Avenue during an event to accommodate the traffic pre- and post-event.

#### **DEWDNEY AVENUE INTERSECTION FINDINGS**

- The Albert Street / Dewdney Avenue intersection is near its limit of available capacity and several movements are expected to experience delay and congestion during the 2040 afternoon peak hour.
- The McIntyre Street / Dewdney Avenue intersection is expected to operate well overall, but the northbound and southbound left-through movements are expected to experience considerable delay during the morning, afternoon, and off-peak hours.
- The existing lane configuration at the Broad Street / Dewdney Avenue intersection is not expected to be capable
  of accommodating the forecasted 2040 peak hour traffic volumes.
- All other study intersections are anticipated to operate well during the morning, afternoon, and off-peak hours.
- All study intersections are anticipated to operate well during the weekday evening post-event peak hour scenario.

#### **RECOMMENDATIONS**

- The original proposed cross sections for Dewdney Avenue are recommended based on the updated land use plan.
- On-street parking is recommended to be restricted during peak hours between Lorne Street and Rose Street. Two through lanes (per direction) will be available on Dewdney Avenue in the morning and afternoon peak hours and one through lane per direction will be provided in the off-peak hours since on-street parking will be permitted in the curb lanes.
- The Albert Street / Dewdney Avenue intersection is near its limit of available capacity and there is limited right-of-way available due to existing built developments to add additional lanes. Transportation demand management strategies and active transportation programs should be considered by the City to reduce future traffic demand at this intersection.
- The McIntyre Street / Dewdney Avenue intersection is recommended to maintain its current configuration with stop control on McIntyre Street. This includes two eastbound through lanes, two westbound through lanes, and eastbound and westbound left-turn lanes on Dewdney Avenue. Since the traffic volumes of the northbound and southbound left/through movements will be low, it is deemed that the existing intersection treatment and control type at this intersection will be adequate to accommodate the forecasted future traffic.
- The Lorne Street / Dewdney Avenue intersection is recommended to be a three-leg intersection with stop control on Lorne Street. Full movements are recommended at this intersection to allow traffic to divert from Lorne Street in the event that there is a train to the west.
- The Cornwall Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the west. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue.
- The Scarth Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Scarth Street with free flow conditions on Dewdney Avenue. Traffic movements from/to Scarth Street are recommended to be restricted to right-in and right-out movements.
- The Hamilton Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the east. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue.
- The Rose Street / Dewdney Avenue intersection is a three-legged intersection and is recommended to be controlled by a stop sign on Rose Street. Traffic movements from/to Rose Street are recommended to be restricted to right-in and right-out movements.
- The Broad Street / Dewdney Avenue intersection is near its limit of available capacity and there is limited right-of-way available to add additional lanes due to constraints and the railway overpass bridge on Broad Street to the south. Transportation demand management strategies and active transportation programs should be considered by the City to reduce future traffic demand at this intersection.
- Implement Transportation and Parking Demand Strategies to minimize infrastructure needs by reducing the number of auto trips, and by shifting vehicle trips away from Dewdney Avenue:
  - Alternative Routes: If alternate routes with suitable traffic operation performance (less congestion, shorter delay, and fewer stops) are available, commuters may use alternative routes to reach their destinations instead of using Dewdney Avenue.
  - Public Transit: The City may consider increasing the transit service frequency to meet the future transit
    patron demand. Transit tickets or transit passes for tenants/residents/visitors could be subsidized to
    encourage transit use from the RRP Development.
  - Pedestrian and Bicycle Facilities: To encourage walking and cycling within the City centre, in addition to improving the existing pedestrian and bicycle facility conditions, more pedestrian and bicycle facilities such as sidewalks, crosswalks, shared pathways, and bike lanes should be developed. Secure bike parking, end of trip facilities and bike share programs should also be explored.
  - Ridesharing Strategies: Carpooling, Car-sharing, Ride-Sharing are all forms of ridesharing that can reduce traffic congestion. It is recommended that the City support these ridesharing strategies.

- Parking Management: Managing parking helps to reduce the undesirable impacts of parking demand on local and regional traffic levels and the resulting impacts on community livability and design. Consider implementing a shared-use parking strategy, unbundling floor space and parking supply, and installing parking meters along Dewdney Avenue with variable parking rates that fluctuate with parking demand.
- An Event Traffic and Parking Management Plan is recommended to address the pre- and post-event traffic
  and parking needs to ensure all modes are safely and efficiently accommodated.

## **APPENDIX**

# A INTERNAL CAPTURE SUMMARY

| NCHRP 684 Internal Trip Capture Estimation Tool |                                 |   |               |               |  |  |  |
|-------------------------------------------------|---------------------------------|---|---------------|---------------|--|--|--|
| Project Name:                                   | Regina Railyard Renewal Project |   | Organization: | WSP           |  |  |  |
| Project Location:                               | City of Regina                  |   | Performed By: | Destiny Piper |  |  |  |
| Scenario Description:                           | w/ Large Footprint Facility     |   | Date:         | 01/04/2019    |  |  |  |
| Analysis Year:                                  | 2040                            | ] | Checked By:   |               |  |  |  |
| Analysis Period:                                | AM Street Peak Hour             |   | Date:         |               |  |  |  |

|                                  | Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate) |                  |                 |   |                                      |          |         |  |
|----------------------------------|------------------------------------------------------------------------------|------------------|-----------------|---|--------------------------------------|----------|---------|--|
| Land Use                         | Developm                                                                     | ent Data (For In | formation Only) |   | Estimated Vehicle-Trips <sup>3</sup> |          |         |  |
| Land OSC                         | ITE LUCs1                                                                    | Quantity         | Units           | ] | Total                                | Entering | Exiting |  |
| Office                           |                                                                              |                  |                 |   | 108                                  | 95       | 13      |  |
| Retail                           |                                                                              |                  |                 |   | 42                                   | 26       | 16      |  |
| Restaurant                       |                                                                              |                  |                 |   | 0                                    |          |         |  |
| Cinema/Entertainment             |                                                                              |                  |                 |   | 0                                    |          |         |  |
| Residential                      |                                                                              |                  |                 |   | 196                                  | 55       | 141     |  |
| Hotel                            |                                                                              |                  |                 |   | 0                                    |          |         |  |
| All Other Land Uses <sup>2</sup> |                                                                              |                  |                 |   | 0                                    |          |         |  |
|                                  |                                                                              |                  |                 |   | 346                                  | 176      | 170     |  |

|                                  | Table 2-A: Mode Split and Vehicle Occupancy Estimates |              |                 |  |               |           |                 |  |
|----------------------------------|-------------------------------------------------------|--------------|-----------------|--|---------------|-----------|-----------------|--|
| Land Use                         |                                                       | Entering Tri | ps              |  | Exiting Trips |           |                 |  |
| Land Ose                         | Veh. Occ.4                                            | % Transit    | % Non-Motorized |  | Veh. Occ.⁴    | % Transit | % Non-Motorized |  |
| Office                           | 1.00                                                  | 20%          |                 |  | 1.00          | 20%       |                 |  |
| Retail                           | 1.00                                                  | 20%          |                 |  | 1.00          | 20%       |                 |  |
| Restaurant                       |                                                       |              |                 |  |               |           |                 |  |
| Cinema/Entertainment             |                                                       |              |                 |  |               |           |                 |  |
| Residential                      | 1.00                                                  | 20%          |                 |  | 1.00          | 20%       |                 |  |
| Hotel                            |                                                       |              |                 |  |               |           |                 |  |
| All Other Land Uses <sup>2</sup> |                                                       |              |                 |  |               |           |                 |  |

|                      | Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance) |        |            |                      |             |       |  |
|----------------------|---------------------------------------------------------------------------|--------|------------|----------------------|-------------|-------|--|
| Origin (Fram)        |                                                                           |        |            | Destination (To)     |             |       |  |
| Origin (From)        | Office                                                                    | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |
| Office               |                                                                           |        |            |                      |             |       |  |
| Retail               |                                                                           |        |            |                      |             |       |  |
| Restaurant           |                                                                           |        |            |                      |             |       |  |
| Cinema/Entertainment |                                                                           |        |            |                      |             |       |  |
| Residential          |                                                                           |        |            |                      |             |       |  |
| Hotel                |                                                                           |        |            |                      |             |       |  |

|                      | Table 4-A: Internal Person-Trip Origin-Destination Matrix* |                  |            |                      |             |       |  |  |
|----------------------|------------------------------------------------------------|------------------|------------|----------------------|-------------|-------|--|--|
| Origin (From)        |                                                            | Destination (To) |            |                      |             |       |  |  |
| Origin (From)        | Office                                                     | Retail           | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |
| Office               |                                                            | 4                | 0          | 0                    | 0           | 0     |  |  |
| Retail               | 4                                                          |                  | 0          | 0                    | 1           | 0     |  |  |
| Restaurant           | 0                                                          | 0                |            | 0                    | 0           | 0     |  |  |
| Cinema/Entertainment | 0                                                          | 0                | 0          |                      | 0           | 0     |  |  |
| Residential          | 3                                                          | 1                | 0          | 0                    |             | 0     |  |  |
| Hotel                | 0                                                          | 0                | 0          | 0                    | 0           |       |  |  |

| Table 5-A: Computations Summary           |                        |     |     |  |  |  |  |  |  |
|-------------------------------------------|------------------------|-----|-----|--|--|--|--|--|--|
|                                           | Total Entering Exiting |     |     |  |  |  |  |  |  |
| All Person-Trips                          | 346                    | 176 | 170 |  |  |  |  |  |  |
| Internal Capture Percentage               | 8%                     | 7%  | 8%  |  |  |  |  |  |  |
|                                           |                        |     |     |  |  |  |  |  |  |
| External Vehicle-Trips <sup>5</sup>       | 256                    | 130 | 126 |  |  |  |  |  |  |
| External Transit-Trips <sup>6</sup>       | 64                     | 33  | 31  |  |  |  |  |  |  |
| External Non-Motorized Trips <sup>6</sup> | 0                      | 0   | 0   |  |  |  |  |  |  |

| Table 6-A: Internal Trip Capture Percentages by Land Use |                             |     |  |  |  |  |  |  |
|----------------------------------------------------------|-----------------------------|-----|--|--|--|--|--|--|
| Land Use                                                 | d Use Entering Trips Exitin |     |  |  |  |  |  |  |
| Office                                                   | 7%                          | 31% |  |  |  |  |  |  |
| Retail                                                   | 19%                         | 31% |  |  |  |  |  |  |
| Restaurant                                               | N/A                         | N/A |  |  |  |  |  |  |
| Cinema/Entertainment                                     | N/A                         | N/A |  |  |  |  |  |  |
| Residential                                              | 2%                          | 3%  |  |  |  |  |  |  |
| Hotel                                                    | N/A                         | N/A |  |  |  |  |  |  |

<sup>1</sup>Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

<sup>2</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

<sup>3</sup>Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).

<sup>4</sup>Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

<sup>6</sup>Person-Trips

\*Indicates computation that has been rounded to he nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

| Project Name:    | Regina Railyard Renewal Project |
|------------------|---------------------------------|
| Analysis Period: | AM Street Peak Hour             |

| Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends |           |                   |               |   |                              |               |               |  |
|----------------------------------------------------------------|-----------|-------------------|---------------|---|------------------------------|---------------|---------------|--|
| Land Use                                                       | Tab       | le 7-A (D): Enter | ing Trips     |   | Table 7-A (O): Exiting Trips |               |               |  |
| Land Ose                                                       | Veh. Occ. | Vehicle-Trips     | Person-Trips* | ] | Veh. Occ.                    | Vehicle-Trips | Person-Trips* |  |
| Office                                                         | 1.00      | 95                | 95            | ] | 1.00                         | 13            | 13            |  |
| Retail                                                         | 1.00      | 26                | 26            | ] | 1.00                         | 16            | 16            |  |
| Restaurant                                                     | 1.00      | 0                 | 0             | ] | 1.00                         | 0             | 0             |  |
| Cinema/Entertainment                                           | 1.00      | 0                 | 0             | ] | 1.00                         | 0             | 0             |  |
| Residential                                                    | 1.00      | 55                | 55            | ] | 1.00                         | 141           | 141           |  |
| Hotel                                                          | 1.00      | 0                 | 0             | ] | 1.00                         | 0             | 0             |  |

| Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin) |        |                  |            |                      |             |       |  |  |  |
|------------------------------------------------------------------------------------|--------|------------------|------------|----------------------|-------------|-------|--|--|--|
| Origin (From)                                                                      |        | Destination (To) |            |                      |             |       |  |  |  |
| Oligili (Floili)                                                                   | Office | Retail           | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |
| Office                                                                             |        | 4                | 8          | 0                    | 0           | 0     |  |  |  |
| Retail                                                                             | 5      |                  | 2          | 0                    | 2           | 0     |  |  |  |
| Restaurant                                                                         | 0      | 0                |            | 0                    | 0           | 0     |  |  |  |
| Cinema/Entertainment                                                               | 0      | 0                | 0          |                      | 0           | 0     |  |  |  |
| Residential                                                                        | 3      | 1                | 28         | 0                    |             | 0     |  |  |  |
| Hotel                                                                              | 0      | 0                | 0          | 0                    | 0           |       |  |  |  |

| Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination) |        |                  |            |                      |             |       |  |  |  |
|-----------------------------------------------------------------------------------------|--------|------------------|------------|----------------------|-------------|-------|--|--|--|
| Origin (From)                                                                           |        | Destination (To) |            |                      |             |       |  |  |  |
| Origin (From)                                                                           | Office | Retail           | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |
| Office                                                                                  |        | 8                | 0          | 0                    | 0           | 0     |  |  |  |
| Retail                                                                                  | 4      |                  | 0          | 0                    | 1           | 0     |  |  |  |
| Restaurant                                                                              | 13     | 2                |            | 0                    | 3           | 0     |  |  |  |
| Cinema/Entertainment                                                                    | 0      | 0                | 0          |                      | 0           | 0     |  |  |  |
| Residential                                                                             | 3      | 4                | 0          | 0                    |             | 0     |  |  |  |
| Hotel                                                                                   | 3      | 1                | 0          | 0                    | 0           |       |  |  |  |

|                                  | Table 9-A (D): Internal and External Trips Summary (Entering Trips) |                  |       |   |                         |                      |                            |  |  |
|----------------------------------|---------------------------------------------------------------------|------------------|-------|---|-------------------------|----------------------|----------------------------|--|--|
| Destination Land Use             |                                                                     | Person-Trip Esti | mates |   | External Trips by Mode* |                      |                            |  |  |
| Destination Land Use             | Internal                                                            | External         | Total | 1 | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |  |
| Office                           | 7                                                                   | 88               | 95    | ] | 70                      | 18                   | 0                          |  |  |
| Retail                           | 5                                                                   | 21               | 26    | ] | 17                      | 4                    | 0                          |  |  |
| Restaurant                       | 0                                                                   | 0                | 0     | ] | 0                       | 0                    | 0                          |  |  |
| Cinema/Entertainment             | 0                                                                   | 0                | 0     | ] | 0                       | 0                    | 0                          |  |  |
| Residential                      | 1                                                                   | 54               | 55    | 1 | 43                      | 11                   | 0                          |  |  |
| Hotel                            | 0                                                                   | 0                | 0     | ] | 0                       | 0                    | 0                          |  |  |
| All Other Land Uses <sup>3</sup> | 0                                                                   | 0                | 0     | 1 | 0                       | 0                    | 0                          |  |  |

|                                  | Table 9-A (O): Internal and External Trips Summary (Exiting Trips) |                   |       |   |                       |                         |                            |  |  |
|----------------------------------|--------------------------------------------------------------------|-------------------|-------|---|-----------------------|-------------------------|----------------------------|--|--|
| Origin Land Has                  | F                                                                  | Person-Trip Estir | mates |   |                       | External Trips by Mode* |                            |  |  |
| Origin Land Use                  | Internal                                                           | External          | Total | ] | Vehicles <sup>1</sup> | Transit <sup>2</sup>    | Non-Motorized <sup>2</sup> |  |  |
| Office                           | 4                                                                  | 9                 | 13    | ] | 7                     | 2                       | 0                          |  |  |
| Retail                           | 5                                                                  | 11                | 16    | ] | 9                     | 2                       | 0                          |  |  |
| Restaurant                       | 0                                                                  | 0                 | 0     | ] | 0                     | 0                       | 0                          |  |  |
| Cinema/Entertainment             | 0                                                                  | 0                 | 0     | ] | 0                     | 0                       | 0                          |  |  |
| Residential                      | 4                                                                  | 137               | 141   | ] | 110                   | 27                      | 0                          |  |  |
| Hotel                            | 0                                                                  | 0                 | 0     | ] | 0                     | 0                       | 0                          |  |  |
| All Other Land Uses <sup>3</sup> | 0                                                                  | 0                 | 0     |   | 0                     | 0                       | 0                          |  |  |

<sup>1</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

<sup>2</sup>Person-Trips

<sup>3</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator \*Indicates computation that has been rounded to he nearest whole number.

| NCHRP 684 Internal Trip Capture Estimation Tool |                                 |   |               |               |  |  |  |  |
|-------------------------------------------------|---------------------------------|---|---------------|---------------|--|--|--|--|
| Project Name:                                   | Regina Railyard Renewal Project |   | Organization: | WSP           |  |  |  |  |
| Project Location:                               | City of Regina                  |   | Performed By: | Destiny Piper |  |  |  |  |
| Scenario Description:                           | w/ Large Footprint Facility     |   | Date:         | 01/04/2019    |  |  |  |  |
| Analysis Year:                                  | 2040                            | ] | Checked By:   |               |  |  |  |  |
| Analysis Period: PM Street Peak Hour Date:      |                                 |   |               |               |  |  |  |  |

| Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate) |           |                                      |               |    |                                      |          |         |  |
|------------------------------------------------------------------------------|-----------|--------------------------------------|---------------|----|--------------------------------------|----------|---------|--|
| Land Use                                                                     | Developme | ent Data (For Info                   | rmation Only) | П  | Estimated Vehicle-Trips <sup>3</sup> |          |         |  |
| Land OSC                                                                     | ITE LUCs1 | ITE LUCs <sup>1</sup> Quantity Units |               |    | Total                                | Entering | Exiting |  |
| Office                                                                       |           |                                      |               |    | 102                                  | 17       | 85      |  |
| Retail                                                                       |           |                                      |               |    | 116                                  | 51       | 65      |  |
| Restaurant                                                                   |           |                                      |               | [  | 0                                    |          |         |  |
| Cinema/Entertainment                                                         |           |                                      |               |    | 0                                    |          |         |  |
| Residential                                                                  |           |                                      |               |    | 241                                  | 143      | 98      |  |
| Hotel                                                                        |           |                                      |               |    | 0                                    |          |         |  |
| All Other Land Uses <sup>2</sup>                                             |           |                                      |               |    | 0                                    |          |         |  |
|                                                                              |           |                                      |               | ΙΓ | 459                                  | 211      | 248     |  |

| Table 2-P: Mode Split and Vehicle Occupancy Estimates |            |              |                 |  |            |               |                 |
|-------------------------------------------------------|------------|--------------|-----------------|--|------------|---------------|-----------------|
| Landling                                              |            | Entering Tri | ps              |  |            | Exiting Trips |                 |
| Land Use                                              | Veh. Occ.⁴ | % Transit    | % Non-Motorized |  | Veh. Occ.⁴ | % Transit     | % Non-Motorized |
| Office                                                | 1.00       | 20%          |                 |  | 1.00       | 20%           |                 |
| Retail                                                | 1.00       | 20%          |                 |  | 1.00       | 20%           |                 |
| Restaurant                                            |            |              |                 |  |            |               |                 |
| Cinema/Entertainment                                  |            |              |                 |  |            |               |                 |
| Residential                                           | 1.00       | 20%          |                 |  | 1.00       | 20%           |                 |
| Hotel                                                 |            |              |                 |  |            |               |                 |
| All Other Land Uses <sup>2</sup>                      |            |              |                 |  |            |               |                 |

| Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance) |        |                                                                 |  |  |      |  |  |  |
|---------------------------------------------------------------------------|--------|-----------------------------------------------------------------|--|--|------|--|--|--|
| Origin (Fram) Destination (To)                                            |        |                                                                 |  |  |      |  |  |  |
| Origin (From)                                                             | Office | Office Retail Restaurant Cinema/Entertainment Residential Hotel |  |  |      |  |  |  |
| Office                                                                    |        | 420                                                             |  |  | 1120 |  |  |  |
| Retail                                                                    |        |                                                                 |  |  | 1420 |  |  |  |
| Restaurant                                                                |        |                                                                 |  |  |      |  |  |  |
| Cinema/Entertainment                                                      |        |                                                                 |  |  |      |  |  |  |
| Residential                                                               |        | 1420                                                            |  |  |      |  |  |  |
| Hotel                                                                     |        |                                                                 |  |  |      |  |  |  |

| Table 4-P: Internal Person-Trip Origin-Destination Matrix* |                             |        |            |                      |             |       |  |  |
|------------------------------------------------------------|-----------------------------|--------|------------|----------------------|-------------|-------|--|--|
| Origin (From)                                              | rin (Foot) Destination (To) |        |            |                      |             |       |  |  |
| Origin (From)                                              | Office                      | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |
| Office                                                     |                             | 4      | 0          | 0                    | 2           | 0     |  |  |
| Retail                                                     | 1                           |        | 0          | 0                    | 14          | 0     |  |  |
| Restaurant                                                 | 0                           | 0      |            | 0                    | 0           | 0     |  |  |
| Cinema/Entertainment                                       | 0                           | 0      | 0          |                      | 0           | 0     |  |  |
| Residential                                                | 4                           | 3      | 0          | 0                    |             | 0     |  |  |
| Hotel                                                      | 0                           | 0      | 0          | 0                    | 0           |       |  |  |

| Table 5-P: Computations Summary           |     |     |     |  |  |  |  |  |  |
|-------------------------------------------|-----|-----|-----|--|--|--|--|--|--|
| Total Entering Exiting                    |     |     |     |  |  |  |  |  |  |
| All Person-Trips                          | 459 | 211 | 248 |  |  |  |  |  |  |
| Internal Capture Percentage               | 12% | 13% | 11% |  |  |  |  |  |  |
|                                           |     |     |     |  |  |  |  |  |  |
| External Vehicle-Trips <sup>5</sup>       | 323 | 147 | 176 |  |  |  |  |  |  |
| External Transit-Trips <sup>6</sup>       | 80  | 36  | 44  |  |  |  |  |  |  |
| External Non-Motorized Trips <sup>6</sup> | 0   | 0   | 0   |  |  |  |  |  |  |

| Table 6-P: Internal Trip Capture Percentages by Land Use |                |               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------|----------------|---------------|--|--|--|--|--|--|--|--|
| Land Use                                                 | Entering Trips | Exiting Trips |  |  |  |  |  |  |  |  |
| Office                                                   | 29%            | 7%            |  |  |  |  |  |  |  |  |
| Retail                                                   | 14%            | 23%           |  |  |  |  |  |  |  |  |
| Restaurant                                               | N/A            | N/A           |  |  |  |  |  |  |  |  |
| Cinema/Entertainment                                     | N/A            | N/A           |  |  |  |  |  |  |  |  |
| Residential                                              | 11%            | 7%            |  |  |  |  |  |  |  |  |
| Hotel                                                    | N/A            | N/A           |  |  |  |  |  |  |  |  |

<sup>1</sup>Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

<sup>2</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

<sup>3</sup>Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).

Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be

Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

<sup>6</sup>Person-Trips

\*Indicates computation that has been rounded to he nearest whole number.

Estimation Tool Developed by the Texas A&M Transporta ion Institute - Version 2013.1

| Project Name:    | Regina Railyard Renewal Project |
|------------------|---------------------------------|
| Analysis Period: | PM Street Peak Hour             |

| Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends |           |                   |               |   |                              |               |               |  |  |  |
|----------------------------------------------------------------|-----------|-------------------|---------------|---|------------------------------|---------------|---------------|--|--|--|
| Land Use                                                       | Table     | 7-P (D): Entering | Trips         |   | Table 7-P (O): Exiting Trips |               |               |  |  |  |
|                                                                | Veh. Occ. | Vehicle-Trips     | Person-Trips* |   | Veh. Occ.                    | Vehicle-Trips | Person-Trips* |  |  |  |
| Office                                                         | 1.00      | 17                | 17            | ] | 1.00                         | 85            | 85            |  |  |  |
| Retail                                                         | 1.00      | 51                | 51            | 1 | 1.00                         | 65            | 65            |  |  |  |
| Restaurant                                                     | 1.00      | 0                 | 0             | ] | 1.00                         | 0             | 0             |  |  |  |
| Cinema/Entertainment                                           | 1.00      | 0                 | 0             |   | 1.00                         | 0             | 0             |  |  |  |
| Residential                                                    | 1.00      | 143               | 143           |   | 1.00                         | 98            | 98            |  |  |  |
| Hotel                                                          | 1.00      | 0                 | 0             | 1 | 1.00                         | 0             | 0             |  |  |  |

| Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin) |                  |        |            |                      |             |       |  |  |  |  |  |
|------------------------------------------------------------------------------------|------------------|--------|------------|----------------------|-------------|-------|--|--|--|--|--|
| Origin (From)                                                                      | Des ination (To) |        |            |                      |             |       |  |  |  |  |  |
| Origin (From)                                                                      | Office           | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |  |  |
| Office                                                                             |                  | 16     | 3          | 0                    | 2           | 0     |  |  |  |  |  |
| Retail                                                                             | 1                |        | 19         | 3                    | 14          | 3     |  |  |  |  |  |
| Restaurant                                                                         | 0                | 0      |            | 0                    | 0           | 0     |  |  |  |  |  |
| Cinema/Entertainment                                                               | 0                | 0      | 0          |                      | 0           | 0     |  |  |  |  |  |
| Residential                                                                        | 4                | 26     | 21         | 0                    |             | 3     |  |  |  |  |  |
| Hotel                                                                              | 0                | 0      | 0          | 0                    | 0           |       |  |  |  |  |  |

| Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination) |                  |        |            |                      |             |       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------|--------|------------|----------------------|-------------|-------|--|--|--|--|--|
| Origin (Faran)                                                                          | Des ination (To) |        |            |                      |             |       |  |  |  |  |  |
| Origin (From)                                                                           | Office           | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |  |  |
| Office                                                                                  |                  | 4      | 0          | 0                    | 6           | 0     |  |  |  |  |  |
| Retail                                                                                  | 5                |        | 0          | 0                    | 66          | 0     |  |  |  |  |  |
| Restaurant                                                                              | 5                | 26     |            | 0                    | 23          | 0     |  |  |  |  |  |
| Cinema/Entertainment                                                                    | 1                | 2      | 0          |                      | 6           | 0     |  |  |  |  |  |
| Residential                                                                             | 10               | 3      | 0          | 0                    |             | 0     |  |  |  |  |  |
| Hotel                                                                                   | 0                | 1      | 0          | 0                    | 0           |       |  |  |  |  |  |

| Table 9-P (D): Internal and External Trips Summary (Entering Trips) |          |                  |       |  |                         |                      |                            |  |  |  |
|---------------------------------------------------------------------|----------|------------------|-------|--|-------------------------|----------------------|----------------------------|--|--|--|
| Destina ion Land Use                                                | Pe       | rson-Trip Estima | tes   |  | External Trips by Mode* |                      |                            |  |  |  |
| Destilla ion Land Ose                                               | Internal | External         | Total |  | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |  |  |
| Office                                                              | 5        | 12               | 17    |  | 10                      | 2                    | 0                          |  |  |  |
| Retail                                                              | 7        | 44               | 51    |  | 35                      | 0                    |                            |  |  |  |
| Restaurant                                                          | 0        | 0                | 0     |  | 0                       | 0                    | 0                          |  |  |  |
| Cinema/Entertainment                                                | 0        | 0                | 0     |  | 0                       | 0                    | 0                          |  |  |  |
| Residential                                                         | 16       | 127              | 143   |  | 102                     | 25                   | 0                          |  |  |  |
| Hotel                                                               | 0        | 0                | 0     |  | 0 0                     |                      | 0                          |  |  |  |
| All Other Land Uses <sup>3</sup>                                    | 0        | 0                | 0     |  | 0                       | 0                    | 0                          |  |  |  |

| Table 9-P (O): Internal and External Trips Summary (Exiting Trips) |          |                  |       |                         |                       |                      |                            |  |  |  |
|--------------------------------------------------------------------|----------|------------------|-------|-------------------------|-----------------------|----------------------|----------------------------|--|--|--|
| Origin Land Use                                                    | Pe       | rson-Trip Estima | tes   | External Trips by Mode* |                       |                      |                            |  |  |  |
| Oligin Land Ose                                                    | Internal | External         | Total | ]                       | Vehicles <sup>1</sup> | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |  |  |
| Office                                                             | 6        | 79               | 85    | ]                       | 63                    | 16                   | 0                          |  |  |  |
| Retail                                                             | 15       | 50               | 65    | ]                       | 40                    | 10                   | 0                          |  |  |  |
| Restaurant                                                         | 0        | 0                | 0     | ]                       | 0                     | 0                    | 0                          |  |  |  |
| Cinema/Entertainment                                               | 0        | 0                | 0     | 1                       | 0                     | 0                    | 0                          |  |  |  |
| Residential                                                        | 7        | 91               | 98    | ]                       | 73                    | 18                   | 0                          |  |  |  |
| Hotel                                                              | 0        | 0                | 0     | 1                       | 0 0                   |                      | 0                          |  |  |  |
| All Other Land Uses <sup>3</sup>                                   | 0        | 0                | 0     | 1                       | 0                     | 0                    | 0                          |  |  |  |

<sup>1</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

<sup>2</sup>Person-Trips

<sup>3</sup>Total es imate for all other land uses at mixed-use development site is not subject to internal trip capture computations in his estimator \*Indicates computation that has been rounded to he nearest whole number.

## **APPENDIX**

## B SYNCHRO REPORTS

|                            | ۶     | <b>→</b>   | •     | •     | <b>←</b>   | •     | •     | <b>†</b>        | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4     |
|----------------------------|-------|------------|-------|-------|------------|-------|-------|-----------------|-------------|----------|----------|-------|
| Lane Group                 | EBL   | EBT        | EBR   | WBL   | WBT        | WBR   | NBL   | NBT             | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | ሻ     | <b>†</b> † | 7     | ሻ     | <b>†</b> † | 7     | ሻ     | ተተ <sub>ጉ</sub> |             | ሻ        | ተተኈ      |       |
| Traffic Volume (vph)       | 144   | 928        | 225   | 183   | 674        | 67    | 122   | 588             | 189         | 198      | 1381     | 112   |
| Future Volume (vph)        | 144   | 928        | 225   | 183   | 674        | 67    | 122   | 588             | 189         | 198      | 1381     | 112   |
| Ideal Flow (vphpl)         | 1800  | 1800       | 1800  | 1800  | 1800       | 1800  | 1800  | 1800            | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 30.0  |            | 50.0  | 30.0  |            | 30.0  | 90.0  |                 | 0.0         | 75.0     |          | 0.0   |
| Storage Lanes              | 1     |            | 1     | 1     |            | 1     | 1     |                 | 0           | 1        |          | 0     |
| Taper Length (m)           | 20.0  |            |       | 25.0  |            |       | 35.0  |                 |             | 40.0     |          |       |
| Lane Util. Factor          | 1.00  | 0.95       | 1.00  | 1.00  | 0.95       | 1.00  | 1.00  | 0.91            | 0.91        | 1.00     | 0.91     | 0.91  |
| Ped Bike Factor            | 1.00  |            | 0.97  | 1.00  |            | 0.97  | 1.00  | 0.99            |             | 0.99     | 1.00     |       |
| Frt                        |       |            | 0.850 |       |            | 0.850 |       | 0.964           |             |          | 0.989    |       |
| Flt Protected              | 0.950 |            |       | 0.950 |            |       | 0.950 |                 |             | 0.950    |          |       |
| Satd. Flow (prot)          | 1695  | 3390       | 1517  | 1695  | 3390       | 1517  | 1695  | 4654            | 0           | 1695     | 4799     | 0     |
| Flt Permitted              | 0.204 |            |       | 0.104 |            |       | 0.098 |                 |             | 0.207    |          |       |
| Satd. Flow (perm)          | 363   | 3390       | 1478  | 185   | 3390       | 1477  | 174   | 4654            | 0           | 367      | 4799     | 0     |
| Right Turn on Red          |       |            | Yes   |       |            | Yes   |       |                 | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |       |            | 154   |       |            | 123   |       | 69              |             |          | 13       |       |
| Link Speed (k/h)           |       | 50         |       |       | 50         |       |       | 50              |             |          | 50       |       |
| Link Distance (m)          |       | 458.3      |       |       | 110.3      |       |       | 220.1           |             |          | 211.9    |       |
| Travel Time (s)            |       | 33.0       |       |       | 7.9        |       |       | 15.8            |             |          | 15.3     |       |
| Confl. Peds. (#/hr)        | 13    |            | 12    | 12    |            | 13    | 32    |                 | 20          | 20       |          | 32    |
| Peak Hour Factor           | 0.92  | 0.92       | 0.92  | 0.92  | 0.92       | 0.92  | 0.92  | 0.92            | 0.92        | 0.92     | 0.92     | 0.92  |
| Heavy Vehicles (%)         | 2%    | 2%         | 2%    | 2%    | 2%         | 2%    | 2%    | 2%              | 2%          | 2%       | 2%       | 2%    |
| Adj. Flow (vph)            | 157   | 1009       | 245   | 199   | 733        | 73    | 133   | 639             | 205         | 215      | 1501     | 122   |
| Shared Lane Traffic (%)    |       |            |       |       |            |       |       |                 |             |          |          |       |
| Lane Group Flow (vph)      | 157   | 1009       | 245   | 199   | 733        | 73    | 133   | 844             | 0           | 215      | 1623     | 0     |
| Enter Blocked Intersection | No    | No         | No    | No    | No         | No    | No    | No              | No          | No       | No       | No    |
| Lane Alignment             | Left  | Left       | Right | Left  | Left       | Right | Left  | Left            | Right       | Left     | Left     | Right |
| Median Width(m)            |       | 4.7        |       |       | 3.7        |       |       | 4.7             |             |          | 4.7      |       |
| Link Offset(m)             |       | 0.0        |       |       | 0.0        |       |       | 0.0             |             |          | 0.0      |       |
| Crosswalk Width(m)         |       | 1.6        |       |       | 1.6        |       |       | 1.6             |             |          | 1.6      |       |
| Two way Left Turn Lane     |       |            |       |       |            |       |       |                 |             |          |          |       |
| Headway Factor             | 1.06  | 1.06       | 1.06  | 1.06  | 1.06       | 1.06  | 1.06  | 1.06            | 1.06        | 1.06     | 1.06     | 1.06  |
| Turning Speed (k/h)        | 24    |            | 14    | 24    |            | 14    | 24    |                 | 14          | 24       |          | 14    |
| Number of Detectors        | 1     | 2          | 1     | 1     | 2          | 1     | 1     | 2               |             | 1        | 2        |       |
| Detector Template          | Left  | Thru       | Right | Left  | Thru       | Right | Left  | Thru            |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1   | 30.5       | 6.1   | 6.1   | 30.5       | 6.1   | 6.1   | 30.5            |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1   | 1.8        | 6.1   | 6.1   | 1.8        | 6.1   | 6.1   | 1.8             |             | 6.1      | 1.8      |       |
| Detector 1 Type            | Cl+Ex | Cl+Ex      | Cl+Ex | Cl+Ex | Cl+Ex      | CI+Ex | CI+Ex | Cl+Ex           |             | Cl+Ex    | CI+Ex    |       |
| Detector 1 Channel         |       |            |       |       |            |       |       |                 |             |          |          |       |
| Detector 1 Extend (s)      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     |       | 28.7       |       |       | 28.7       |       |       | 28.7            |             |          | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8        |       |       | 1.8        |       |       | 1.8             |             |          | 1.8      |       |
| Detector 2 Type            |       | Cl+Ex      |       |       | Cl+Ex      |       |       | CI+Ex           |             |          | CI+Ex    |       |
| Detector 2 Channel         |       |            |       |       |            |       |       |                 |             |          |          |       |
| Detector 2 Extend (s)      |       | 0.0        |       |       | 0.0        |       |       | 0.0             |             |          | 0.0      |       |

05/16/2019 WSP

|                         | ٠     | -      | •     | •     | ←     | •     | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> | 4   |
|-------------------------|-------|--------|-------|-------|-------|-------|-------|----------|-------------|-------------|----------|-----|
| Lane Group              | EBL   | EBT    | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR         | SBL         | SBT      | SBR |
| Turn Type               | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  | pm+pt | NA       |             | pm+pt       | NA       |     |
| Protected Phases        | 7     | 4      |       | 3     | 8     |       | 5     | 2        |             | 1           | 6        |     |
| Permitted Phases        | 4     |        | 4     | 8     |       | 8     | 2     |          |             | 6           |          |     |
| Detector Phase          | 7     | 4      | 4     | 3     | 8     | 8     | 5     | 2        |             | 1           | 6        |     |
| Switch Phase            |       |        |       |       |       |       |       |          |             |             |          |     |
| Minimum Initial (s)     | 7.0   | 10.0   | 10.0  | 7.0   | 10.0  | 10.0  | 7.0   | 15.0     |             | 8.0         | 15.0     |     |
| Minimum Split (s)       | 11.0  | 36.5   | 36.5  | 11.0  | 36.5  | 36.5  | 11.0  | 33.5     |             | 12.0        | 33.5     |     |
| Total Split (s)         | 16.0  | 43.0   | 43.0  | 15.0  | 42.0  | 42.0  | 11.0  | 40.0     |             | 22.0        | 51.0     |     |
| Total Split (%)         | 13.3% | 35.8%  | 35.8% | 12.5% | 35.0% | 35.0% | 9.2%  | 33.3%    |             | 18.3%       | 42.5%    |     |
| Maximum Green (s)       | 12.0  | 38.5   | 38.5  | 11.0  | 37.5  | 37.5  | 7.0   | 35.5     |             | 18.0        | 46.5     |     |
| Yellow Time (s)         | 3.0   | 3.5    | 3.5   | 3.0   | 3.5   | 3.5   | 3.0   | 3.5      |             | 3.0         | 3.5      |     |
| All-Red Time (s)        | 1.0   | 1.0    | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0      |             | 1.0         | 1.0      |     |
| Lost Time Adjust (s)    | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |     |
| Total Lost Time (s)     | 4.0   | 4.5    | 4.5   | 4.0   | 4.5   | 4.5   | 4.0   | 4.5      |             | 4.0         | 4.5      |     |
| Lead/Lag                | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      |             | Lead        | Lag      |     |
| Lead-Lag Optimize?      | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      |             | Yes         | Yes      |     |
| Vehicle Extension (s)   | 2.0   | 2.0    | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      |             | 2.0         | 2.0      |     |
| Recall Mode             | None  | None   | None  | None  | None  | None  | None  | C-Max    |             | None        | C-Max    |     |
| Walk Time (s)           |       | 10.0   | 10.0  |       | 10.0  | 10.0  |       | 10.0     |             |             | 10.0     |     |
| Flash Dont Walk (s)     |       | 22.0   | 22.0  |       | 22.0  | 22.0  |       | 19.0     |             |             | 19.0     |     |
| Pedestrian Calls (#/hr) |       | 10     | 10    |       | 10    | 10    |       | 10       |             |             | 20       |     |
| Act Effct Green (s)     | 48.8  | 37.9   | 37.9  | 50.0  | 38.5  | 38.5  | 48.3  | 40.7     |             | 58.0        | 46.9     |     |
| Actuated g/C Ratio      | 0.41  | 0.32   | 0.32  | 0.42  | 0.32  | 0.32  | 0.40  | 0.34     |             | 0.48        | 0.39     |     |
| v/c Ratio               | 0.60  | 0.94   | 0.43  | 0.93  | 0.67  | 0.13  | 0.83  | 0.52     |             | 0.66        | 0.86     |     |
| Control Delay           | 30.2  | 57.0   | 14.4  | 74.9  | 39.2  | 1.3   | 63.5  | 31.1     |             | 28.6        | 39.1     |     |
| Queue Delay             | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |     |
| Total Delay             | 30.2  | 57.0   | 14.4  | 74.9  | 39.2  | 1.3   | 63.5  | 31.1     |             | 28.6        | 39.1     |     |
| LOS                     | С     | Е      | В     | Е     | D     | Α     | Е     | С        |             | С           | D        |     |
| Approach Delay          |       | 46.7   |       |       | 43.5  |       |       | 35.5     |             |             | 37.9     |     |
| Approach LOS            |       | D      |       |       | D     |       |       | D        |             |             | D        |     |
| Queue Length 50th (m)   | 21.9  | 120.5  | 15.5  | 31.9  | 78.7  | 0.0   | 17.1  | 53.8     |             | 29.1        | 126.9    |     |
| Queue Length 95th (m)   | 36.0  | #160.4 | 37.7  | #77.0 | 100.8 | 2.0   | #54.7 | 71.0     |             | 45.2        | 147.4    |     |
| Internal Link Dist (m)  |       | 434.3  |       |       | 86.3  |       |       | 196.1    |             |             | 187.9    |     |
| Turn Bay Length (m)     | 30.0  |        | 50.0  | 30.0  |       | 30.0  | 90.0  |          |             | 75.0        |          |     |
| Base Capacity (vph)     | 285   | 1087   | 578   | 215   | 1087  | 557   | 160   | 1623     |             | 378         | 1885     |     |
| Starvation Cap Reductn  | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 0        |             | 0           | 0        |     |
| Spillback Cap Reductn   | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 0        |             | 0           | 0        |     |
| Storage Cap Reductn     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 0        |             | 0           | 0        |     |
| Reduced v/c Ratio       | 0.55  | 0.93   | 0.42  | 0.93  | 0.67  | 0.13  | 0.83  | 0.52     |             | 0.57        | 0.86     |     |
|                         |       |        |       |       |       |       |       |          |             |             |          |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 40.9 Intersection LOS: D
Intersection Capacity Utilization 90.1% ICU Level of Service E

05/16/2019 Synchro 10 Report WSP Page 2

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



05/16/2019 Synchro 10 Report WSP Page 3

|                            | ٠     | <b>→</b>   | •     | •     | •           | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>\</b> | ţ     | 4     |
|----------------------------|-------|------------|-------|-------|-------------|-------|-------|----------|-------------|----------|-------|-------|
| Lane Group                 | EBL   | EBT        | EBR   | WBL   | WBT         | WBR   | NBL   | NBT      | NBR         | SBL      | SBT   | SBR   |
| Lane Configurations        | 7     | <b>∱</b> ⊅ |       | ሻ     | <b>∱</b> î≽ |       |       | 4        |             |          | 4     |       |
| Traffic Volume (vph)       | 15    | 1205       | 35    | 23    | 914         | 8     | 52    | 0        | 7           | 4        | 0     | 13    |
| Future Volume (vph)        | 15    | 1205       | 35    | 23    | 914         | 8     | 52    | 0        | 7           | 4        | 0     | 13    |
| Ideal Flow (vphpl)         | 1800  | 1800       | 1800  | 1800  | 1800        | 1800  | 1800  | 1800     | 1800        | 1800     | 1800  | 1800  |
| Storage Length (m)         | 40.0  |            | 0.0   | 40.0  |             | 0.0   | 0.0   |          | 0.0         | 0.0      |       | 0.0   |
| Storage Lanes              | 1     |            | 0     | 1     |             | 0     | 0     |          | 0           | 0        |       | 0     |
| Taper Length (m)           | 30.0  |            |       | 30.0  |             |       | 30.0  |          |             | 30.0     |       |       |
| Lane Util. Factor          | 1.00  | 0.95       | 0.95  | 1.00  | 0.95        | 0.95  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00  | 1.00  |
| Frt                        |       | 0.996      |       |       | 0.999       |       |       | 0.983    |             |          | 0.895 |       |
| Flt Protected              | 0.950 |            |       | 0.950 |             |       |       | 0.958    |             |          | 0.989 |       |
| Satd. Flow (prot)          | 1679  | 3093       | 0     | 1679  | 3102        | 0     | 0     | 1664     | 0           | 0        | 1329  | 0     |
| Flt Permitted              | 0.267 |            |       | 0.171 |             |       |       | 0.739    |             |          | 0.939 |       |
| Satd. Flow (perm)          | 472   | 3093       | 0     | 302   | 3102        | 0     | 0     | 1284     | 0           | 0        | 1262  | 0     |
| Right Turn on Red          |       |            | Yes   |       |             | Yes   |       |          | Yes         |          |       | Yes   |
| Satd. Flow (RTOR)          |       | 6          |       |       | 2           |       |       | 25       |             |          | 25    |       |
| Link Speed (k/h)           |       | 50         |       |       | 50          |       |       | 50       |             |          | 50    |       |
| Link Distance (m)          |       | 114.1      |       |       | 103.2       |       |       | 145.5    |             |          | 205.8 |       |
| Travel Time (s)            |       | 8.2        |       |       | 7.4         |       |       | 10.5     |             |          | 14.8  |       |
| Peak Hour Factor           | 0.92  | 0.92       | 0.92  | 0.92  | 0.92        | 0.92  | 0.92  | 0.92     | 0.92        | 0.92     | 0.92  | 0.92  |
| Parking (#/hr)             |       | 10         |       |       | 10          |       |       |          |             |          | 10    |       |
| Adj. Flow (vph)            | 16    | 1310       | 38    | 25    | 993         | 9     | 57    | 0        | 8           | 4        | 0     | 14    |
| Shared Lane Traffic (%)    |       |            |       |       |             |       |       |          |             |          |       |       |
| Lane Group Flow (vph)      | 16    | 1348       | 0     | 25    | 1002        | 0     | 0     | 65       | 0           | 0        | 18    | 0     |
| Enter Blocked Intersection | No    | No         | No    | No    | No          | No    | No    | No       | No          | No       | No    | No    |
| Lane Alignment             | Left  | Left       | Right | Left  | Left        | Right | Left  | Left     | Right       | Left     | Left  | Right |
| Median Width(m)            |       | 3.7        |       |       | 3.7         |       |       | 0.0      |             |          | 0.0   |       |
| Link Offset(m)             |       | 0.0        |       |       | 0.0         |       |       | 0.0      |             |          | 0.0   |       |
| Crosswalk Width(m)         |       | 1.6        |       |       | 1.6         |       |       | 1.6      |             |          | 1.6   |       |
| Two way Left Turn Lane     |       |            |       |       |             |       |       |          |             |          |       |       |
| Headway Factor             | 1.06  | 1.17       | 1.06  | 1.06  | 1.17        | 1.06  | 1.06  | 1.06     | 1.06        | 1.06     | 1.30  | 1.06  |
| Turning Speed (k/h)        | 24    |            | 14    | 24    |             | 14    | 24    |          | 14          | 24       |       | 14    |
| Number of Detectors        | 1     | 2          |       | 1     | 2           |       | 1     | 2        |             | 1        | 2     |       |
| Detector Template          | Left  | Thru       |       | Left  | Thru        |       | Left  | Thru     |             | Left     | Thru  |       |
| Leading Detector (m)       | 6.1   | 30.5       |       | 6.1   | 30.5        |       | 6.1   | 30.5     |             | 6.1      | 30.5  |       |
| Trailing Detector (m)      | 0.0   | 0.0        |       | 0.0   | 0.0         |       | 0.0   | 0.0      |             | 0.0      | 0.0   |       |
| Detector 1 Position(m)     | 0.0   | 0.0        |       | 0.0   | 0.0         |       | 0.0   | 0.0      |             | 0.0      | 0.0   |       |
| Detector 1 Size(m)         | 6.1   | 1.8        |       | 6.1   | 1.8         |       | 6.1   | 1.8      |             | 6.1      | 1.8   |       |
| Detector 1 Type            | CI+Ex | CI+Ex      |       | CI+Ex | CI+Ex       |       | Cl+Ex | Cl+Ex    |             | CI+Ex    | Cl+Ex |       |
| Detector 1 Channel         |       |            |       |       |             |       |       |          |             |          |       |       |
| Detector 1 Extend (s)      | 0.0   | 0.0        |       | 0.0   | 0.0         |       | 0.0   | 0.0      |             | 0.0      | 0.0   |       |
| Detector 1 Queue (s)       | 0.0   | 0.0        |       | 0.0   | 0.0         |       | 0.0   | 0.0      |             | 0.0      | 0.0   |       |
| Detector 1 Delay (s)       | 0.0   | 0.0        |       | 0.0   | 0.0         |       | 0.0   | 0.0      |             | 0.0      | 0.0   |       |
| Detector 2 Position(m)     |       | 28.7       |       |       | 28.7        |       |       | 28.7     |             |          | 28.7  |       |
| Detector 2 Size(m)         |       | 1.8        |       |       | 1.8         |       |       | 1.8      |             |          | 1.8   |       |
| Detector 2 Type            |       | CI+Ex      |       |       | CI+Ex       |       |       | Cl+Ex    |             |          | CI+Ex |       |
| Detector 2 Channel         |       |            |       |       |             |       |       | 2.2      |             |          | 2.2   |       |
| Detector 2 Extend (s)      |       | 0.0        |       | _     | 0.0         |       |       | 0.0      |             |          | 0.0   |       |
| Turn Type                  | Perm  | NA         |       | Perm  | NA          |       | Perm  | NA       |             | Perm     | NA    |       |
| Protected Phases           |       | 6          |       |       | 2           |       |       | 3        |             |          | 8     |       |

| Permitted Phases 6 6 2 2 3 3 8 8   Detector Phase 6 6 6 2 2 2 3 3 3 8 8 8   Switch Phase   Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ٠     | -      | •   | •     | •     | •   | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 1   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------|-----|-------|-------|-----|-------|----------|-------------|-------------|-------|-----|
| Detector Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lane Group              | EBL   | EBT    | EBR | WBL   | WBT   | WBR | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permitted Phases        | 6     |        |     | 2     |       |     | 3     |          |             | 8           |       |     |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         30.5         30.5         30.5         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6 </td <td>Detector Phase</td> <td>6</td> <td>6</td> <td></td> <td>2</td> <td>2</td> <td></td> <td>3</td> <td>3</td> <td></td> <td>8</td> <td>8</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Detector Phase          | 6     | 6      |     | 2     | 2     |     | 3     | 3        |             | 8           | 8     |     |
| Minimum Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Switch Phase            |       |        |     |       |       |     |       |          |             |             |       |     |
| Total Split (s) 34.4 34.4 34.4 34.4 34.4 30.6 30.6 30.6 30.6 30.6 Total Split (%) 52.9% 52.9% 52.9% 52.9% 47.1% 47.1% 47.1% 47.1% 47.1% Maximum Green (s) 29.9 29.9 29.9 29.9 29.9 26.1 26.1 26.1 26.1 26.1 Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum Initial (s)     | 10.0  | 10.0   |     | 10.0  | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Total Split (%) 52.9% 52.9% 52.9% 52.9% 47.1% 47.1% 47.1% 47.1% Maximum Green (s) 29.9 29.9 29.9 29.9 26.1 26.1 26.1 26.1 26.1 Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum Split (s)       | 25.5  | 25.5   |     | 25.5  | 25.5  |     | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Maximum Green (s)         29.9         29.9         29.9         29.9         26.1         26.1         26.1         26.1           Yellow Time (s)         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Split (s)         |       | 34.4   |     | 34.4  |       |     | 30.6  | 30.6     |             | 30.6        | 30.6  |     |
| Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Split (%)         | 52.9% | 52.9%  |     | 52.9% | 52.9% |     | 47.1% | 47.1%    |             | 47.1%       | 47.1% |     |
| All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Green (s)       | 29.9  | 29.9   |     | 29.9  | 29.9  |     | 26.1  | 26.1     |             | 26.1        | 26.1  |     |
| Lost Time Adjust (s)   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   | Yellow Time (s)         | 3.5   | 3.5    |     | 3.5   | 3.5   |     | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All-Red Time (s)        | 1.0   | 1.0    |     | 1.0   | 1.0   |     | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lead/Lag         Lead/Lag Optimize?           Vehicle Extension (s)         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lost Time Adjust (s)    | 0.0   | 0.0    |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Lead-Lag Optimize?   Vehicle Extension (s)   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2 | Total Lost Time (s)     | 4.5   | 4.5    |     | 4.5   | 4.5   |     |       | 4.5      |             |             | 4.5   |     |
| Vehicle Extension (s)         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lead/Lag                |       |        |     |       |       |     |       |          |             |             |       |     |
| Recall Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lead-Lag Optimize?      |       |        |     |       |       |     |       |          |             |             |       |     |
| Walk Time (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vehicle Extension (s)   | 2.0   | 2.0    |     | 2.0   | 2.0   |     | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Flash Dont Walk (s) 8.0 8.0 8.0 8.0 8.0 16.0 16.0 16.0 16.0 Pedestrian Calls (#/hr) 20 20 20 20 20 20 20 20 20 20 20 20 Act Effct Green (s) 50.4 50.4 50.4 50.4 50.4 13.2 13.2 Actuated g/C Ratio 0.78 0.78 0.78 0.78 0.78 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Recall Mode             | C-Min | C-Min  |     | C-Min | C-Min |     | None  | None     |             | None        | None  |     |
| Pedestrian Calls (#/hr)         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>Walk Time (s)</td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Walk Time (s)           | 10.0  | 10.0   |     | 10.0  | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Act Effct Green (s) 50.4 50.4 50.4 50.4 50.4 13.2 13.2  Actuated g/C Ratio 0.78 0.78 0.78 0.78 0.20 0.20  v/c Ratio 0.04 0.56 0.11 0.42 0.23 0.07  Control Delay 7.3 9.2 8.6 6.5 15.1 6.1  Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0  Total Delay 7.3 9.2 8.6 6.5 15.1 6.1  LOS A A A A A B A B A  Approach Delay 9.2 6.6 15.1 6.1  Approach LOS A A A B A B A  Queue Length 50th (m) 0.5 34.4 0.8 21.4 4.3 0.0  Queue Length 95th (m) 4.2 #122.8 6.3 67.5 9.5 2.7  Internal Link Dist (m) 90.1 79.2 121.5 181.8  Turn Bay Length (m) 40.0 40.0  Base Capacity (vph) 366 2399 234 2405 530 521  Starvation Cap Reductn 0 0 0 0 0 0  Storage Cap Reductn 0 0 0 0 0 0  Storage Cap Reductn 0 0 0 0 0 0  Storage Cap Reductn 0 0 0 0 0 0  Storage Cap Reductn 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flash Dont Walk (s)     | 8.0   | 8.0    |     | 8.0   | 8.0   |     | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Actuated g/C Ratio         0.78         0.78         0.78         0.78         0.20         0.20           v/c Ratio         0.04         0.56         0.11         0.42         0.23         0.07           Control Delay         7.3         9.2         8.6         6.5         15.1         6.1           Queue Delay         0.0         0.0         0.0         0.0         0.0           Total Delay         7.3         9.2         8.6         6.5         15.1         6.1           LOS         A         A         A         A         B         A           Approach Delay         9.2         6.6         15.1         6.1           Approach LOS         A         A         A         B         A           Queue Length 50th (m)         0.5         34.4         0.8         21.4         4.3         0.0           Queue Length 95th (m)         4.2         #122.8         6.3         67.5         9.5         2.7           Internal Link Dist (m)         90.1         79.2         121.5         181.8           Turn Bay Length (m)         40.0         40.0           Base Capacity (vph)         366         2399         234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pedestrian Calls (#/hr) | 20    | 20     |     | 20    | 20    |     | 20    |          |             | 20          |       |     |
| v/c Ratio         0.04         0.56         0.11         0.42         0.23         0.07           Control Delay         7.3         9.2         8.6         6.5         15.1         6.1           Queue Delay         0.0         0.0         0.0         0.0         0.0           Total Delay         7.3         9.2         8.6         6.5         15.1         6.1           LOS         A         A         A         B         A           Approach Delay         9.2         6.6         15.1         6.1           Approach LOS         A         A         A         B         A           Queue Length 50th (m)         0.5         34.4         0.8         21.4         4.3         0.0           Queue Length 95th (m)         4.2         #122.8         6.3         67.5         9.5         2.7           Internal Link Dist (m)         90.1         79.2         121.5         181.8           Turn Bay Length (m)         40.0         40.0           Base Capacity (vph)         366         2399         234         2405         530         521           Starvation Cap Reductn         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Act Effct Green (s)     | 50.4  | 50.4   |     | 50.4  | 50.4  |     |       | 13.2     |             |             | 13.2  |     |
| Control Delay       7.3       9.2       8.6       6.5       15.1       6.1         Queue Delay       0.0       0.0       0.0       0.0       0.0         Total Delay       7.3       9.2       8.6       6.5       15.1       6.1         LOS       A       A       A       B       A         Approach Delay       9.2       6.6       15.1       6.1         Approach LOS       A       A       B       A         Queue Length 50th (m)       0.5       34.4       0.8       21.4       4.3       0.0         Queue Length 95th (m)       4.2       #122.8       6.3       67.5       9.5       2.7         Internal Link Dist (m)       90.1       79.2       121.5       181.8         Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Actuated g/C Ratio      | 0.78  | 0.78   |     | 0.78  | 0.78  |     |       | 0.20     |             |             | 0.20  |     |
| Queue Delay       0.0       0.0       0.0       0.0       0.0         Total Delay       7.3       9.2       8.6       6.5       15.1       6.1         LOS       A       A       A       A       B       A         Approach Delay       9.2       6.6       15.1       6.1         Approach LOS       A       A       A       B       A         Queue Length 50th (m)       0.5       34.4       0.8       21.4       4.3       0.0         Queue Length 95th (m)       4.2       #122.8       6.3       67.5       9.5       2.7         Internal Link Dist (m)       90.1       79.2       121.5       181.8         Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v/c Ratio               | 0.04  | 0.56   |     | 0.11  | 0.42  |     |       | 0.23     |             |             | 0.07  |     |
| Total Delay         7.3         9.2         8.6         6.5         15.1         6.1           LOS         A         A         A         A         B         A           Approach Delay         9.2         6.6         15.1         6.1           Approach LOS         A         A         B         A           Queue Length 50th (m)         0.5         34.4         0.8         21.4         4.3         0.0           Queue Length 95th (m)         4.2         #122.8         6.3         67.5         9.5         2.7           Internal Link Dist (m)         90.1         79.2         121.5         181.8           Turn Bay Length (m)         40.0         40.0           Base Capacity (vph)         366         2399         234         2405         530         521           Starvation Cap Reductn         0         0         0         0         0           Spillback Cap Reductn         0         0         0         0         0           Storage Cap Reductn         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control Delay           | 7.3   | 9.2    |     | 8.6   | 6.5   |     |       |          |             |             | 6.1   |     |
| A A A A A B A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Queue Delay             | 0.0   | 0.0    |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Approach Delay       9.2       6.6       15.1       6.1         Approach LOS       A       A       B       A         Queue Length 50th (m)       0.5       34.4       0.8       21.4       4.3       0.0         Queue Length 95th (m)       4.2       #122.8       6.3       67.5       9.5       2.7         Internal Link Dist (m)       90.1       79.2       121.5       181.8         Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Delay             | 7.3   | 9.2    |     | 8.6   | 6.5   |     |       | 15.1     |             |             | 6.1   |     |
| Approach LOS A A B A A B A A Queue Length 50th (m) 0.5 34.4 0.8 21.4 4.3 0.0 Queue Length 95th (m) 4.2 #122.8 6.3 67.5 9.5 2.7 Internal Link Dist (m) 90.1 79.2 121.5 181.8 Turn Bay Length (m) 40.0 40.0 Base Capacity (vph) 366 2399 234 2405 530 521 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOS                     | Α     | Α      |     | Α     | Α     |     |       | В        |             |             | Α     |     |
| Queue Length 50th (m)       0.5       34.4       0.8       21.4       4.3       0.0         Queue Length 95th (m)       4.2       #122.8       6.3       67.5       9.5       2.7         Internal Link Dist (m)       90.1       79.2       121.5       181.8         Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approach Delay          |       | 9.2    |     |       | 6.6   |     |       | 15.1     |             |             | 6.1   |     |
| Queue Length 95th (m)       4.2 #122.8       6.3 67.5       9.5       2.7         Internal Link Dist (m)       90.1       79.2       121.5       181.8         Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366 2399       234 2405       530       521         Starvation Cap Reductn       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Approach LOS            |       | Α      |     |       | Α     |     |       |          |             |             | Α     |     |
| Internal Link Dist (m) 90.1 79.2 121.5 181.8  Turn Bay Length (m) 40.0 40.0  Base Capacity (vph) 366 2399 234 2405 530 521  Starvation Cap Reductn 0 0 0 0 0 0 0  Spillback Cap Reductn 0 0 0 0 0 0 0  Storage Cap Reductn 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Queue Length 50th (m)   |       |        |     |       | 21.4  |     |       |          |             |             |       |     |
| Turn Bay Length (m)       40.0       40.0         Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Queue Length 95th (m)   | 4.2   | #122.8 |     | 6.3   |       |     |       |          |             |             | 2.7   |     |
| Base Capacity (vph)       366       2399       234       2405       530       521         Starvation Cap Reductn       0       0       0       0       0       0         Spillback Cap Reductn       0       0       0       0       0       0         Storage Cap Reductn       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Internal Link Dist (m)  |       | 90.1   |     |       | 79.2  |     |       | 121.5    |             |             | 181.8 |     |
| Starvation Cap Reductn         0         0         0         0         0           Spillback Cap Reductn         0         0         0         0         0         0           Storage Cap Reductn         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Bay Length (m)     |       |        |     |       |       |     |       |          |             |             |       |     |
| Spillback Cap Reductn         0         0         0         0         0         0         0           Storage Cap Reductn         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Base Capacity (vph)     | 366   | 2399   |     | 234   | 2405  |     |       | 530      |             |             | 521   |     |
| Storage Cap Reductn 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Starvation Cap Reductn  | 0     | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spillback Cap Reductn   | 0     | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Poduced v/a Patia 0.04 0.56 0.11 0.42 0.12 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storage Cap Reductn     |       | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Neduced Vic Natio 0.04 0.50 0.11 0.42 0.12 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reduced v/c Ratio       | 0.04  | 0.56   |     | 0.11  | 0.42  |     |       | 0.12     |             |             | 0.03  |     |

Area Type: Other

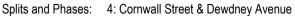
Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.56

Intersection Signal Delay: 8.2 Intersection LOS: A Intersection Capacity Utilization 54.0% ICU Level of Service A

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.





|                            | ۶     | <b>→</b>   | •     | •     | +          | •     | 4      | †       | <i>&gt;</i> | <b>/</b> | <b>↓</b> | - ✓   |
|----------------------------|-------|------------|-------|-------|------------|-------|--------|---------|-------------|----------|----------|-------|
| Lane Group                 | EBL   | EBT        | EBR   | WBL   | WBT        | WBR   | NBL    | NBT     | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | ¥     | <b>↑</b> Ъ |       | ሻ     | <b>∱</b> } |       |        | 4       |             |          | 4        |       |
| Traffic Volume (vph)       | 53    | 1103       | 20    | 51    | 873        | 5     | 27     | 0       | 59          | 4        | 0        | 31    |
| Future Volume (vph)        | 53    | 1103       | 20    | 51    | 873        | 5     | 27     | 0       | 59          | 4        | 0        | 31    |
| Ideal Flow (vphpl)         | 1800  | 1800       | 1800  | 1800  | 1800       | 1800  | 1800   | 1800    | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 40.0  |            | 0.0   | 40.0  |            | 0.0   | 0.0    |         | 0.0         | 0.0      |          | 0.0   |
| Storage Lanes              | 1     |            | 0     | 1     |            | 0     | 0      |         | 0           | 0        |          | 0     |
| Taper Length (m)           | 30.0  |            |       | 30.0  |            |       | 30.0   |         |             | 30.0     |          |       |
| Lane Util. Factor          | 1.00  | 0.95       | 0.95  | 1.00  | 0.95       | 0.95  | 1.00   | 1.00    | 1.00        | 1.00     | 1.00     | 1.00  |
| Frt                        |       | 0.997      |       |       | 0.999      |       |        | 0.907   |             |          | 0.879    |       |
| Flt Protected              | 0.950 |            |       | 0.950 |            |       |        | 0.985   |             |          | 0.995    |       |
| Satd. Flow (prot)          | 1679  | 3096       | 0     | 1679  | 3102       | 0     | 0      | 1579    | 0           | 0        | 1545     | 0     |
| Flt Permitted              | 0.252 |            |       | 0.168 |            |       |        | 0.906   |             |          | 0.975    |       |
| Satd. Flow (perm)          | 445   | 3096       | 0     | 297   | 3102       | 0     | 0      | 1452    | 0           | 0        | 1514     | 0     |
| Right Turn on Red          |       |            | Yes   |       |            | Yes   |        |         | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |       | 3          |       |       | 1          |       |        | 75      | , , ,       |          | 75       |       |
| Link Speed (k/h)           |       | 50         |       |       | 50         |       |        | 48      |             |          | 50       |       |
| Link Distance (m)          |       | 102.4      |       |       | 103.2      |       |        | 139.3   |             |          | 228.4    |       |
| Travel Time (s)            |       | 7.4        |       |       | 7.4        |       |        | 10.4    |             |          | 16.4     |       |
| Peak Hour Factor           | 0.92  | 0.92       | 0.92  | 0.92  | 0.92       | 0.92  | 0.92   | 0.92    | 0.92        | 0.92     | 0.92     | 0.92  |
| Parking (#/hr)             | 0.02  | 10         | V.V-  | 0.02  | 10         | 0.02  | V.V_   | V.V_    | 0.0_        | 10       | V.V_     | 0.02  |
| Adj. Flow (vph)            | 58    | 1199       | 22    | 55    | 949        | 5     | 29     | 0       | 64          | 4        | 0        | 34    |
| Shared Lane Traffic (%)    |       | 1100       |       |       | 0.10       |       |        |         | <u> </u>    | •        |          | Ų.    |
| Lane Group Flow (vph)      | 58    | 1221       | 0     | 55    | 954        | 0     | 0      | 93      | 0           | 0        | 38       | 0     |
| Enter Blocked Intersection | No    | No         | No    | No    | No         | No    | No     | No      | No          | No       | No       | No    |
| Lane Alignment             | Left  | Left       | Right | Left  | Left       | Right | Left   | Left    | Right       | Left     | Left     | Right |
| Median Width(m)            |       | 3.7        |       |       | 3.7        |       |        | 0.0     |             |          | 0.0      |       |
| Link Offset(m)             |       | 0.0        |       |       | 0.0        |       |        | 0.0     |             |          | 0.0      |       |
| Crosswalk Width(m)         |       | 1.6        |       |       | 1.6        |       |        | 1.6     |             |          | 1.6      |       |
| Two way Left Turn Lane     |       | 1.0        |       |       | 1.0        |       |        | 1.0     |             |          | 1.0      |       |
| Headway Factor             | 1.06  | 1.17       | 1.06  | 1.06  | 1.17       | 1.06  | 1.06   | 1.06    | 1.06        | 1.06     | 1.06     | 1.06  |
| Turning Speed (k/h)        | 24    |            | 14    | 24    |            | 14    | 24     | 1.00    | 14          | 24       | 1.00     | 14    |
| Number of Detectors        | 1     | 2          |       | 1     | 2          |       | 1      | 2       |             | 1        | 2        |       |
| Detector Template          | Left  | Thru       |       | Left  | Thru       |       | Left   | Thru    |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1   | 30.5       |       | 6.1   | 30.5       |       | 6.1    | 30.5    |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0   | 0.0        |       | 0.0   | 0.0        |       | 0.0    | 0.0     |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0   | 0.0        |       | 0.0   | 0.0        |       | 0.0    | 0.0     |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1   | 1.8        |       | 6.1   | 1.8        |       | 6.1    | 1.8     |             | 6.1      | 1.8      |       |
| Detector 1 Type            | CI+Ex | CI+Ex      |       | CI+Ex | CI+Ex      |       | CI+Ex  | CI+Ex   |             | CI+Ex    | CI+Ex    |       |
| Detector 1 Channel         | OIILX | OIILX      |       | OITEX | OIILX      |       | OILX   | OIILX   |             | OIILX    | OIILX    |       |
| Detector 1 Extend (s)      | 0.0   | 0.0        |       | 0.0   | 0.0        |       | 0.0    | 0.0     |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0   | 0.0        |       | 0.0   | 0.0        |       | 0.0    | 0.0     |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0   | 0.0        |       | 0.0   | 0.0        |       | 0.0    | 0.0     |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     | 0.0   | 28.7       |       | 0.0   | 28.7       |       | 0.0    | 28.7    |             | 0.0      | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8        |       |       | 1.8        |       |        | 1.8     |             |          | 1.8      |       |
| Detector 2 Type            |       | CI+Ex      |       |       | CI+Ex      |       |        | Cl+Ex   |             |          | CI+Ex    |       |
| Detector 2 Channel         |       | CITEX      |       |       | CITEX      |       |        | CITEX   |             |          | CITEX    |       |
|                            |       | 0.0        |       |       | 0.0        |       |        | 0.0     |             |          | 0.0      |       |
| Detector 2 Extend (s)      | nmunt | NA         |       | nmint | NA         |       | Perm   | NA      |             | Perm     | NA       |       |
| Turn Type Protected Phases | pm+pt | NA<br>6    |       | pm+pt | NA<br>2    |       | Fellii | NA<br>3 |             | reiiii   |          |       |
| FIULECIEU PITASES          | 1     | Ö          |       | 5     | 2          |       |        | 3       |             |          | 8        |       |

|                         | ۶     | -      | •   | •     | ←     | •   | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | ✓   |
|-------------------------|-------|--------|-----|-------|-------|-----|-------|----------|-------------|-------------|-------|-----|
| Lane Group              | EBL   | EBT    | EBR | WBL   | WBT   | WBR | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |        |     | 2     |       |     | 3     |          |             | 8           |       |     |
| Detector Phase          | 1     | 6      |     | 5     | 2     |     | 3     | 3        |             | 8           | 8     |     |
| Switch Phase            |       |        |     |       |       |     |       |          |             |             |       |     |
| Minimum Initial (s)     | 7.0   | 10.0   |     | 7.0   | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Minimum Split (s)       | 11.5  | 25.5   |     | 11.5  | 25.5  |     | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (s)         | 11.6  | 37.8   |     | 11.6  | 37.8  |     | 30.6  | 30.6     |             | 30.6        | 30.6  |     |
| Total Split (%)         | 14.5% | 47.3%  |     | 14.5% | 47.3% |     | 38.3% | 38.3%    |             | 38.3%       | 38.3% |     |
| Maximum Green (s)       | 7.6   | 33.3   |     | 7.6   | 33.3  |     | 26.1  | 26.1     |             | 26.1        | 26.1  |     |
| Yellow Time (s)         | 3.0   | 3.5    |     | 3.0   | 3.5   |     | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0    |     | 1.0   | 1.0   |     | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0    |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Total Lost Time (s)     | 4.0   | 4.5    |     | 4.0   | 4.5   |     |       | 4.5      |             |             | 4.5   |     |
| Lead/Lag                | Lead  | Lag    |     | Lead  | Lag   |     |       |          |             |             |       |     |
| Lead-Lag Optimize?      | Yes   | Yes    |     | Yes   | Yes   |     |       |          |             |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0    |     | 2.0   | 2.0   |     | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Recall Mode             | None  | C-Max  |     | None  | C-Min |     | None  | None     |             | None        | None  |     |
| Walk Time (s)           |       | 10.0   |     |       | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     |       | 8.0    |     |       | 8.0   |     | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) |       | 20     |     |       | 20    |     | 20    | 20       |             | 20          | 20    |     |
| Act Effct Green (s)     | 55.6  | 51.8   |     | 55.6  | 51.8  |     |       | 16.4     |             |             | 16.4  |     |
| Actuated g/C Ratio      | 0.70  | 0.65   |     | 0.70  | 0.65  |     |       | 0.20     |             |             | 0.20  |     |
| v/c Ratio               | 0.14  | 0.61   |     | 0.17  | 0.48  |     |       | 0.26     |             |             | 0.10  |     |
| Control Delay           | 7.0   | 16.1   |     | 7.5   | 13.1  |     |       | 9.3      |             |             | 2.0   |     |
| Queue Delay             | 0.0   | 0.0    |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Total Delay             | 7.0   | 16.1   |     | 7.5   | 13.1  |     |       | 9.3      |             |             | 2.0   |     |
| LOS                     | Α     | В      |     | Α     | В     |     |       | Α        |             |             | Α     |     |
| Approach Delay          |       | 15.7   |     |       | 12.8  |     |       | 9.3      |             |             | 2.0   |     |
| Approach LOS            |       | В      |     |       | В     |     |       | Α        |             |             | Α     |     |
| Queue Length 50th (m)   | 1.6   | 53.5   |     | 1.5   | 36.7  |     |       | 2.5      |             |             | 0.0   |     |
| Queue Length 95th (m)   | 8.3   | #133.7 |     | 8.0   | 83.4  |     |       | 11.4     |             |             | 2.1   |     |
| Internal Link Dist (m)  |       | 78.4   |     |       | 79.2  |     |       | 115.3    |             |             | 204.4 |     |
| Turn Bay Length (m)     | 40.0  |        |     | 40.0  |       |     |       |          |             |             |       |     |
| Base Capacity (vph)     | 428   | 2005   |     | 338   | 2007  |     |       | 524      |             |             | 544   |     |
| Starvation Cap Reductn  | 0     | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Storage Cap Reductn     | 0     | 0      |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Reduced v/c Ratio       | 0.14  | 0.61   |     | 0.16  | 0.48  |     |       | 0.18     |             |             | 0.07  |     |

Area Type: Other

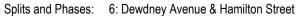
Cycle Length: 80

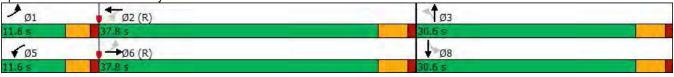
Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.61


Intersection Signal Delay: 14.0 Intersection LOS: B
Intersection Capacity Utilization 61.0% ICU Level of Service B

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.





|                            | ۶     | <b>→</b> | •     | •     | +     | •     | •     | †           | <i>&gt;</i> | <b>/</b> | <b>↓</b> | - ✓   |
|----------------------------|-------|----------|-------|-------|-------|-------|-------|-------------|-------------|----------|----------|-------|
| Lane Group                 | EBL   | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT         | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | 7     | <b>†</b> | 7     | ٦     | f.    |       | ሻ     | <b>∱</b> 1≽ |             | ሻ        | <b>^</b> | 7     |
| Traffic Volume (vph)       | 327   | 85       | 754   | 7     | 52    | 4     | 602   | 791         | 21          | 13       | 1169     | 280   |
| Future Volume (vph)        | 327   | 85       | 754   | 7     | 52    | 4     | 602   | 791         | 21          | 13       | 1169     | 280   |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800  | 1800  | 1800  | 1800  | 1800  | 1800        | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 40.0  |          | 0.0   | 10.0  |       | 0.0   | 35.0  |             | 60.0        | 45.0     |          | 0.0   |
| Storage Lanes              | 1     |          | 1     | 1     |       | 0     | 1     |             | 0           | 1        |          | 1     |
| Taper Length (m)           | 23.0  |          |       | 10.0  |       |       | 25.0  |             |             | 35.0     |          |       |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 0.95        | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor            | 1.00  |          |       |       | 1.00  |       |       |             |             |          |          | 0.92  |
| Frt                        |       |          | 0.850 |       | 0.990 |       |       | 0.996       |             |          |          | 0.850 |
| Flt Protected              | 0.950 |          |       | 0.950 |       |       | 0.950 |             |             | 0.950    |          |       |
| Satd. Flow (prot)          | 1695  | 1784     | 1517  | 1695  | 1745  | 0     | 1695  | 3377        | 0           | 1695     | 3390     | 1517  |
| Flt Permitted              | 0.627 |          |       | 0.697 |       |       | 0.103 |             |             | 0.322    |          |       |
| Satd. Flow (perm)          | 1114  | 1784     | 1517  | 1244  | 1745  | 0     | 184   | 3377        | 0           | 575      | 3390     | 1394  |
| Right Turn on Red          |       |          | Yes   |       |       | Yes   |       |             | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |       |          | 504   |       | 3     |       |       | 4           |             |          |          | 219   |
| Link Speed (k/h)           |       | 50       |       |       | 50    |       |       | 50          |             |          | 50       |       |
| Link Distance (m)          |       | 105.7    |       |       | 332.1 |       |       | 329.7       |             |          | 294.1    |       |
| Travel Time (s)            |       | 7.6      |       |       | 23.9  |       |       | 23.7        |             |          | 21.2     |       |
| Confl. Peds. (#/hr)        | 4     |          |       |       |       | 4     | 51    |             |             |          |          | 51    |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92        | 0.92        | 0.92     | 0.92     | 0.92  |
| Heavy Vehicles (%)         | 2%    | 2%       | 2%    | 2%    | 3%    | 5%    | 2%    | 2%          | 2%          | 2%       | 2%       | 2%    |
| Adj. Flow (vph)            | 355   | 92       | 820   | 8     | 57    | 4     | 654   | 860         | 23          | 14       | 1271     | 304   |
| Shared Lane Traffic (%)    |       |          |       |       |       |       |       |             |             |          |          |       |
| Lane Group Flow (vph)      | 355   | 92       | 820   | 8     | 61    | 0     | 654   | 883         | 0           | 14       | 1271     | 304   |
| Enter Blocked Intersection | No    | No       | No    | No    | No    | No    | No    | No          | No          | No       | No       | No    |
| Lane Alignment             | Left  | Left     | Right | Left  | Left  | Right | Left  | Left        | Right       | Left     | Left     | Right |
| Median Width(m)            |       | 3.7      |       |       | 3.7   |       |       | 4.7         |             |          | 4.7      |       |
| Link Offset(m)             |       | 0.0      |       |       | 1.8   |       |       | 0.0         |             |          | 0.0      |       |
| Crosswalk Width(m)         |       | 1.6      |       |       | 1.6   |       |       | 1.6         |             |          | 1.6      |       |
| Two way Left Turn Lane     |       |          |       |       |       |       |       |             |             |          |          |       |
| Headway Factor             | 1.06  | 1.06     | 1.06  | 1.06  | 1.06  | 1.06  | 1.06  | 1.06        | 1.06        | 1.06     | 1.06     | 1.06  |
| Turning Speed (k/h)        | 24    |          | 14    | 24    |       | 14    | 24    |             | 14          | 24       |          | 14    |
| Number of Detectors        | 1     | 2        | 1     | 1     | 2     |       | 1     | 2           |             | 1        | 2        | 1     |
| Detector Template          | Left  | Thru     | Right | Left  | Thru  |       | Left  | Thru        |             | Left     | Thru     | Right |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5  |       | 6.1   | 30.5        |             | 6.1      | 30.5     | 6.1   |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0         |             | 0.0      | 0.0      | 0.0   |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0         |             | 0.0      | 0.0      | 0.0   |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1   | 6.1   | 1.8   |       | 6.1   | 1.8         |             | 6.1      | 1.8      | 6.1   |
| Detector 1 Type            | CI+Ex | Cl+Ex    | CI+Ex | CI+Ex | CI+Ex |       | CI+Ex | Cl+Ex       |             | CI+Ex    | CI+Ex    | CI+Ex |
| Detector 1 Channel         |       |          |       |       |       |       |       |             |             |          |          |       |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0         |             | 0.0      | 0.0      | 0.0   |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0         |             | 0.0      | 0.0      | 0.0   |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |       | 0.0   | 0.0         |             | 0.0      | 0.0      | 0.0   |
| Detector 2 Position(m)     |       | 28.7     |       |       | 28.7  |       |       | 28.7        |             |          | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8      |       |       | 1.8   |       |       | 1.8         |             |          | 1.8      |       |
| Detector 2 Type            |       | Cl+Ex    |       |       | CI+Ex |       |       | Cl+Ex       |             |          | CI+Ex    |       |
| Detector 2 Channel         |       |          |       |       |       |       |       |             |             |          |          |       |
| Detector 2 Extend (s)      |       | 0.0      |       |       | 0.0   |       |       | 0.0         |             |          | 0.0      |       |

|                         | ٦      | <b>→</b> | •      | •     | <b>←</b> | •   | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ      | ✓     |
|-------------------------|--------|----------|--------|-------|----------|-----|--------|----------|----------|-------------|--------|-------|
| Lane Group              | EBL    | EBT      | EBR    | WBL   | WBT      | WBR | NBL    | NBT      | NBR      | SBL         | SBT    | SBR   |
| Turn Type               | pm+pt  | NA       | Perm   | pm+pt | NA       |     | pm+pt  | NA       |          | Perm        | NA     | Perm  |
| Protected Phases        | 7      | 4        |        | 3     | 8        |     | 5      | 2        |          |             | 6      |       |
| Permitted Phases        | 4      |          | 4      | 8     |          |     | 2      |          |          | 6           |        | 6     |
| Detector Phase          | 7      | 4        | 4      | 3     | 8        |     | 5      | 2        |          | 6           | 6      | 6     |
| Switch Phase            |        |          |        |       |          |     |        |          |          |             |        |       |
| Minimum Initial (s)     | 7.0    | 10.0     | 10.0   | 7.0   | 10.0     |     | 7.0    | 15.0     |          | 15.0        | 15.0   | 15.0  |
| Minimum Split (s)       | 11.0   | 14.5     | 14.5   | 11.0  | 36.5     |     | 11.0   | 19.5     |          | 30.5        | 30.5   | 30.5  |
| Total Split (s)         | 11.0   | 36.5     | 36.5   | 11.0  | 36.5     |     | 30.0   | 72.5     |          | 42.5        | 42.5   | 42.5  |
| Total Split (%)         | 9.2%   | 30.4%    | 30.4%  | 9.2%  | 30.4%    |     | 25.0%  | 60.4%    |          | 35.4%       | 35.4%  | 35.4% |
| Maximum Green (s)       | 7.0    | 32.0     | 32.0   | 7.0   | 32.0     |     | 26.0   | 68.0     |          | 38.0        | 38.0   | 38.0  |
| Yellow Time (s)         | 3.0    | 3.5      | 3.5    | 3.0   | 3.5      |     | 3.0    | 3.5      |          | 3.5         | 3.5    | 3.5   |
| All-Red Time (s)        | 1.0    | 1.0      | 1.0    | 1.0   | 1.0      |     | 1.0    | 1.0      |          | 1.0         | 1.0    | 1.0   |
| Lost Time Adjust (s)    | 0.0    | 0.0      | 0.0    | 0.0   | 0.0      |     | 0.0    | 0.0      |          | 0.0         | 0.0    | 0.0   |
| Total Lost Time (s)     | 4.0    | 4.5      | 4.5    | 4.0   | 4.5      |     | 4.0    | 4.5      |          | 4.5         | 4.5    | 4.5   |
| Lead/Lag                | Lead   | Lag      | Lag    | Lead  | Lag      |     | Lead   |          |          | Lag         | Lag    | Lag   |
| Lead-Lag Optimize?      | Yes    | Yes      | Yes    | Yes   | Yes      |     | Yes    |          |          | Yes         | Yes    | Yes   |
| Vehicle Extension (s)   | 2.0    | 2.0      | 2.0    | 2.0   | 2.0      |     | 2.0    | 2.0      |          | 2.0         | 2.0    | 2.0   |
| Recall Mode             | None   | None     | None   | None  | None     |     | None   | C-Max    |          | C-Max       | C-Max  | C-Max |
| Walk Time (s)           |        |          |        |       | 10.0     |     |        |          |          | 10.0        | 10.0   | 10.0  |
| Flash Dont Walk (s)     |        |          |        |       | 22.0     |     |        |          |          | 16.0        | 16.0   | 16.0  |
| Pedestrian Calls (#/hr) |        |          |        |       | 4        |     |        |          |          | 25          | 25     | 25    |
| Act Effct Green (s)     | 42.7   | 40.8     | 40.8   | 33.0  | 27.6     |     | 68.5   | 68.0     |          | 38.0        | 38.0   | 38.0  |
| Actuated g/C Ratio      | 0.36   | 0.34     | 0.34   | 0.28  | 0.23     |     | 0.57   | 0.57     |          | 0.32        | 0.32   | 0.32  |
| v/c Ratio               | 0.76   | 0.15     | 0.97   | 0.02  | 0.15     |     | 1.51   | 0.46     |          | 0.08        | 1.18   | 0.51  |
| Control Delay           | 46.3   | 29.8     | 39.8   | 24.9  | 33.2     |     | 271.2  | 16.2     |          | 30.4        | 129.8  | 13.0  |
| Queue Delay             | 0.0    | 0.0      | 0.0    | 0.0   | 0.0      |     | 0.0    | 0.0      |          | 0.0         | 0.0    | 0.0   |
| Total Delay             | 46.3   | 29.8     | 39.8   | 24.9  | 33.2     |     | 271.2  | 16.2     |          | 30.4        | 129.8  | 13.0  |
| LOS                     | D      | С        | D      | С     | С        |     | F      | В        |          | С           | F      | В     |
| Approach Delay          |        | 40.9     |        |       | 32.2     |     |        | 124.7    |          |             | 106.6  |       |
| Approach LOS            |        | D        |        |       | С        |     |        | F        |          |             | F      |       |
| Queue Length 50th (m)   | 66.8   | 14.5     | 89.4   | 1.2   | 10.4     |     | ~199.9 | 60.8     |          | 2.3         | ~189.3 | 14.5  |
| Queue Length 95th (m)   | #121.1 | 30.4     | #193.6 | 4.5   | 21.3     |     | #270.6 | 76.1     |          | 7.5         | #231.1 | 40.9  |
| Internal Link Dist (m)  |        | 81.7     |        |       | 308.1    |     |        | 305.7    |          |             | 270.1  |       |
| Turn Bay Length (m)     | 40.0   |          |        | 10.0  |          |     | 35.0   |          |          | 45.0        |        |       |
| Base Capacity (vph)     | 465    | 606      | 848    | 368   | 467      |     | 432    | 1915     |          | 182         | 1073   | 591   |
| Starvation Cap Reductn  | 0      | 0        | 0      | 0     | 0        |     | 0      | 0        |          | 0           | 0      | 0     |
| Spillback Cap Reductn   | 0      | 0        | 0      | 0     | 0        |     | 0      | 0        |          | 0           | 0      | 0     |
| Storage Cap Reductn     | 0      | 0        | 0      | 0     | 0        |     | 0      | 0        |          | 0           | 0      | 0     |
| Reduced v/c Ratio       | 0.76   | 0.15     | 0.97   | 0.02  | 0.13     |     | 1.51   | 0.46     |          | 0.08        | 1.18   | 0.51  |

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

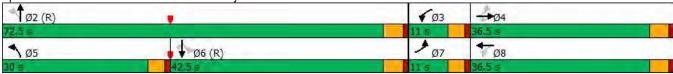
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.51

Intersection Signal Delay: 93.0 Intersection LOS: F
Intersection Capacity Utilization 105.9% ICU Level of Service G


05/16/2019 Synchro 10 Report WSP Page 11

### Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
   Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Intersection           |        |       |       |          |            |      |        |      |          |        |       |          |
|------------------------|--------|-------|-------|----------|------------|------|--------|------|----------|--------|-------|----------|
| Int Delay, s/veh       | 1.4    |       |       |          |            |      |        |      |          |        |       |          |
| Movement               | EBL    | EBT   | EBR   | WBL      | WBT        | WBR  | NBL    | NBT  | NBR      | SBL    | SBT   | SBR      |
| Lane Configurations    | ሻ      | ħβ    |       | ሻ        | <b>∱</b> } |      |        | सी   | 7        |        | सी    | 7        |
| Traffic Vol, veh/h     | 27     | 1256  | 32    | 59       | 902        | 15   | 1      | 2    | 26       | 4      | 2     | 21       |
| Future Vol, veh/h      | 27     | 1256  | 32    | 59       | 902        | 15   | 1      | 2    | 26       | 4      | 2     | 21       |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0        | 0          | 0    | 0      | 0    | 0        | 0      | 0     | 0        |
| Sign Control           | Free   | Free  | Free  | Free     | Free       | Free | Stop   | Stop | Stop     | Stop   | Stop  | Stop     |
| RT Channelized         | -      | -     | None  | -        | -          | None | -      | -    | None     | -      | -     | None     |
| Storage Length         | 200    | -     | -     | 250      | -          | -    | -      | -    | 200      | -      | -     | 200      |
| Veh in Median Storage, | # -    | 0     | -     | -        | 0          | -    | -      | 0    | -        | -      | 0     | -        |
| Grade, %               | -      | 0     | -     | -        | 0          | -    | -      | 0    | -        | -      | 0     | -        |
| Peak Hour Factor       | 92     | 92    | 92    | 92       | 92         | 92   | 92     | 92   | 92       | 92     | 92    | 92       |
| Heavy Vehicles, %      | 3      | 3     | 3     | 3        | 3          | 3    | 3      | 3    | 3        | 3      | 3     | 3        |
| Mvmt Flow              | 29     | 1365  | 35    | 64       | 980        | 16   | 1      | 2    | 28       | 4      | 2     | 23       |
|                        |        |       |       |          |            |      |        |      |          |        |       |          |
| Major/Minor M          | lajor1 |       |       | Major2   |            | N    | Minor1 |      | ı        | Minor2 |       |          |
| Conflicting Flow All   | 996    | 0     | 0     | 1400     | 0          | 0    | 2060   | 2565 | 700      | 1858   | 2574  | 498      |
| Stage 1                | -      | -     | -     | -        | -          | -    | 1441   | 1441 | -        | 1116   | 1116  | -        |
| Stage 2                | _      | _     | _     | <u>-</u> | _          | _    | 619    | 1124 | <u>-</u> | 742    | 1458  | <u>-</u> |
| Critical Hdwy          | 4.16   | _     | _     | 4.16     | _          | _    | 7.56   | 6.56 | 6.96     | 7.56   | 6.56  | 6.96     |
| Critical Hdwy Stg 1    | -      | _     | _     | -        | _          | _    | 6.56   | 5.56 | -        | 6.56   | 5.56  | -        |
| Critical Hdwy Stg 2    | _      | -     | _     | -        | _          | -    | 6.56   | 5.56 | _        | 6.56   | 5.56  | -        |
| Follow-up Hdwy         | 2.23   | _     | _     | 2.23     | _          | _    | 3.53   | 4.03 | 3.33     | 3.53   | 4.03  | 3.33     |
| Pot Cap-1 Maneuver     | 684    | -     | _     | 479      | _          | -    | 31     | 25   | 379      | 45     | 25    | 515      |
| Stage 1                | -      | -     | -     | -        | -          | -    | 138    | 194  | -        | 220    | 279   | -        |
| Stage 2                | -      | -     | _     | -        | _          | -    | 440    | 277  | _        | 371    | 191   | _        |
| Platoon blocked, %     |        | -     | -     |          | -          | -    |        |      |          |        |       |          |
| Mov Cap-1 Maneuver     | 684    | -     | -     | 479      | -          | -    | 24     | 21   | 379      | 33     | 21    | 515      |
| Mov Cap-2 Maneuver     | -      | -     | -     | -        | -          | -    | 24     | 21   | -        | 33     | 21    | -        |
| Stage 1                | -      | -     | -     | -        | -          | -    | 132    | 186  | -        | 211    | 242   | -        |
| Stage 2                | -      | -     | -     | -        | -          | -    | 361    | 240  | -        | 325    | 183   | -        |
| ·                      |        |       |       |          |            |      |        |      |          |        |       |          |
| Approach               | EB     |       |       | WB       |            |      | NB     |      |          | SB     |       |          |
| HCM Control Delay, s   | 0.2    |       |       | 0.8      |            |      | 33.9   |      |          | 47.1   |       |          |
| HCM LOS                |        |       |       |          |            |      | D      |      |          | Е      |       |          |
|                        |        |       |       |          |            |      |        |      |          |        |       |          |
| Minor Lane/Major Mvmt  |        | NBLn1 | NBLn2 | EBL      | EBT        | EBR  | WBL    | WBT  | WBR S    | SBLn1  | SBLn2 |          |
| Capacity (veh/h)       |        | 22    | 379   | 684      | -          | -    | 479    | -    | -        | 28     | 515   |          |
| HCM Lane V/C Ratio     |        |       | 0.075 |          | -          | -    | 0.134  | -    | -        | 0.233  |       |          |
| HCM Control Delay (s)  |        | 195.3 | 15.3  | 10.5     | -          | -    | 13.7   | -    | -        | 169    | 12.3  |          |
| HCM Lane LOS           |        | F     | С     | В        | -          | -    | В      | -    | -        | F      | В     |          |
| HCM 95th %tile Q(veh)  |        | 0.4   | 0.2   | 0.1      | -          | -    | 0.5    | -    | -        | 0.7    | 0.1   |          |
|                        |        |       |       |          |            |      |        |      |          |        |       |          |

| Intersection           |        |       |             |          |        |          |
|------------------------|--------|-------|-------------|----------|--------|----------|
| Int Delay, s/veh       | 1.1    |       |             |          |        |          |
| Movement               | EBL    | EBT   | WBT         | WBR      | SBL    | SBR      |
| Lane Configurations    |        | 414   | <b>†</b> 1> |          | ¥      |          |
| Traffic Vol, veh/h     | 30     | 1256  | 963         | 16       | 8      | 13       |
| Future Vol, veh/h      | 30     | 1256  | 963         | 16       | 8      | 13       |
| Conflicting Peds, #/hr | 0      | 0     | 0           | 0        | 0      | 0        |
| Sign Control           | Free   | Free  | Free        | Free     | Stop   | Stop     |
| RT Channelized         | -      | None  | -           | None     | -      | None     |
| Storage Length         | _      | -     | _           | -        | 0      | -        |
| Veh in Median Storage  | e.# -  | 0     | 0           | -        | 0      | _        |
| Grade, %               | -      | 0     | 0           | <u>-</u> | 0      | <u>-</u> |
| Peak Hour Factor       | 92     | 92    | 92          | 92       | 92     | 92       |
| Heavy Vehicles, %      | 3      | 3     | 3           | 3        | 3      | 3        |
| Mymt Flow              | 33     | 1365  | 1047        | 17       | 9      | 14       |
| IVIVIIIL I IUW         | 55     | 1000  | 1041        | - 17     | 9      | 14       |
|                        |        |       |             |          |        |          |
| Major/Minor            | Major1 | N N   | Major2      | N        | Minor2 |          |
| Conflicting Flow All   | 1064   | 0     | -           | 0        | 1805   | 532      |
| Stage 1                | -      | -     | -           | -        | 1056   | -        |
| Stage 2                | _      | -     | -           | -        | 749    | -        |
| Critical Hdwy          | 4.16   | -     | _           | -        | 6.86   | 6.96     |
| Critical Hdwy Stg 1    | -      | _     | -           | -        | 5.86   | -        |
| Critical Hdwy Stg 2    | _      | _     | _           | _        | 5.86   | -        |
| Follow-up Hdwy         | 2.23   | _     | _           | _        | 3.53   | 3.33     |
| Pot Cap-1 Maneuver     | 645    | _     | _           | _        | 70     | 489      |
| Stage 1                | UTU _  |       | _           | <u>-</u> | 294    | -        |
| Stage 2                |        |       |             | _        | 425    | _        |
| Platoon blocked, %     |        | _     | _           | _        | 720    |          |
| Mov Cap-1 Maneuver     | 645    | -     | _           |          | 55     | 489      |
|                        |        | -     |             | -        | 55     |          |
| Mov Cap-2 Maneuver     | -      | -     | -           |          |        | -        |
| Stage 1                | -      | -     | -           | -        | 232    | -        |
| Stage 2                | -      | -     | -           | -        | 425    | -        |
|                        |        |       |             |          |        |          |
| Approach               | EB     |       | WB          |          | SB     |          |
| HCM Control Delay, s   | 1.3    |       | 0           |          | 41.2   |          |
| HCM LOS                | 1.0    |       |             |          | E      |          |
|                        |        |       |             |          | _      |          |
|                        |        |       |             |          |        |          |
| Minor Lane/Major Mvn   | nt     | EBL   | EBT         | WBT      | WBR :  |          |
| Capacity (veh/h)       |        | 645   | -           | -        | -      | 122      |
| HCM Lane V/C Ratio     |        | 0.051 | -           | -        | -      | 0.187    |
| HCM Control Delay (s)  |        | 10.9  | 1.1         | -        | -      | 41.2     |
| HCM Lane LOS           |        | В     | Α           | -        | -      | Е        |
| HCM 95th %tile Q(veh   | )      | 0.2   | -           | -        | -      | 0.7      |
| ,                      |        |       |             |          |        |          |

| Intersection           |          |            |      |        |            |       |         |      |       |          |      |      |
|------------------------|----------|------------|------|--------|------------|-------|---------|------|-------|----------|------|------|
| Int Delay, s/veh       | 0.2      |            |      |        |            |       |         |      |       |          |      |      |
| Movement               | EBL      | EBT        | EBR  | WBL    | WBT        | WBR   | NBL     | NBT  | NBR   | SBL      | SBT  | SBR  |
| Lane Configurations    | LDL      | <b>↑</b> ⊅ | LDI  | VVDL   | <b>↑</b> ↑ | וטיי  | NUL     | וטוו | TVDIX | ODL      | וטט  | 7    |
| Traffic Vol, veh/h     | 0        | 1166       | 50   | 0      | 924        | 7     | 0       | 0    | 10    | 0        | 0    | 21   |
| Future Vol, veh/h      | 0        | 1166       | 50   | 0      | 924        | 7     | 0       | 0    | 10    | 0        | 0    | 21   |
| Conflicting Peds, #/hr | 0        | 0          | 0    | 0      | 0          | 0     | 0       | 0    | 0     | 0        | 0    | 0    |
|                        | Free     | Free       | Free | Free   | Free       | Free  | Stop    | Stop | Stop  | Stop     | Stop | Stop |
| RT Channelized         | -        | -          | None | -      | -          | None  | -       | -    | None  | -<br>-   | -    | None |
| Storage Length         | _        | _          | -    | _      | _          | -     | _       | _    | 0     | _        | _    | 0    |
| Veh in Median Storage, | # -      | 0          | -    | -      | 0          | -     | -       | 0    | -     | -        | 0    | -    |
| Grade, %               | -        | 0          | -    | _      | 0          | _     | -       | 0    | _     | -        | 0    | -    |
| Peak Hour Factor       | 92       | 92         | 92   | 92     | 92         | 92    | 92      | 92   | 92    | 92       | 92   | 92   |
| Heavy Vehicles, %      | 3        | 3          | 3    | 3      | 3          | 3     | 3       | 3    | 3     | 3        | 3    | 3    |
| Mvmt Flow              | 0        | 1267       | 54   | 0      | 1004       | 8     | 0       | 0    | 11    | 0        | 0    | 23   |
|                        |          |            |      |        |            |       |         |      |       |          |      |      |
| Major/Minor M          | lajor1   |            | ı    | Major2 |            | N     | /linor1 |      | N     | Minor2   |      |      |
| Conflicting Flow All   | <u>-</u> | 0          | 0    | -      |            | 0     | -       | _    | 661   | -        | _    | 506  |
| Stage 1                | _        | -          | -    | _      | _          | -     | _       | _    | -     | _        | _    | -    |
| Stage 2                | _        | _          | _    | _      | _          | _     | _       | _    | _     | _        | _    | _    |
| Critical Hdwy          | -        | -          | -    | -      | -          | -     | -       | -    | 6.96  | -        | -    | 6.96 |
| Critical Hdwy Stg 1    | _        | _          | _    | _      | _          | _     | -       | _    | -     | <u>-</u> | _    | -    |
| Critical Hdwy Stg 2    | -        | -          | -    | -      | -          | -     | -       | -    | -     | -        | -    | -    |
| Follow-up Hdwy         | -        | -          | -    | -      | -          | -     | -       | -    | 3.33  | -        | -    | 3.33 |
| Pot Cap-1 Maneuver     | 0        | -          | -    | 0      | -          | -     | 0       | 0    | 403   | 0        | 0    | 509  |
| Stage 1                | 0        | -          | -    | 0      | -          | -     | 0       | 0    | -     | 0        | 0    | -    |
| Stage 2                | 0        | -          | -    | 0      | -          | -     | 0       | 0    | -     | 0        | 0    | -    |
| Platoon blocked, %     |          | -          | -    |        | -          | -     |         |      |       |          |      |      |
| Mov Cap-1 Maneuver     | -        | -          | -    | -      | -          | -     | -       | -    | 403   | -        | -    | 509  |
| Mov Cap-2 Maneuver     | -        | -          | -    | -      | -          | -     | -       | -    | -     | -        | -    | -    |
| Stage 1                | -        | -          | -    | -      | -          | -     | -       | -    | -     | -        | -    | -    |
| Stage 2                | -        | -          | -    | -      | -          | -     | -       | -    | -     | -        | -    | -    |
|                        |          |            |      |        |            |       |         |      |       |          |      |      |
| Approach               | EB       |            |      | WB     |            |       | NB      |      |       | SB       |      |      |
| HCM Control Delay, s   | 0        |            |      | 0      |            |       | 14.2    |      |       | 12.4     |      |      |
| HCM LOS                |          |            |      |        |            |       | В       |      |       | В        |      |      |
|                        |          |            |      |        |            |       |         |      |       |          |      |      |
| Minor Lane/Major Mvmt  | 1        | NBLn1      | EBT  | EBR    | WBT        | WBR S | SBLn1   |      |       |          |      |      |
| Capacity (veh/h)       |          | 403        | -    | -      | -          | -     |         |      |       |          |      |      |
| HCM Lane V/C Ratio     |          | 0.027      | -    | -      | -          | -     | 0.045   |      |       |          |      |      |
| HCM Control Delay (s)  |          | 14.2       | -    | -      | -          |       | 12.4    |      |       |          |      |      |
| HCM Lane LOS           |          | В          | -    | -      | -          | -     | В       |      |       |          |      |      |
| HCM 95th %tile Q(veh)  |          | 0.1        | -    | -      | -          | -     | 0.1     |      |       |          |      |      |
|                        |          |            |      |        |            |       |         |      |       |          |      |      |

| 0.1  |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | CDT               | MOT                                                                        | WED                                                                                                                                                                                                              | ODL                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FRF  |                   |                                                                            | WRK                                                                                                                                                                                                              | SBL                           | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                   | Free                                                                       |                                                                                                                                                                                                                  |                               | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -    | None              | -                                                                          | None                                                                                                                                                                                                             | -                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| # -  |                   | 0                                                                          | -                                                                                                                                                                                                                | 0                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | 0                 | 0                                                                          | -                                                                                                                                                                                                                |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92   | 92                | 92                                                                         | 92                                                                                                                                                                                                               | 92                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3    | 3                 | 3                                                                          | 3                                                                                                                                                                                                                | 3                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0    | 1267              | 990                                                                        | 25                                                                                                                                                                                                               | 0                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1-:4 |                   | 4-:0                                                                       |                                                                                                                                                                                                                  | 4:O                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -    | 0                 | -                                                                          | 0                                                                                                                                                                                                                | -                             | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | 6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | -                 | -                                                                          | -                                                                                                                                                                                                                | -                             | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0    | _                 | -                                                                          | -                                                                                                                                                                                                                | 0                             | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0    | -                 | -                                                                          | -                                                                                                                                                                                                                | 0                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | _                 | _                                                                          | -                                                                                                                                                                                                                | 0                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | _                 | _                                                                          | _                                                                                                                                                                                                                | •                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _    | _                 | _                                                                          | _                                                                                                                                                                                                                | _                             | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                   | _                                                                          |                                                                                                                                                                                                                  |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | -                 | -                                                                          |                                                                                                                                                                                                                  | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EB   |                   | WB                                                                         |                                                                                                                                                                                                                  | SB                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0    |                   | 0                                                                          |                                                                                                                                                                                                                  | 12.4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U    |                   |                                                                            |                                                                                                                                                                                                                  | В                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U    |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U    |                   |                                                                            |                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | EDT               | WDT                                                                        | WDD                                                                                                                                                                                                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0    | EBT               | WBT                                                                        | WBR S                                                                                                                                                                                                            | SBLn1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | EBT<br>-          | WBT<br>-                                                                   | -                                                                                                                                                                                                                | SBLn1<br>507                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | <u>EBT</u><br>-   | WBT<br>-<br>-                                                              | -                                                                                                                                                                                                                | 507<br>0.039                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | -                 | -                                                                          | -                                                                                                                                                                                                                | 5BLn1<br>507<br>0.039<br>12.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | -                 | -                                                                          | -                                                                                                                                                                                                                | 507<br>0.039                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 8 EBL  0 0 0 Free | EBL EBT  0 1166 0 1166 0 0 0 Free Free - None - 0 92 92 3 3 0 1267  lajor1 | EBL EBT WBT    166   911     0   1166   911     0   0   0     0   0     Free   Free   Free     -   None   -     -   0   0     2   92   92     3   3   3     0   1267   990     1   1   1     1   1   1     1   1 | EBL EBT WBT WBR    1          | EBL         EBT         WBT         WBR         SBL           1166         911         23         0           0         1166         911         23         0           0         0         0         0         0           Free         Free         Free         Free         Stop           None         -         None         -           -         0         0         -         0           -         0         0         -         0           92         92         92         92         92           3         3         3         3         3         3           0         1267         990         25         0           1ajor1         Major2         Minor2         Minor2           -         0         -         -         -           -         0         -         0         -           -         0         -         -         -           -         -         -         -         -           -         -         -         -         -           -         -         - |

|                            | ٠     | <b>→</b>   | •     | •     | <b>←</b> | •     | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4     |
|----------------------------|-------|------------|-------|-------|----------|-------|-------|----------|-------------|----------|----------|-------|
| Lane Group                 | EBL   | EBT        | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | Ť     | <b>†</b> † | 7     | ሻ     | <b>^</b> | 7     | ħ     | ተተኈ      |             | ň        | ተተኈ      |       |
| Traffic Volume (vph)       | 164   | 776        | 165   | 351   | 900      | 174   | 265   | 1338     | 252         | 151      | 1047     | 158   |
| Future Volume (vph)        | 164   | 776        | 165   | 351   | 900      | 174   | 265   | 1338     | 252         | 151      | 1047     | 158   |
| Ideal Flow (vphpl)         | 1800  | 1800       | 1800  | 1800  | 1800     | 1800  | 1800  | 1800     | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 30.0  |            | 50.0  | 30.0  |          | 30.0  | 90.0  |          | 0.0         | 75.0     |          | 0.0   |
| Storage Lanes              | 1     |            | 1     | 1     |          | 1     | 1     |          | 0           | 1        |          | 0     |
| Taper Length (m)           | 20.0  |            |       | 25.0  |          |       | 35.0  |          |             | 40.0     |          |       |
| Lane Util. Factor          | 1.00  | 0.95       | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.91     | 0.91        | 1.00     | 0.91     | 0.91  |
| Ped Bike Factor            | 1.00  |            | 0.97  | 1.00  |          | 0.97  |       | 0.99     |             | 1.00     | 0.99     |       |
| Frt                        |       |            | 0.850 |       |          | 0.850 |       | 0.976    |             |          | 0.980    |       |
| Flt Protected              | 0.950 |            |       | 0.950 |          |       | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)          | 1695  | 3390       | 1517  | 1695  | 3390     | 1517  | 1695  | 4727     | 0           | 1695     | 4742     | 0     |
| Flt Permitted              | 0.166 |            |       | 0.113 |          |       | 0.108 |          |             | 0.122    |          |       |
| Satd. Flow (perm)          | 295   | 3390       | 1478  | 201   | 3390     | 1477  | 193   | 4727     | 0           | 217      | 4742     | 0     |
| Right Turn on Red          |       |            | Yes   |       |          | Yes   |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |       |            | 159   |       |          | 123   |       | 34       |             |          | 23       |       |
| Link Speed (k/h)           |       | 50         |       |       | 50       |       |       | 50       |             |          | 50       |       |
| Link Distance (m)          |       | 458.3      |       |       | 110.3    |       |       | 220.1    |             |          | 211.9    |       |
| Travel Time (s)            |       | 33.0       |       |       | 7.9      |       |       | 15.8     |             |          | 15.3     |       |
| Confl. Peds. (#/hr)        | 13    |            | 12    | 12    |          | 13    | 32    |          | 20          | 20       |          | 32    |
| Peak Hour Factor           | 0.95  | 0.95       | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Heavy Vehicles (%)         | 2%    | 2%         | 2%    | 2%    | 2%       | 2%    | 2%    | 2%       | 2%          | 2%       | 2%       | 2%    |
| Adj. Flow (vph)            | 173   | 817        | 174   | 369   | 947      | 183   | 279   | 1408     | 265         | 159      | 1102     | 166   |
| Shared Lane Traffic (%)    |       |            |       |       |          |       |       |          |             |          |          |       |
| Lane Group Flow (vph)      | 173   | 817        | 174   | 369   | 947      | 183   | 279   | 1673     | 0           | 159      | 1268     | 0     |
| Enter Blocked Intersection | No    | No         | No    | No    | No       | No    | No    | No       | No          | No       | No       | No    |
| Lane Alignment             | Left  | Left       | Right | Left  | Left     | Right | Left  | Left     | Right       | Left     | Left     | Right |
| Median Width(m)            |       | 4.7        |       |       | 3.7      | _     |       | 4.7      |             |          | 4.7      |       |
| Link Offset(m)             |       | 0.0        |       |       | 0.0      |       |       | 0.0      |             |          | 0.0      |       |
| Crosswalk Width(m)         |       | 1.6        |       |       | 1.6      |       |       | 1.6      |             |          | 1.6      |       |
| Two way Left Turn Lane     |       |            |       |       |          |       |       |          |             |          |          |       |
| Headway Factor             | 1.06  | 1.06       | 1.06  | 1.06  | 1.06     | 1.06  | 1.06  | 1.06     | 1.06        | 1.06     | 1.06     | 1.06  |
| Turning Speed (k/h)        | 24    |            | 14    | 24    |          | 14    | 24    |          | 14          | 24       |          | 14    |
| Number of Detectors        | 1     | 2          | 1     | 1     | 2        | 1     | 1     | 2        |             | 1        | 2        |       |
| Detector Template          | Left  | Thru       | Right | Left  | Thru     | Right | Left  | Thru     |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1   | 30.5       | 6.1   | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1   | 1.8        | 6.1   | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |             | 6.1      | 1.8      |       |
| Detector 1 Type            | CI+Ex | CI+Ex      | Cl+Ex | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | Cl+Ex    |             | CI+Ex    | CI+Ex    |       |
| Detector 1 Channel         |       |            |       |       |          |       |       |          |             |          |          |       |
| Detector 1 Extend (s)      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     |       | 28.7       |       |       | 28.7     |       |       | 28.7     |             |          | 28.7     |       |
| Detector 2 Size(m)         |       | 1.8        |       |       | 1.8      |       |       | 1.8      |             |          | 1.8      |       |
| Detector 2 Type            |       | Cl+Ex      |       |       | Cl+Ex    |       |       | Cl+Ex    |             |          | CI+Ex    |       |
| Detector 2 Channel         |       |            |       |       |          |       |       |          |             |          |          |       |
| Detector 2 Extend (s)      |       | 0.0        |       |       | 0.0      |       |       | 0.0      |             |          | 0.0      |       |

|                         | •     | -      | •     | •      | ←     | •     | •      | †      | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4   |
|-------------------------|-------|--------|-------|--------|-------|-------|--------|--------|----------|-------------|----------|-----|
| Lane Group              | EBL   | EBT    | EBR   | WBL    | WBT   | WBR   | NBL    | NBT    | NBR      | SBL         | SBT      | SBR |
| Turn Type               | pm+pt | NA     | Perm  | pm+pt  | NA    | Perm  | pm+pt  | NA     |          | pm+pt       | NA       |     |
| Protected Phases        | 7     | 4      |       | 3      | 8     |       | 5      | 2      |          | 1           | 6        |     |
| Permitted Phases        | 4     |        | 4     | 8      |       | 8     | 2      |        |          | 6           |          |     |
| Detector Phase          | 7     | 4      | 4     | 3      | 8     | 8     | 5      | 2      |          | 1           | 6        |     |
| Switch Phase            |       |        |       |        |       |       |        |        |          |             |          |     |
| Minimum Initial (s)     | 7.0   | 10.0   | 10.0  | 7.0    | 10.0  | 10.0  | 7.0    | 15.0   |          | 7.0         | 15.0     |     |
| Minimum Split (s)       | 11.0  | 36.5   | 36.5  | 11.0   | 36.5  | 36.5  | 11.0   | 33.5   |          | 12.0        | 33.5     |     |
| Total Split (s)         | 17.2  | 36.8   | 36.8  | 26.2   | 45.8  | 45.8  | 20.0   | 45.0   |          | 12.0        | 37.0     |     |
| Total Split (%)         | 14.3% | 30.7%  | 30.7% | 21.8%  | 38.2% | 38.2% | 16.7%  | 37.5%  |          | 10.0%       | 30.8%    |     |
| Maximum Green (s)       | 13.2  | 32.3   | 32.3  | 22.2   | 41.3  | 41.3  | 16.0   | 40.5   |          | 8.0         | 32.5     |     |
| Yellow Time (s)         | 3.0   | 3.5    | 3.5   | 3.0    | 3.5   | 3.5   | 3.0    | 3.5    |          | 3.0         | 3.5      |     |
| All-Red Time (s)        | 1.0   | 1.0    | 1.0   | 1.0    | 1.0   | 1.0   | 1.0    | 1.0    |          | 1.0         | 1.0      |     |
| Lost Time Adjust (s)    | 0.0   | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.0    | 0.0    |          | 0.0         | 0.0      |     |
| Total Lost Time (s)     | 4.0   | 4.5    | 4.5   | 4.0    | 4.5   | 4.5   | 4.0    | 4.5    |          | 4.0         | 4.5      |     |
| Lead/Lag                | Lead  | Lag    | Lag   | Lead   | Lag   | Lag   | Lead   | Lag    |          | Lead        | Lag      |     |
| Lead-Lag Optimize?      | Yes   | Yes    | Yes   | Yes    | Yes   | Yes   | Yes    | Yes    |          | Yes         | Yes      |     |
| Vehicle Extension (s)   | 2.0   | 2.0    | 2.0   | 2.0    | 2.0   | 2.0   | 2.0    | 2.0    |          | 2.0         | 2.0      |     |
| Recall Mode             | None  | None   | None  | None   | None  | None  | None   | C-Max  |          | None        | C-Max    |     |
| Walk Time (s)           |       | 10.0   | 10.0  |        | 10.0  | 10.0  |        | 10.0   |          |             | 10.0     |     |
| Flash Dont Walk (s)     |       | 22.0   | 22.0  |        | 22.0  | 22.0  |        | 19.0   |          |             | 19.0     |     |
| Pedestrian Calls (#/hr) |       | 10     | 10    |        | 10    | 10    |        | 10     |          |             | 20       |     |
| Act Effct Green (s)     | 43.1  | 31.4   | 31.4  | 58.1   | 42.5  | 42.5  | 53.9   | 40.9   |          | 41.9        | 33.0     |     |
| Actuated g/C Ratio      | 0.36  | 0.26   | 0.26  | 0.48   | 0.35  | 0.35  | 0.45   | 0.34   |          | 0.35        | 0.28     |     |
| v/c Ratio               | 0.73  | 0.92   | 0.35  | 0.99   | 0.79  | 0.30  | 0.96   | 1.02   |          | 0.89        | 0.96     |     |
| Control Delay           | 40.4  | 59.4   | 8.8   | 78.0   | 40.7  | 11.5  | 75.6   | 67.1   |          | 71.1        | 59.5     |     |
| Queue Delay             | 0.0   | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.0    | 0.0    |          | 0.0         | 0.0      |     |
| Total Delay             | 40.4  | 59.4   | 8.8   | 78.0   | 40.7  | 11.5  | 75.6   | 67.1   |          | 71.1        | 59.5     |     |
| LOS                     | D     | Е      | Α     | E      | D     | В     | E      | Е      |          | E           | Е        |     |
| Approach Delay          |       | 49.0   |       |        | 46.3  |       |        | 68.3   |          |             | 60.8     |     |
| Approach LOS            |       | D      |       |        | D     |       |        | Е      |          |             | Е        |     |
| Queue Length 50th (m)   | 22.4  | 97.7   | 2.6   | 71.5   | 103.7 | 9.4   | 51.0   | ~153.1 |          | 22.6        | 106.9    |     |
| Queue Length 95th (m)   | 41.5  | #132.0 | 19.6  | #132.5 | 132.0 | 26.8  | #105.0 | #183.2 |          | #63.7       | #138.7   |     |
| Internal Link Dist (m)  |       | 434.3  |       |        | 86.3  |       |        | 196.1  |          |             | 187.9    |     |
| Turn Bay Length (m)     | 30.0  |        | 50.0  | 30.0   |       | 30.0  | 90.0   |        |          | 75.0        |          |     |
| Base Capacity (vph)     | 265   | 912    | 514   | 374    | 1199  | 602   | 291    | 1634   |          | 179         | 1319     |     |
| Starvation Cap Reductn  | 0     | 0      | 0     | 0      | 0     | 0     | 0      | 0      |          | 0           | 0        |     |
| Spillback Cap Reductn   | 0     | 0      | 0     | 0      | 0     | 0     | 0      | 0      |          | 0           | 0        |     |
| Storage Cap Reductn     | 0     | 0      | 0     | 0      | 0     | 0     | 0      | 0      |          | 0           | 0        |     |
| Reduced v/c Ratio       | 0.65  | 0.90   | 0.34  | 0.99   | 0.79  | 0.30  | 0.96   | 1.02   |          | 0.89        | 0.96     |     |

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

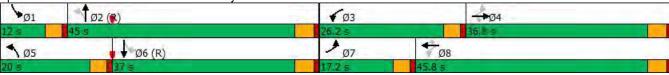
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 115

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.02

Intersection Signal Delay: 57.4 Intersection LOS: E
Intersection Capacity Utilization 101.0% ICU Level of Service G


05/16/2019 Synchro 10 Report WSP Page 2

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
   Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



05/16/2019 Synchro 10 Report WSP Page 3

|                            | ٠       | <b>→</b>   | •     | •       | +          | •     | •       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | - ✓   |
|----------------------------|---------|------------|-------|---------|------------|-------|---------|----------|-------------|----------|----------|-------|
| Lane Group                 | EBL     | EBT        | EBR   | WBL     | WBT        | WBR   | NBL     | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | ¥       | <b>↑</b> Ъ |       | ሻ       | <b>↑</b> Ъ |       |         | 4        |             |          | 4        |       |
| Traffic Volume (vph)       | 31      | 1122       | 10    | 8       | 1143       | 23    | 103     | 0        | 23          | 5        | 0        | 65    |
| Future Volume (vph)        | 31      | 1122       | 10    | 8       | 1143       | 23    | 103     | 0        | 23          | 5        | 0        | 65    |
| Ideal Flow (vphpl)         | 1800    | 1800       | 1800  | 1800    | 1800       | 1800  | 1800    | 1800     | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 30.0    |            | 0.0   | 30.0    |            | 0.0   | 0.0     |          | 0.0         | 0.0      |          | 0.0   |
| Storage Lanes              | 1       |            | 0     | 1       |            | 0     | 0       |          | 0           | 0        |          | 0     |
| Taper Length (m)           | 30.0    |            |       | 30.0    |            |       | 30.0    |          |             | 30.0     |          |       |
| Lane Util. Factor          | 1.00    | 0.95       | 0.95  | 1.00    | 0.95       | 0.95  | 1.00    | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Frt                        |         | 0.999      |       |         | 0.997      |       |         | 0.975    |             |          | 0.874    |       |
| Flt Protected              | 0.950   |            |       | 0.950   |            |       |         | 0.961    |             |          | 0.997    |       |
| Satd. Flow (prot)          | 1679    | 3102       | 0     | 1679    | 3096       | 0     | 0       | 1656     | 0           | 0        | 1309     | 0     |
| Flt Permitted              | 0.193   |            |       | 0.202   |            |       |         | 0.776    |             |          | 0.981    |       |
| Satd. Flow (perm)          | 341     | 3102       | 0     | 357     | 3096       | 0     | 0       | 1337     | 0           | 0        | 1288     | 0     |
| Right Turn on Red          |         |            | Yes   |         |            | Yes   |         |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |         | 2          |       |         | 4          |       |         | 20       |             |          | 60       |       |
| Link Speed (k/h)           |         | 50         |       |         | 50         |       |         | 50       |             |          | 50       |       |
| Link Distance (m)          |         | 114.1      |       |         | 103.2      |       |         | 203.1    |             |          | 205.8    |       |
| Travel Time (s)            |         | 8.2        |       |         | 7.4        |       |         | 14.6     |             |          | 14.8     |       |
| Peak Hour Factor           | 0.95    | 0.95       | 0.95  | 0.95    | 0.95       | 0.95  | 0.95    | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Parking (#/hr)             |         | 10         |       |         | 10         |       |         |          |             |          | 10       |       |
| Adj. Flow (vph)            | 33      | 1181       | 11    | 8       | 1203       | 24    | 108     | 0        | 24          | 5        | 0        | 68    |
| Shared Lane Traffic (%)    |         |            |       |         |            |       |         |          |             |          |          |       |
| Lane Group Flow (vph)      | 33      | 1192       | 0     | 8       | 1227       | 0     | 0       | 132      | 0           | 0        | 73       | 0     |
| Enter Blocked Intersection | No      | No         | No    | No      | No         | No    | No      | No       | No          | No       | No       | No    |
| Lane Alignment             | Left    | Left       | Right | Left    | Left       | Right | Left    | Left     | Right       | Left     | Left     | Right |
| Median Width(m)            |         | 3.7        | 1     |         | 3.7        |       |         | 0.0      |             |          | 0.0      |       |
| Link Offset(m)             |         | 0.0        |       |         | 0.0        |       |         | 0.0      |             |          | 0.0      |       |
| Crosswalk Width(m)         |         | 1.6        |       |         | 1.6        |       |         | 1.6      |             |          | 1.6      |       |
| Two way Left Turn Lane     |         |            |       |         |            |       |         |          |             |          |          |       |
| Headway Factor             | 1.06    | 1.17       | 1.06  | 1.06    | 1.17       | 1.06  | 1.06    | 1.06     | 1.06        | 1.06     | 1.30     | 1.06  |
| Turning Speed (k/h)        | 24      |            | 14    | 24      |            | 14    | 24      |          | 14          | 24       |          | 14    |
| Number of Detectors        | 1       | 2          |       | 1       | 2          |       | 1       | 2        |             | 1        | 2        |       |
| Detector Template          | Left    | Thru       |       | Left    | Thru       |       | Left    | Thru     |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1     | 30.5       |       | 6.1     | 30.5       |       | 6.1     | 30.5     |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1     | 1.8        |       | 6.1     | 1.8        |       | 6.1     | 1.8      |             | 6.1      | 1.8      |       |
| Detector 1 Type            | CI+Ex   | CI+Ex      |       | CI+Ex   | CI+Ex      |       | CI+Ex   | CI+Ex    |             | CI+Ex    | CI+Ex    |       |
| Detector 1 Channel         | OI - EX | OI LX      |       | OI - EX | OI - EX    |       | OI LX   | OI LX    |             | OI LX    | OI LX    |       |
| Detector 1 Extend (s)      | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     | 0.0     | 28.7       |       | 0.0     | 28.7       |       | 0.0     | 28.7     |             | 0.0      | 28.7     |       |
| Detector 2 Size(m)         |         | 1.8        |       |         | 1.8        |       |         | 1.8      |             |          | 1.8      |       |
| Detector 2 Type            |         | Cl+Ex      |       |         | Cl+Ex      |       |         | CI+Ex    |             |          | CI+Ex    |       |
| Detector 2 Channel         |         | O1 · LX    |       |         | OI - LA    |       |         | OI - LX  |             |          | OI · LX  |       |
| Detector 2 Extend (s)      |         | 0.0        |       |         | 0.0        |       |         | 0.0      |             |          | 0.0      |       |
| Turn Type                  | Perm    | NA         |       | Perm    | NA         |       | Perm    | NA       |             | Perm     | NA       |       |
| Protected Phases           | i Gilli | 6          |       | i Cilli | 2          |       | I GIIII | 3        |             | I GIIII  | 8        |       |
| i Totolica i Hases         |         | U          |       |         | ۷          |       |         | J        |             |          | O        |       |

|                         | ٦     | <b>→</b> | •   | •     | -     | •   | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 1   |
|-------------------------|-------|----------|-----|-------|-------|-----|-------|----------|-------------|-------------|-------|-----|
| Lane Group              | EBL   | EBT      | EBR | WBL   | WBT   | WBR | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |          |     | 2     |       |     | 3     |          |             | 8           |       |     |
| Detector Phase          | 6     | 6        |     | 2     | 2     |     | 3     | 3        |             | 8           | 8     |     |
| Switch Phase            |       |          |     |       |       |     |       |          |             |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0     |     | 10.0  | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Minimum Split (s)       | 25.5  | 25.5     |     | 25.5  | 25.5  |     | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (s)         | 49.0  | 49.0     |     | 49.0  | 49.0  |     | 31.0  | 31.0     |             | 31.0        | 31.0  |     |
| Total Split (%)         | 61.3% | 61.3%    |     | 61.3% | 61.3% |     | 38.8% | 38.8%    |             | 38.8%       | 38.8% |     |
| Maximum Green (s)       | 44.5  | 44.5     |     | 44.5  | 44.5  |     | 26.5  | 26.5     |             | 26.5        | 26.5  |     |
| Yellow Time (s)         | 3.5   | 3.5      |     | 3.5   | 3.5   |     | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0      |     | 1.0   | 1.0   |     | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5      |     | 4.5   | 4.5   |     |       | 4.5      |             |             | 4.5   |     |
| Lead/Lag                |       |          |     |       |       |     |       |          |             |             |       |     |
| Lead-Lag Optimize?      |       |          |     |       |       |     |       |          |             |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0      |     | 2.0   | 2.0   |     | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min    |     | C-Min | C-Min |     | None  | None     |             | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0     |     | 10.0  | 10.0  |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0      |     | 8.0   | 8.0   |     | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20       |     | 20    | 20    |     | 20    | 20       |             | 20          | 20    |     |
| Act Effct Green (s)     | 58.1  | 58.1     |     | 58.1  | 58.1  |     |       | 16.7     |             |             | 16.7  |     |
| Actuated g/C Ratio      | 0.73  | 0.73     |     | 0.73  | 0.73  |     |       | 0.21     |             |             | 0.21  |     |
| v/c Ratio               | 0.13  | 0.53     |     | 0.03  | 0.55  |     |       | 0.45     |             |             | 0.23  |     |
| Control Delay           | 9.0   | 9.0      |     | 7.8   | 9.2   |     |       | 26.1     |             |             | 9.6   |     |
| Queue Delay             | 0.0   | 0.0      |     | 0.0   | 0.0   |     |       | 0.0      |             |             | 0.0   |     |
| Total Delay             | 9.0   | 9.0      |     | 7.8   | 9.2   |     |       | 26.1     |             |             | 9.6   |     |
| LOS                     | Α     | Α        |     | Α     | Α     |     |       | С        |             |             | Α     |     |
| Approach Delay          |       | 9.0      |     |       | 9.2   |     |       | 26.1     |             |             | 9.6   |     |
| Approach LOS            |       | Α        |     |       | Α     |     |       | С        |             |             | Α     |     |
| Queue Length 50th (m)   | 1.2   | 31.5     |     | 0.3   | 33.1  |     |       | 16.1     |             |             | 1.7   |     |
| Queue Length 95th (m)   | 7.1   | 83.8     |     | 2.4   | 88.0  |     |       | 25.9     |             |             | 9.8   |     |
| Internal Link Dist (m)  |       | 90.1     |     |       | 79.2  |     |       | 179.1    |             |             | 181.8 |     |
| Turn Bay Length (m)     | 30.0  |          |     | 30.0  |       |     |       |          |             |             |       |     |
| Base Capacity (vph)     | 247   | 2251     |     | 259   | 2248  |     |       | 456      |             |             | 466   |     |
| Starvation Cap Reductn  | 0     | 0        |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0        |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Storage Cap Reductn     | 0     | 0        |     | 0     | 0     |     |       | 0        |             |             | 0     |     |
| Reduced v/c Ratio       | 0.13  | 0.53     |     | 0.03  | 0.55  |     |       | 0.29     |             |             | 0.16  |     |
|                         |       |          |     |       |       |     |       |          |             |             |       |     |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay: 9.9 Intersection LOS: A Intersection Capacity Utilization 55.8% ICU Level of Service B

Analysis Period (min) 15



|                            | ۶       | <b>→</b>   | •     | •       | +          | 4     | •       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | - ✓      |
|----------------------------|---------|------------|-------|---------|------------|-------|---------|----------|-------------|----------|----------|----------|
| Lane Group                 | EBL     | EBT        | EBR   | WBL     | WBT        | WBR   | NBL     | NBT      | NBR         | SBL      | SBT      | SBR      |
| Lane Configurations        | ħ       | <b>↑</b> Ъ |       | ሻ       | <b>↑</b> Ъ |       |         | 4        |             |          | 4        |          |
| Traffic Volume (vph)       | 47      | 1031       | 32    | 81      | 1048       | 15    | 33      | 0        | 56          | 18       | 0        | 49       |
| Future Volume (vph)        | 47      | 1031       | 32    | 81      | 1048       | 15    | 33      | 0        | 56          | 18       | 0        | 49       |
| Ideal Flow (vphpl)         | 1800    | 1800       | 1800  | 1800    | 1800       | 1800  | 1800    | 1800     | 1800        | 1800     | 1800     | 1800     |
| Storage Length (m)         | 40.0    |            | 0.0   | 40.0    |            | 0.0   | 0.0     |          | 0.0         | 0.0      |          | 0.0      |
| Storage Lanes              | 1       |            | 0     | 1       |            | 0     | 0       |          | 0           | 0        |          | 0        |
| Taper Length (m)           | 30.0    |            |       | 30.0    |            |       | 30.0    |          |             | 30.0     |          |          |
| Lane Util. Factor          | 1.00    | 0.95       | 0.95  | 1.00    | 0.95       | 0.95  | 1.00    | 1.00     | 1.00        | 1.00     | 1.00     | 1.00     |
| Frt                        |         | 0.995      |       |         | 0.998      |       |         | 0.915    |             |          | 0.901    |          |
| Flt Protected              | 0.950   |            |       | 0.950   |            |       |         | 0.982    |             |          | 0.987    |          |
| Satd. Flow (prot)          | 1679    | 3090       | 0     | 1679    | 3099       | 0     | 0       | 1588     | 0           | 0        | 1571     | 0        |
| FIt Permitted              | 0.224   |            |       | 0.224   |            |       |         | 0.866    |             |          | 0.908    |          |
| Satd. Flow (perm)          | 396     | 3090       | 0     | 396     | 3099       | 0     | 0       | 1400     | 0           | 0        | 1446     | 0        |
| Right Turn on Red          |         |            | Yes   |         |            | Yes   |         |          | Yes         |          |          | Yes      |
| Satd. Flow (RTOR)          |         | 6          |       |         | 3          |       |         | 46       |             |          | 44       |          |
| Link Speed (k/h)           |         | 50         |       |         | 50         |       |         | 48       |             |          | 50       |          |
| Link Distance (m)          |         | 102.4      |       |         | 103.2      |       |         | 190.7    |             |          | 228.4    |          |
| Travel Time (s)            |         | 7.4        |       |         | 7.4        |       |         | 14.3     |             |          | 16.4     |          |
| Peak Hour Factor           | 0.95    | 0.95       | 0.95  | 0.95    | 0.95       | 0.95  | 0.95    | 0.95     | 0.95        | 0.95     | 0.95     | 0.95     |
| Parking (#/hr)             |         | 10         |       |         | 10         |       |         |          |             | 10       |          |          |
| Adj. Flow (vph)            | 49      | 1085       | 34    | 85      | 1103       | 16    | 35      | 0        | 59          | 19       | 0        | 52       |
| Shared Lane Traffic (%)    |         |            |       |         |            |       |         |          |             |          |          | <u> </u> |
| Lane Group Flow (vph)      | 49      | 1119       | 0     | 85      | 1119       | 0     | 0       | 94       | 0           | 0        | 71       | 0        |
| Enter Blocked Intersection | No      | No         | No    | No      | No         | No    | No      | No       | No          | No       | No       | No       |
| Lane Alignment             | Left    | Left       | Right | Left    | Left       | Right | Left    | Left     | Right       | Left     | Left     | Right    |
| Median Width(m)            |         | 3.7        | 1     |         | 3.7        |       |         | 0.0      |             |          | 0.0      | 1 113111 |
| Link Offset(m)             |         | 0.0        |       |         | 0.0        |       |         | 0.0      |             |          | 0.0      |          |
| Crosswalk Width(m)         |         | 1.6        |       |         | 1.6        |       |         | 1.6      |             |          | 1.6      |          |
| Two way Left Turn Lane     |         |            |       |         |            |       |         |          |             |          |          |          |
| Headway Factor             | 1.06    | 1.17       | 1.06  | 1.06    | 1.17       | 1.06  | 1.06    | 1.06     | 1.06        | 1.06     | 1.06     | 1.06     |
| Turning Speed (k/h)        | 24      |            | 14    | 24      |            | 14    | 24      |          | 14          | 24       |          | 14       |
| Number of Detectors        | 1       | 2          |       | 1       | 2          |       | 1       | 2        |             | 1        | 2        |          |
| Detector Template          | Left    | Thru       |       | Left    | Thru       |       | Left    | Thru     |             | Left     | Thru     |          |
| Leading Detector (m)       | 6.1     | 30.5       |       | 6.1     | 30.5       |       | 6.1     | 30.5     |             | 6.1      | 30.5     |          |
| Trailing Detector (m)      | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |          |
| Detector 1 Position(m)     | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |          |
| Detector 1 Size(m)         | 6.1     | 1.8        |       | 6.1     | 1.8        |       | 6.1     | 1.8      |             | 6.1      | 1.8      |          |
| Detector 1 Type            | CI+Ex   | CI+Ex      |       | CI+Ex   | CI+Ex      |       | CI+Ex   | Cl+Ex    |             | CI+Ex    | CI+Ex    |          |
| Detector 1 Channel         | OI - EX | OI LX      |       | OI - EX | OI - EX    |       | OI ZX   | OI LX    |             | OI LX    | OI LX    |          |
| Detector 1 Extend (s)      | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |          |
| Detector 1 Queue (s)       | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |          |
| Detector 1 Delay (s)       | 0.0     | 0.0        |       | 0.0     | 0.0        |       | 0.0     | 0.0      |             | 0.0      | 0.0      |          |
| Detector 2 Position(m)     | - 0.0   | 28.7       |       | 0.0     | 28.7       |       | 0.0     | 28.7     |             | 0.0      | 28.7     |          |
| Detector 2 Size(m)         |         | 1.8        |       |         | 1.8        |       |         | 1.8      |             |          | 1.8      |          |
| Detector 2 Type            |         | CI+Ex      |       |         | Cl+Ex      |       |         | CI+Ex    |             |          | CI+Ex    |          |
| Detector 2 Channel         |         | OI · LA    |       |         | JI. LA     |       |         | JI- LX   |             |          | JI- LX   |          |
| Detector 2 Extend (s)      |         | 0.0        |       |         | 0.0        |       |         | 0.0      |             |          | 0.0      |          |
| Turn Type                  | Perm    | NA         |       | Perm    | NA         |       | Perm    | NA       |             | Perm     | NA       |          |
| Protected Phases           | 1 61111 | 6          |       | 1 01111 | 2          |       | 1 01111 | 3        |             | 1 01111  | 8        |          |
| 1.0000041110303            |         | J          |       |         |            |       |         | 3        |             |          | J        |          |

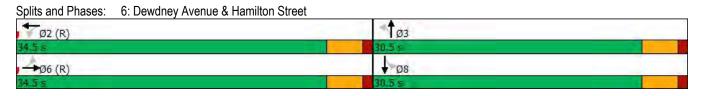
|                         | ۶     | -     | •   | •     | <b>←</b> | •   | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 1   |
|-------------------------|-------|-------|-----|-------|----------|-----|-------|----------|-------------|-------------|-------|-----|
| Lane Group              | EBL   | EBT   | EBR | WBL   | WBT      | WBR | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |       |     | 2     |          |     | 3     |          |             | 8           |       |     |
| Detector Phase          | 6     | 6     |     | 2     | 2        |     | 3     | 3        |             | 8           | 8     |     |
| Switch Phase            |       |       |     |       |          |     |       |          |             |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0  |     | 10.0  | 10.0     |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Minimum Split (s)       | 24.5  | 24.5  |     | 24.5  | 24.5     |     | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (s)         | 34.5  | 34.5  |     | 34.5  | 34.5     |     | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (%)         | 53.1% | 53.1% |     | 53.1% | 53.1%    |     | 46.9% | 46.9%    |             | 46.9%       | 46.9% |     |
| Maximum Green (s)       | 30.0  | 30.0  |     | 30.0  | 30.0     |     | 26.0  | 26.0     |             | 26.0        | 26.0  |     |
| Yellow Time (s)         | 3.5   | 3.5   |     | 3.5   | 3.5      |     | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0   |     | 1.0   | 1.0      |     | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0   |     | 0.0   | 0.0      |     |       | 0.0      |             |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5   |     | 4.5   | 4.5      |     |       | 4.5      |             |             | 4.5   |     |
| Lead/Lag                |       |       |     |       |          |     |       |          |             |             |       |     |
| Lead-Lag Optimize?      |       |       |     |       |          |     |       |          |             |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0   |     | 2.0   | 2.0      |     | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min |     | C-Min | C-Min    |     | None  | None     |             | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0  |     | 10.0  | 10.0     |     | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0   |     | 8.0   | 8.0      |     | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20    |     | 20    | 20       |     | 20    | 20       |             | 20          | 20    |     |
| Act Effct Green (s)     | 46.6  | 46.6  |     | 46.6  | 46.6     |     |       | 13.2     |             |             | 13.2  |     |
| Actuated g/C Ratio      | 0.72  | 0.72  |     | 0.72  | 0.72     |     |       | 0.20     |             |             | 0.20  |     |
| v/c Ratio               | 0.17  | 0.50  |     | 0.30  | 0.50     |     |       | 0.29     |             |             | 0.22  |     |
| Control Delay           | 9.0   | 8.0   |     | 11.6  | 8.0      |     |       | 13.7     |             |             | 11.0  |     |
| Queue Delay             | 0.0   | 0.0   |     | 0.0   | 0.0      |     |       | 0.0      |             |             | 0.0   |     |
| Total Delay             | 9.0   | 8.0   |     | 11.6  | 8.0      |     |       | 13.7     |             |             | 11.0  |     |
| LOS                     | Α     | Α     |     | В     | Α        |     |       | В        |             |             | В     |     |
| Approach Delay          |       | 8.0   |     |       | 8.2      |     |       | 13.7     |             |             | 11.0  |     |
| Approach LOS            |       | Α     |     |       | Α        |     |       | В        |             |             | В     |     |
| Queue Length 50th (m)   | 1.5   | 25.1  |     | 3.0   | 25.2     |     |       | 5.1      |             |             | 2.9   |     |
| Queue Length 95th (m)   | 10.8  | 79.4  |     | 19.8  | 79.6     |     |       | 11.4     |             |             | 8.6   |     |
| Internal Link Dist (m)  |       | 78.4  |     |       | 79.2     |     |       | 166.7    |             |             | 204.4 |     |
| Turn Bay Length (m)     | 40.0  |       |     | 40.0  |          |     |       |          |             |             |       |     |
| Base Capacity (vph)     | 284   | 2217  |     | 284   | 2222     |     |       | 587      |             |             | 604   |     |
| Starvation Cap Reductn  | 0     | 0     |     | 0     | 0        |     |       | 0        |             |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0     |     | 0     | 0        |     |       | 0        |             |             | 0     |     |
| Storage Cap Reductn     | 0     | 0     |     | 0     | 0        |     |       | 0        |             |             | 0     |     |
| Reduced v/c Ratio       | 0.17  | 0.50  |     | 0.30  | 0.50     |     |       | 0.16     |             |             | 0.12  |     |

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green


Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.50

Intersection Signal Delay: 8.4 Intersection LOS: A Intersection Capacity Utilization 59.2% ICU Level of Service B

Analysis Period (min) 15



|                            | ٠     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | - ✓   |
|----------------------------|-------|----------|-------|-------|----------|-------|-------|------------|-------------|----------|------------|-------|
| Lane Group                 | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT        | NBR         | SBL      | SBT        | SBR   |
| Lane Configurations        | ሻ     | <b>†</b> | 7     | ሻ     | f)       |       | ሻ     | <b>∱</b> ∱ |             | ሻ        | <b>†</b> † | 7     |
| Traffic Volume (vph)       | 392   | 115      | 598   | 26    | 111      | 22    | 678   | 1567       | 21          | 16       | 1084       | 314   |
| Future Volume (vph)        | 392   | 115      | 598   | 26    | 111      | 22    | 678   | 1567       | 21          | 16       | 1084       | 314   |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800  | 1800  | 1800     | 1800  | 1800  | 1800       | 1800        | 1800     | 1800       | 1800  |
| Storage Length (m)         | 40.0  |          | 0.0   | 10.0  |          | 0.0   | 35.0  |            | 60.0        | 45.0     |            | 0.0   |
| Storage Lanes              | 1     |          | 1     | 1     |          | 0     | 1     |            | 0           | 1        |            | 1     |
| Taper Length (m)           | 23.0  |          |       | 10.0  |          |       | 25.0  |            |             | 35.0     |            |       |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 0.95       | 0.95        | 1.00     | 0.95       | 1.00  |
| Ped Bike Factor            | 1.00  |          |       |       | 1.00     |       |       |            |             |          |            | 0.92  |
| Frt                        |       |          | 0.850 |       | 0.975    |       |       | 0.998      |             |          |            | 0.850 |
| Flt Protected              | 0.950 |          |       | 0.950 |          |       | 0.950 |            |             | 0.950    |            |       |
| Satd. Flow (prot)          | 1695  | 1784     | 1517  | 1695  | 1713     | 0     | 1695  | 3383       | 0           | 1695     | 3390       | 1517  |
| Flt Permitted              | 0.478 |          |       | 0.679 |          |       | 0.107 |            |             | 0.146    |            |       |
| Satd. Flow (perm)          | 850   | 1784     | 1517  | 1212  | 1713     | 0     | 191   | 3383       | 0           | 261      | 3390       | 1394  |
| Right Turn on Red          |       |          | Yes   |       |          | Yes   |       |            | Yes         |          |            | Yes   |
| Satd. Flow (RTOR)          |       |          | 541   |       | 8        |       |       | 2          |             |          |            | 257   |
| Link Speed (k/h)           |       | 50       |       |       | 50       |       |       | 50         |             |          | 50         |       |
| Link Distance (m)          |       | 105.7    |       |       | 332.1    |       |       | 329.7      |             |          | 294.1      |       |
| Travel Time (s)            |       | 7.6      |       |       | 23.9     |       |       | 23.7       |             |          | 21.2       |       |
| Confl. Peds. (#/hr)        | 4     |          |       |       |          | 4     | 51    |            |             |          |            | 51    |
| Peak Hour Factor           | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95       | 0.95        | 0.95     | 0.95       | 0.95  |
| Heavy Vehicles (%)         | 2%    | 2%       | 2%    | 2%    | 3%       | 5%    | 2%    | 2%         | 2%          | 2%       | 2%         | 2%    |
| Adj. Flow (vph)            | 413   | 121      | 629   | 27    | 117      | 23    | 714   | 1649       | 22          | 17       | 1141       | 331   |
| Shared Lane Traffic (%)    |       |          |       |       |          |       |       |            |             |          |            |       |
| Lane Group Flow (vph)      | 413   | 121      | 629   | 27    | 140      | 0     | 714   | 1671       | 0           | 17       | 1141       | 331   |
| Enter Blocked Intersection | No    | No       | No    | No    | No       | No    | No    | No         | No          | No       | No         | No    |
| Lane Alignment             | Left  | Left     | Right | Left  | Left     | Right | Left  | Left       | Right       | Left     | Left       | Right |
| Median Width(m)            |       | 3.7      |       |       | 3.7      |       |       | 4.7        |             |          | 4.7        |       |
| Link Offset(m)             |       | 0.0      |       |       | 1.8      |       |       | 0.0        |             |          | 0.0        |       |
| Crosswalk Width(m)         |       | 1.6      |       |       | 1.6      |       |       | 1.6        |             |          | 1.6        |       |
| Two way Left Turn Lane     |       |          |       |       |          |       |       |            |             |          |            |       |
| Headway Factor             | 1.06  | 1.06     | 1.06  | 1.06  | 1.06     | 1.06  | 1.06  | 1.06       | 1.06        | 1.06     | 1.06       | 1.06  |
| Turning Speed (k/h)        | 24    |          | 14    | 24    |          | 14    | 24    |            | 14          | 24       |            | 14    |
| Number of Detectors        | 1     | 2        | 1     | 1     | 2        |       | 1     | 2          |             | 1        | 2          | 1     |
| Detector Template          | Left  | Thru     | Right | Left  | Thru     |       | Left  | Thru       |             | Left     | Thru       | Right |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |       | 6.1   | 30.5       |             | 6.1      | 30.5       | 6.1   |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0   |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0   |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |       | 6.1   | 1.8        |             | 6.1      | 1.8        | 6.1   |
| Detector 1 Type            | CI+Ex | CI+Ex    | Cl+Ex | CI+Ex | CI+Ex    |       | CI+Ex | Cl+Ex      |             | CI+Ex    | CI+Ex      | CI+Ex |
| Detector 1 Channel         |       |          |       |       |          |       |       |            |             |          |            |       |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0   |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0   |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0   |
| Detector 2 Position(m)     |       | 28.7     |       |       | 28.7     |       |       | 28.7       |             |          | 28.7       |       |
| Detector 2 Size(m)         |       | 1.8      |       |       | 1.8      |       |       | 1.8        |             |          | 1.8        |       |
| Detector 2 Type            |       | Cl+Ex    |       |       | CI+Ex    |       |       | Cl+Ex      |             |          | CI+Ex      |       |
| Detector 2 Channel         |       |          |       |       |          |       |       |            |             |          |            |       |
| Detector 2 Extend (s)      |       | 0.0      |       |       | 0.0      |       |       | 0.0        |             |          | 0.0        |       |

|                         | ٦      | <b>→</b> | •     | •     | •     | •   | 4      | †     | /   | <b>&gt;</b> | ţ      | 4     |
|-------------------------|--------|----------|-------|-------|-------|-----|--------|-------|-----|-------------|--------|-------|
| Lane Group              | EBL    | EBT      | EBR   | WBL   | WBT   | WBR | NBL    | NBT   | NBR | SBL         | SBT    | SBR   |
| Turn Type               | pm+pt  | NA       | Perm  | pm+pt | NA    |     | pm+pt  | NA    |     | Perm        | NA     | Perm  |
| Protected Phases        | 7      | 4        |       | 3     | 8     |     | 5      | 2     |     |             | 6      |       |
| Permitted Phases        | 4      |          | 4     | 8     |       |     | 2      |       |     | 6           |        | 6     |
| Detector Phase          | 7      | 4        | 4     | 3     | 8     |     | 5      | 2     |     | 6           | 6      | 6     |
| Switch Phase            |        |          |       |       |       |     |        |       |     |             |        |       |
| Minimum Initial (s)     | 7.0    | 10.0     | 10.0  | 7.0   | 10.0  |     | 7.0    | 15.0  |     | 15.0        | 15.0   | 15.0  |
| Minimum Split (s)       | 11.0   | 14.5     | 14.5  | 11.0  | 36.5  |     | 11.0   | 19.5  |     | 30.5        | 30.5   | 30.5  |
| Total Split (s)         | 11.0   | 36.5     | 36.5  | 11.0  | 36.5  |     | 33.0   | 72.5  |     | 39.5        | 39.5   | 39.5  |
| Total Split (%)         | 9.2%   | 30.4%    | 30.4% | 9.2%  | 30.4% |     | 27.5%  | 60.4% |     | 32.9%       | 32.9%  | 32.9% |
| Maximum Green (s)       | 7.0    | 32.0     | 32.0  | 7.0   | 32.0  |     | 29.0   | 68.0  |     | 35.0        | 35.0   | 35.0  |
| Yellow Time (s)         | 3.0    | 3.5      | 3.5   | 3.0   | 3.5   |     | 3.0    | 3.5   |     | 3.5         | 3.5    | 3.5   |
| All-Red Time (s)        | 1.0    | 1.0      | 1.0   | 1.0   | 1.0   |     | 1.0    | 1.0   |     | 1.0         | 1.0    | 1.0   |
| Lost Time Adjust (s)    | 0.0    | 0.0      | 0.0   | 0.0   | 0.0   |     | 0.0    | 0.0   |     | 0.0         | 0.0    | 0.0   |
| Total Lost Time (s)     | 4.0    | 4.5      | 4.5   | 4.0   | 4.5   |     | 4.0    | 4.5   |     | 4.5         | 4.5    | 4.5   |
| Lead/Lag                | Lead   | Lag      | Lag   | Lead  | Lag   |     | Lead   |       |     | Lag         | Lag    | Lag   |
| Lead-Lag Optimize?      | Yes    | Yes      | Yes   | Yes   | Yes   |     | Yes    |       |     | Yes         | Yes    | Yes   |
| Vehicle Extension (s)   | 2.0    | 2.0      | 2.0   | 2.0   | 2.0   |     | 2.0    | 2.0   |     | 2.0         | 2.0    | 2.0   |
| Recall Mode             | None   | None     | None  | None  | None  |     | None   | C-Max |     | C-Max       | C-Max  | C-Max |
| Walk Time (s)           |        |          |       |       | 10.0  |     |        |       |     | 10.0        | 10.0   | 10.0  |
| Flash Dont Walk (s)     |        |          |       |       | 22.0  |     |        |       |     | 16.0        | 16.0   | 16.0  |
| Pedestrian Calls (#/hr) |        |          |       |       | 4     |     |        |       |     | 25          | 25     | 25    |
| Act Effct Green (s)     | 28.2   | 23.5     | 23.5  | 26.6  | 19.1  |     | 81.4   | 80.9  |     | 35.0        | 35.0   | 35.0  |
| Actuated g/C Ratio      | 0.24   | 0.20     | 0.20  | 0.22  | 0.16  |     | 0.68   | 0.67  |     | 0.29        | 0.29   | 0.29  |
| v/c Ratio               | 1.66   | 0.35     | 0.86  | 0.09  | 0.50  |     | 1.09   | 0.73  |     | 0.22        | 1.15   | 0.56  |
| Control Delay           | 343.8  | 43.5     | 20.1  | 30.3  | 47.4  |     | 94.5   | 17.0  |     | 41.4        | 120.2  | 12.8  |
| Queue Delay             | 0.0    | 0.0      | 0.0   | 0.0   | 0.0   |     | 0.0    | 0.0   |     | 0.0         | 0.0    | 0.0   |
| Total Delay             | 343.8  | 43.5     | 20.1  | 30.3  | 47.4  |     | 94.5   | 17.0  |     | 41.4        | 120.2  | 12.8  |
| LOS                     | F      | D        | С     | С     | D     |     | F      | В     |     | D           | F      | В     |
| Approach Delay          |        | 137.5    |       |       | 44.6  |     |        | 40.2  |     |             | 95.4   |       |
| Approach LOS            |        | F        |       |       | D     |     |        | D     |     |             | F      |       |
| Queue Length 50th (m)   | ~148.8 | 26.8     | 19.3  | 5.0   | 29.5  |     | ~164.4 | 111.4 |     | 3.1         | ~166.7 | 13.1  |
| Queue Length 95th (m)   | #182.0 | 38.6     | 66.7  | 10.4  | 42.5  |     | #293.0 | 204.8 |     | 10.1        | #208.0 | 41.6  |
| Internal Link Dist (m)  |        | 81.7     |       |       | 308.1 |     |        | 305.7 |     |             | 270.1  |       |
| Turn Bay Length (m)     | 40.0   |          |       | 10.0  |       |     | 35.0   |       |     | 45.0        |        |       |
| Base Capacity (vph)     | 249    | 475      | 801   | 297   | 462   |     | 654    | 2280  |     | 76          | 988    | 588   |
| Starvation Cap Reductn  | 0      | 0        | 0     | 0     | 0     |     | 0      | 0     |     | 0           | 0      | 0     |
| Spillback Cap Reductn   | 0      | 0        | 0     | 0     | 0     |     | 0      | 0     |     | 0           | 0      | 0     |
| Storage Cap Reductn     | 0      | 0        | 0     | 0     | 0     |     | 0      | 0     |     | 0           | 0      | 0     |
| Reduced v/c Ratio       | 1.66   | 0.25     | 0.79  | 0.09  | 0.30  |     | 1.09   | 0.73  |     | 0.22        | 1.15   | 0.56  |

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

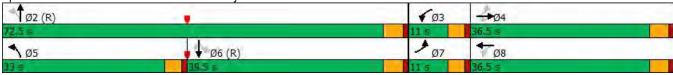
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.66

Intersection Signal Delay: 77.9 Intersection LOS: E
Intersection Capacity Utilization 119.0% ICU Level of Service H


05/16/2019 Synchro 10 Report WSP Page 11

### Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
   Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Intersection           |        |            |       |        |            |      |        |      |       |        |          |      |
|------------------------|--------|------------|-------|--------|------------|------|--------|------|-------|--------|----------|------|
| Int Delay, s/veh       | 3.5    |            |       |        |            |      |        |      |       |        |          |      |
| Movement               | EBL    | EBT        | EBR   | WBL    | WBT        | WBR  | NBL    | NBT  | NBR   | SBL    | SBT      | SBR  |
| Lane Configurations    | ሻ      | <b>↑</b> Դ |       | ኘ      | <b>†</b> ‡ | 1,51 | 1100   | 4    | 7     |        | <u>⊕</u> | 7    |
| Traffic Vol. veh/h     | 52     | 1098       | 29    | 22     | 1298       | 23   | 8      | 2    | 77    | 6      | 1        | 118  |
| Future Vol, veh/h      | 52     | 1098       | 29    | 22     | 1298       | 23   | 8      | 2    | 77    | 6      | 1        | 118  |
| Conflicting Peds, #/hr | 0      | 0          | 0     | 0      | 0          | 0    | 0      | 0    | 0     | 0      | 0        | 0    |
| Sign Control           | Free   | Free       | Free  | Free   | Free       | Free | Stop   | Stop | Stop  | Stop   | Stop     | Stop |
| RT Channelized         | -      | -          | None  | -      | -          | None | -      | -    | None  | -      | -        | None |
| Storage Length         | 200    | -          | -     | 250    | -          | -    | -      | -    | 200   | -      | -        | 200  |
| Veh in Median Storage, | # -    | 0          | -     | -      | 0          | -    | -      | 0    | -     | -      | 0        | -    |
| Grade, %               | -      | 0          | -     | -      | 0          | -    | -      | 0    | -     | -      | 0        | -    |
| Peak Hour Factor       | 95     | 95         | 95    | 95     | 95         | 95   | 95     | 95   | 95    | 95     | 95       | 95   |
| Heavy Vehicles, %      | 3      | 3          | 3     | 3      | 3          | 3    | 3      | 3    | 3     | 3      | 3        | 3    |
| Mvmt Flow              | 55     | 1156       | 31    | 23     | 1366       | 24   | 8      | 2    | 81    | 6      | 1        | 124  |
|                        |        |            |       |        |            |      |        |      |       |        |          |      |
| Major/Minor M          | lajor1 |            |       | Major2 |            | I    | Minor1 |      | _     | Minor2 |          |      |
| Conflicting Flow All   | 1390   | 0          | 0     | 1187   | 0          | 0    | 2012   | 2718 | 594   | 2113   | 2721     | 695  |
| Stage 1                | -      | -          | -     | -      | -          | -    | 1282   | 1282 | -     | 1424   | 1424     | -    |
| Stage 2                | -      | -          | -     | -      | _          | -    | 730    | 1436 | -     | 689    | 1297     | -    |
| Critical Hdwy          | 4.16   | -          | -     | 4.16   | -          | -    | 7.56   | 6.56 | 6.96  | 7.56   | 6.56     | 6.96 |
| Critical Hdwy Stg 1    | -      | -          | -     | -      | -          | -    | 6.56   | 5.56 | -     | 6.56   | 5.56     | -    |
| Critical Hdwy Stg 2    | -      | -          | -     | -      | -          | -    | 6.56   | 5.56 | -     | 6.56   | 5.56     | -    |
| Follow-up Hdwy         | 2.23   | -          | -     | 2.23   | -          | -    | 3.53   | 4.03 | 3.33  | 3.53   | 4.03     | 3.33 |
| Pot Cap-1 Maneuver     | 483    | -          | -     | 578    | -          | -    | 34     | 20   | 446   | 29     | 20       | 382  |
| Stage 1                | -      | -          | -     | -      | -          | -    | 173    | 232  | -     | 141    | 198      | -    |
| Stage 2                | -      | -          | -     | -      | -          | -    | 378    | 195  | -     | 400    | 228      | -    |
| Platoon blocked, %     |        | -          | -     |        | -          | -    |        |      |       |        |          |      |
| Mov Cap-1 Maneuver     | 483    | -          | -     | 578    | -          | -    | 19     | 17   | 446   | 19     | 17       | 382  |
| Mov Cap-2 Maneuver     | -      | -          | -     | -      | -          | -    | 19     | 17   | -     | 19     | 17       | -    |
| Stage 1                | -      | -          | -     | -      | -          | -    | 153    | 206  | -     | 125    | 190      | -    |
| Stage 2                | -      | -          | -     | -      | -          | -    | 244    | 187  | -     | 287    | 202      | -    |
|                        |        |            |       |        |            |      |        |      |       |        |          |      |
| Approach               | EB     |            |       | WB     |            |      | NB     |      |       | SB     |          |      |
| HCM Control Delay, s   | 0.6    |            |       | 0.2    |            |      | 51.5   |      |       | 33.8   |          |      |
| HCM LOS                |        |            |       |        |            |      | F      |      |       | D      |          |      |
|                        |        |            |       |        |            |      |        |      |       |        |          |      |
| Minor Lane/Major Mvmt  |        | NBLn11     | NBLn2 | EBL    | EBT        | EBR  | WBL    | WBT  | WBR S | SBLn1  | SBLn2    |      |
| Capacity (veh/h)       |        | 19         | 446   | 483    |            | -    | 578    |      | -     | 19     | 382      |      |
| HCM Lane V/C Ratio     |        |            | 0.182 |        | _          | _    | 0.04   | -    |       | 0.388  |          |      |
| HCM Control Delay (s)  | \$     | 333.5      | 14.9  | 13.4   | -          | -    | 11.5   | _    |       | 284.9  | 18.9     |      |
| HCM Lane LOS           | Ψ      | F          | В     | В      | _          | _    | В      | -    | _     | F      | C        |      |
| HCM 95th %tile Q(veh)  |        | 1.5        | 0.7   | 0.4    | _          | _    | 0.1    | _    | _     | 1.1    | 1.4      |      |
| 2 (1011)               |        |            |       |        |            |      |        |      |       |        |          |      |

| 1.1    |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL    | EBT                                                      | WBT                                                                    | WBR                                                                                                                  | SBL                   | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                        |                                                                                                                      | Y                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19     |                                                          |                                                                        | 17                                                                                                                   |                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                          |                                                                        |                                                                                                                      |                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                          |                                                                        |                                                                                                                      |                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          |                                                                        |                                                                                                                      |                       | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -      |                                                          |                                                                        |                                                                                                                      |                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _      | -                                                        | _                                                                      | -                                                                                                                    |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| # -    |                                                          | 0                                                                      | _                                                                                                                    |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          |                                                                        |                                                                                                                      |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          |                                                                        |                                                                                                                      |                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                          |                                                                        |                                                                                                                      |                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          |                                                                        |                                                                                                                      |                       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20     | 1223                                                     | 1301                                                                   | 10                                                                                                                   | U                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1ajor1 |                                                          | //ajor2                                                                | <u> </u>                                                                                                             | Minor2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1379   | 0                                                        | -                                                                      | 0                                                                                                                    | 2022                  | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -      | -                                                        | -                                                                      | -                                                                                                                    | 1370                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | -                                                        | -                                                                      | -                                                                                                                    | 652                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.16   | _                                                        | _                                                                      | -                                                                                                                    | 6.86                  | 6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _      | _                                                        | -                                                                      | -                                                                                                                    | 5.86                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -      | -                                                        | -                                                                      | -                                                                                                                    |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | -                                                        | -                                                                      | _                                                                                                                    |                       | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | _                                                        | _                                                                      | _                                                                                                                    |                       | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -      | _                                                        | _                                                                      | _                                                                                                                    |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _      | _                                                        | _                                                                      |                                                                                                                      |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | _                                                        | _                                                                      |                                                                                                                      | 710                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 488    | _                                                        | _                                                                      |                                                                                                                      | 44                    | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                          |                                                                        |                                                                                                                      |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          | _                                                                      |                                                                                                                      |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | •                                                        | -                                                                      |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _      | -                                                        | -                                                                      | -                                                                                                                    | 4/0                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EB     |                                                          | WB                                                                     |                                                                                                                      | SB                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1      |                                                          | 0                                                                      |                                                                                                                      | 28.7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                          | EBT                                                                    | WBT                                                                                                                  | WBR :                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 488                                                      | -                                                                      | -                                                                                                                    | -                     | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 0.041                                                    | -                                                                      | -                                                                                                                    | -                     | 0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 12.7                                                     | 0.8                                                                    | -                                                                                                                    | -                     | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                          |                                                                        |                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | B<br>0.1                                                 | Α                                                                      | -                                                                                                                    | -                     | D<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1      | 19 19 0 Free 95 3 20  lajor1 1379 - 4.16 - 2.23 488 EB 1 | EBL EBT  41 19 1162 0 0 Free Free - None 0 95 95 3 3 20 1223    lajor1 | EBL EBT WBT  4 1 162 1293 19 1162 1293 0 0 0 0 Free Free Free - None # - 0 0 95 95 95 3 3 3 3 20 1223 1361    lajor1 | EBL EBT WBT WBR    19 | EBL         EBT         WBT         WBR         SBL           41         11         Y           19         1162         1293         17         6           0         0         0         0         0         0           Free         Free         Free         Free         Stop         -         0         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         95         95         95         95         95         95         95         95         95         95         95         95         95         33         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <t< td=""></t<> |

| Intersection           |           |            |          |        |             |       |                   |      |      |         |      |      |
|------------------------|-----------|------------|----------|--------|-------------|-------|-------------------|------|------|---------|------|------|
| Int Delay, s/veh       | 0.5       |            |          |        |             |       |                   |      |      |         |      |      |
| Movement               | EBL       | EBT        | EBR      | WBL    | WBT         | WBR   | NBL               | NBT  | NBR  | SBL     | SBT  | SBR  |
| Lane Configurations    |           | <b>∱</b> ⊅ |          |        | <b>∱</b> 1> |       |                   |      | 7    |         |      | 7    |
| Traffic Vol, veh/h     | 0         | 1088       | 62       | 0      | 1116        | 14    | 0                 | 0    | 22   | 0       | 0    | 58   |
| Future Vol, veh/h      | 0         | 1088       | 62       | 0      | 1116        | 14    | 0                 | 0    | 22   | 0       | 0    | 58   |
| Conflicting Peds, #/hr | 0         | 0          | 0        | 0      | 0           | 0     | 0                 | 0    | 0    | 0       | 0    | 0    |
| Sign Control           | Free      | Free       | Free     | Free   | Free        | Free  | Stop              | Stop | Stop | Stop    | Stop | Stop |
| RT Channelized         | -         | -          | None     | -      | -           | None  | <u>-</u>          | -    | None | -       | -    | None |
| Storage Length         | -         | -          | -        | -      | -           | -     | -                 | -    | 0    | -       | -    | 0    |
| Veh in Median Storage  | ,# -      | 0          | -        | -      | 0           | -     | -                 | 0    | -    | -       | 0    | -    |
| Grade, %               | _         | 0          | -        | -      | 0           | -     | -                 | 0    | -    | -       | 0    | -    |
| Peak Hour Factor       | 95        | 95         | 95       | 95     | 95          | 95    | 95                | 95   | 95   | 95      | 95   | 95   |
| Heavy Vehicles, %      | 3         | 3          | 3        | 3      | 3           | 3     | 3                 | 3    | 3    | 3       | 3    | 3    |
| Mvmt Flow              | 0         | 1145       | 65       | 0      | 1175        | 15    | 0                 | 0    | 23   | 0       | 0    | 61   |
|                        |           |            |          |        |             |       |                   |      |      |         |      |      |
| Major/Minor N          | Major1    |            | <u> </u> | Major2 |             | N     | Minor1            |      | N    | /linor2 |      |      |
| Conflicting Flow All   | -         | 0          | 0        | -      | -           | 0     | -                 | -    | 605  | -       | -    | 595  |
| Stage 1                | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Stage 2                | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Critical Hdwy          | -         | -          | -        | -      | -           | -     | -                 | -    | 6.96 | -       | -    | 6.96 |
| Critical Hdwy Stg 1    | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Critical Hdwy Stg 2    | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Follow-up Hdwy         | -         | -          | -        | -      | -           | -     | -                 | -    | 3.33 | -       | -    | 3.33 |
| Pot Cap-1 Maneuver     | 0         | -          | -        | 0      | -           | -     | 0                 | 0    | 438  | 0       | 0    | 445  |
| Stage 1                | 0         | -          | -        | 0      | -           | -     | 0                 | 0    | -    | 0       | 0    | -    |
| Stage 2                | 0         | -          | -        | 0      | -           | -     | 0                 | 0    | -    | 0       | 0    | -    |
| Platoon blocked, %     |           | -          | -        |        | -           | -     |                   |      |      |         |      |      |
| Mov Cap-1 Maneuver     | -         | -          | -        | -      | -           | -     | -                 | -    | 438  | -       | -    | 445  |
| Mov Cap-2 Maneuver     | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Stage 1                | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
| Stage 2                | -         | -          | -        | -      | -           | -     | -                 | -    | -    | -       | -    | -    |
|                        |           |            |          |        |             |       |                   |      |      |         |      |      |
| Approach               | EB        |            |          | WB     |             |       | NB                |      |      | SB      |      |      |
| HCM Control Delay, s   | 0         |            |          | 0      |             |       | 13.7              |      |      | 14.4    |      |      |
| HCM LOS                |           |            |          |        |             |       | В                 |      |      | В       |      |      |
|                        |           |            |          |        |             |       |                   |      |      |         |      |      |
| Minor Lane/Major Mvm   | <u>t </u> | NBLn1      | EBT      | EBR    | WBT         | WBR S | SBL <sub>n1</sub> |      |      |         |      |      |
| Capacity (veh/h)       |           | 438        | -        | -      | -           | -     | 445               |      |      |         |      |      |
| HCM Lane V/C Ratio     |           | 0.053      | -        | -      | -           | -     | 0.137             |      |      |         |      |      |
| HCM Control Delay (s)  |           | 13.7       | -        | -      | -           | -     | 14.4              |      |      |         |      |      |
| HCM Lane LOS           |           | В          | -        | -      | -           | -     | В                 |      |      |         |      |      |
| HCM 95th %tile Q(veh)  |           | 0.2        | -        | -      | -           | -     | 0.5               |      |      |         |      |      |
|                        |           |            |          |        |             |       |                   |      |      |         |      |      |

| Intersection                                                                                                           |       |            |                    |              |                                            |          |
|------------------------------------------------------------------------------------------------------------------------|-------|------------|--------------------|--------------|--------------------------------------------|----------|
| Int Delay, s/veh                                                                                                       | 0.4   |            |                    |              |                                            |          |
|                                                                                                                        |       | CDT        | MOT                | MPD          | ODI                                        | ODB      |
|                                                                                                                        | EBL   | EBT        | WBT                | WBR          | SBL                                        | SBR      |
| Lane Configurations                                                                                                    | ^     | <b>†</b> † | <b>†</b> ‡         | 20           | _                                          | 7        |
| Traffic Vol, veh/h                                                                                                     | 0     | 1105       | 1081               | 22           | 0                                          | 63       |
| Future Vol, veh/h                                                                                                      | 0     | 1105       | 1081               | 22           | 0                                          | 63       |
| Conflicting Peds, #/hr                                                                                                 | _ 0   | _ 0        | _ 0                | _ 0          | 0                                          | 0        |
| 0                                                                                                                      | Free  | Free       | Free               | Free         | Stop                                       | Stop     |
| RT Channelized                                                                                                         | -     | None       | -                  |              | -                                          | None     |
| Storage Length                                                                                                         | -     | -          | -                  | -            | -                                          | 0        |
| Veh in Median Storage, #                                                                                               |       | 0          | 0                  | -            | 0                                          | -        |
| Grade, %                                                                                                               | -     | 0          | 0                  | -            | 0                                          | -        |
| Peak Hour Factor                                                                                                       | 95    | 95         | 95                 | 95           | 95                                         | 95       |
| Heavy Vehicles, %                                                                                                      | 3     | 3          | 3                  | 3            | 3                                          | 3        |
| Mvmt Flow                                                                                                              | 0     | 1163       | 1138               | 23           | 0                                          | 66       |
|                                                                                                                        |       |            |                    |              |                                            |          |
| Major/Minor Ma                                                                                                         | ajor1 | N          | Major2             | N            | /linor2                                    |          |
| Conflicting Flow All                                                                                                   | -     | 0          | -                  | 0            | _                                          | 581      |
| Stage 1                                                                                                                | _     | _          | _                  | -            | _                                          | -        |
| Stage 2                                                                                                                | _     | _          | _                  | <u>-</u>     | _                                          | _        |
| Critical Hdwy                                                                                                          | _     | _          | _                  | _            | _                                          | 6.96     |
| Critical Hdwy Stg 1                                                                                                    | _     | _          | _                  | _            | _                                          | 0.00     |
| Critical Hdwy Stg 2                                                                                                    | _     | _          | _                  | _            | _                                          | _        |
| Follow-up Hdwy                                                                                                         | _     | _          | _                  | _            | _                                          | 3.33     |
| Pot Cap-1 Maneuver                                                                                                     | 0     | _          | _                  | _            | 0                                          | 454      |
| Stage 1                                                                                                                | 0     | _          |                    | _            | 0                                          | -        |
| Stage 2                                                                                                                | 0     | _          | _                  | _            | 0                                          | _        |
| Platoon blocked, %                                                                                                     | U     | _          | _                  | _            | U                                          |          |
| Mov Cap-1 Maneuver                                                                                                     | _     | -          | -                  | -            | _                                          | 454      |
| Mov Cap-1 Maneuver                                                                                                     | _     | -          |                    | -            | _                                          | 404      |
| Stage 1                                                                                                                | -     |            | -                  | -            |                                            | <u>-</u> |
| Oldue                                                                                                                  | _     | _          | -                  | _            | -                                          | -        |
|                                                                                                                        |       |            |                    |              |                                            |          |
| Stage 2                                                                                                                | -     | -          | -                  | _            | -                                          | <u>-</u> |
|                                                                                                                        | -     | -          | -                  | <del>-</del> | <u>-</u>                                   | -        |
|                                                                                                                        | EB    | -          | WB                 |              | SB                                         |          |
| Stage 2 Approach                                                                                                       | EB 0  |            | WB 0               |              | SB 14.3                                    | _        |
| Stage 2                                                                                                                |       |            |                    |              |                                            |          |
| Stage 2  Approach HCM Control Delay, s                                                                                 |       |            |                    |              | 14.3                                       |          |
| Stage 2  Approach HCM Control Delay, s HCM LOS                                                                         |       |            | 0                  | W/PD (       | 14.3<br>B                                  |          |
| Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt                                                  |       | EBT        | 0                  | WBRS         | 14.3<br>B<br>SBLn1                         |          |
| Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h)                                 |       |            | 0                  | -            | 14.3<br>B<br>SBLn1<br>454                  |          |
| Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio              |       |            | 0<br>WBT<br>-      | -<br>-       | 14.3<br>B<br>SBLn1<br>454<br>0.146         |          |
| Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) |       |            | 0<br>WBT<br>-<br>- | -<br>-<br>-  | 14.3<br>B<br>SBLn1<br>454<br>0.146<br>14.3 |          |
| Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio              |       |            | 0<br>WBT<br>-      | -<br>-       | 14.3<br>B<br>SBLn1<br>454<br>0.146         |          |

|                                     | ۶     | <b>→</b>    | •        | •     | <b>←</b> | •     | •     | <b>†</b> | <i>&gt;</i> | <b>/</b>    | <b>↓</b> | -√    |
|-------------------------------------|-------|-------------|----------|-------|----------|-------|-------|----------|-------------|-------------|----------|-------|
| Lane Group                          | EBL   | EBT         | EBR      | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT      | SBR   |
| Lane Configurations                 | 7     | <b>^</b>    | 7        | ሻ     | <b>^</b> | 7     | ħ     | ተተኈ      |             | ħ           | ተተኈ      |       |
| Traffic Volume (vph)                | 133   | 628         | 134      | 284   | 728      | 141   | 215   | 1084     | 204         | 122         | 848      | 128   |
| Future Volume (vph)                 | 133   | 628         | 134      | 284   | 728      | 141   | 215   | 1084     | 204         | 122         | 848      | 128   |
| Ideal Flow (vphpl)                  | 1800  | 1800        | 1800     | 1800  | 1800     | 1800  | 1800  | 1800     | 1800        | 1800        | 1800     | 1800  |
| Storage Length (m)                  | 30.0  |             | 50.0     | 30.0  |          | 30.0  | 90.0  |          | 0.0         | 75.0        |          | 0.0   |
| Storage Lanes                       | 1     |             | 1        | 1     |          | 1     | 1     |          | 0           | 1           |          | 0     |
| Taper Length (m)                    | 20.0  |             |          | 25.0  |          |       | 35.0  |          |             | 40.0        |          |       |
| Lane Util. Factor                   | 1.00  | 0.95        | 1.00     | 1.00  | 0.95     | 1.00  | 1.00  | 0.91     | 0.91        | 1.00        | 0.91     | 0.91  |
| Ped Bike Factor                     | 1.00  |             | 0.97     | 1.00  |          | 0.97  | 0.99  | 0.99     |             | 1.00        | 0.99     |       |
| Frt                                 |       |             | 0.850    |       |          | 0.850 |       | 0.976    |             |             | 0.980    |       |
| Flt Protected                       | 0.950 |             |          | 0.950 |          |       | 0.950 |          |             | 0.950       |          |       |
| Satd. Flow (prot)                   | 1695  | 3390        | 1517     | 1695  | 3390     | 1517  | 1695  | 4727     | 0           | 1695        | 4742     | 0     |
| Flt Permitted                       | 0.228 |             |          | 0.124 |          |       | 0.133 |          |             | 0.099       |          |       |
| Satd. Flow (perm)                   | 405   | 3390        | 1478     | 220   | 3390     | 1477  | 236   | 4727     | 0           | 176         | 4742     | 0     |
| Right Turn on Red                   |       |             | Yes      |       |          | Yes   |       |          | Yes         |             |          | Yes   |
| Satd. Flow (RTOR)                   |       |             | 159      |       |          | 123   |       | 35       |             |             | 24       |       |
| Link Speed (k/h)                    |       | 50          |          |       | 50       |       |       | 50       |             |             | 50       |       |
| Link Distance (m)                   |       | 458.3       |          |       | 110.3    |       |       | 220.1    |             |             | 211.9    |       |
| Travel Time (s)                     |       | 33.0        |          |       | 7.9      |       |       | 15.8     |             |             | 15.3     |       |
| Confl. Peds. (#/hr)                 | 13    |             | 12       | 12    |          | 13    | 32    |          | 20          | 20          |          | 32    |
| Peak Hour Factor                    | 0.92  | 0.92        | 0.92     | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92        | 0.92        | 0.92     | 0.92  |
| Heavy Vehicles (%)                  | 2%    | 2%          | 2%       | 2%    | 2%       | 2%    | 2%    | 2%       | 2%          | 2%          | 2%       | 2%    |
| Adj. Flow (vph)                     | 145   | 683         | 146      | 309   | 791      | 153   | 234   | 1178     | 222         | 133         | 922      | 139   |
| Shared Lane Traffic (%)             |       |             |          |       |          |       |       |          |             |             |          |       |
| Lane Group Flow (vph)               | 145   | 683         | 146      | 309   | 791      | 153   | 234   | 1400     | 0           | 133         | 1061     | 0     |
| Enter Blocked Intersection          | No    | No          | No       | No    | No       | No    | No    | No       | No          | No          | No       | No    |
| Lane Alignment                      | Left  | Left        | Right    | Left  | Left     | Right | Left  | Left     | Right       | Left        | Left     | Right |
| Median Width(m)                     |       | 4.7         | <u> </u> |       | 3.7      |       |       | 4.7      |             |             | 4.7      |       |
| Link Offset(m)                      |       | 0.0         |          |       | 0.0      |       |       | 0.0      |             |             | 0.0      |       |
| Crosswalk Width(m)                  |       | 1.6         |          |       | 1.6      |       |       | 1.6      |             |             | 1.6      |       |
| Two way Left Turn Lane              |       |             |          |       |          |       |       |          |             |             |          |       |
| Headway Factor                      | 1.06  | 1.06        | 1.06     | 1.06  | 1.06     | 1.06  | 1.06  | 1.06     | 1.06        | 1.06        | 1.06     | 1.06  |
| Turning Speed (k/h)                 | 24    |             | 14       | 24    |          | 14    | 24    |          | 14          | 24          |          | 14    |
| Number of Detectors                 | 1     | 2           | 1        | 1     | 2        | 1     | 1     | 2        |             | 1           | 2        |       |
| Detector Template                   | Left  | Thru        | Right    | Left  | Thru     | Right | Left  | Thru     |             | Left        | Thru     |       |
| Leading Detector (m)                | 6.1   | 30.5        | 6.1      | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |             | 6.1         | 30.5     |       |
| Trailing Detector (m)               | 0.0   | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |       |
| Detector 1 Position(m)              | 0.0   | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |       |
| Detector 1 Size(m)                  | 6.1   | 1.8         | 6.1      | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |             | 6.1         | 1.8      |       |
| Detector 1 Type                     | CI+Ex | CI+Ex       | Cl+Ex    | CI+Ex | CI+Ex    | CI+Ex | CI+Ex | CI+Ex    |             | CI+Ex       | CI+Ex    |       |
| Detector 1 Channel                  | O     | <b>0. 1</b> | 0        | O     | O        | O     | O     | O        |             | <b>0. 1</b> | O        |       |
| Detector 1 Extend (s)               | 0.0   | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |       |
| Detector 1 Queue (s)                | 0.0   | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |       |
| Detector 1 Delay (s)                | 0.0   | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0      |       |
| Detector 2 Position(m)              | 0.0   | 28.7        | 0.0      | 0.0   | 28.7     | 0.0   | 0.0   | 28.7     |             | 0.0         | 28.7     |       |
| Detector 2 Size(m)                  |       | 1.8         |          |       | 1.8      |       |       | 1.8      |             |             | 1.8      |       |
| Detector 2 Type                     |       | Cl+Ex       |          |       | Cl+Ex    |       |       | CI+Ex    |             |             | CI+Ex    |       |
| Detector 2 Type  Detector 2 Channel |       | OI - LX     |          |       | JI LA    |       |       | OI · LX  |             |             | OI - LX  |       |
| Detector 2 Extend (s)               |       | 0.0         |          |       | 0.0      |       |       | 0.0      |             |             | 0.0      |       |
| DOLOGIO Z EXIONA (3)                |       | 0.0         |          |       | 0.0      |       |       | 0.0      |             |             | 0.0      |       |

|                         | ۶     | <b>→</b> | •     | •     | ←     | •     | 4     | <b>†</b> | <b>/</b> | -     | <b>↓</b> | 4   |
|-------------------------|-------|----------|-------|-------|-------|-------|-------|----------|----------|-------|----------|-----|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR      | SBL   | SBT      | SBR |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA    | Perm  | pm+pt | NA       |          | pm+pt | NA       |     |
| Protected Phases        | 7     | 4        |       | 3     | 8     |       | 5     | 2        |          | 1     | 6        |     |
| Permitted Phases        | 4     |          | 4     | 8     |       | 8     | 2     |          |          | 6     |          |     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8     | 8     | 5     | 2        |          | 1     | 6        |     |
| Switch Phase            |       |          |       |       |       |       |       |          |          |       |          |     |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0  | 10.0  | 7.0   | 15.0     |          | 7.0   | 15.0     |     |
| Minimum Split (s)       | 11.0  | 36.5     | 36.5  | 11.0  | 36.5  | 36.5  | 11.0  | 33.5     |          | 12.0  | 33.5     |     |
| Total Split (s)         | 15.0  | 36.6     | 36.6  | 26.0  | 47.6  | 47.6  | 18.0  | 45.4     |          | 12.0  | 39.4     |     |
| Total Split (%)         | 12.5% | 30.5%    | 30.5% | 21.7% | 39.7% | 39.7% | 15.0% | 37.8%    |          | 10.0% | 32.8%    |     |
| Maximum Green (s)       | 11.0  | 32.1     | 32.1  | 22.0  | 43.1  | 43.1  | 14.0  | 40.9     |          | 8.0   | 34.9     |     |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5   | 3.5   | 3.0   | 3.5      |          | 3.0   | 3.5      |     |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0      |          | 1.0   | 1.0      |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0      |     |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5   | 4.5   | 4.0   | 4.5      |          | 4.0   | 4.5      |     |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      |          | Lead  | Lag      |     |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      |          | Yes   | Yes      |     |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      |          | 2.0   | 2.0      |     |
| Recall Mode             | None  | None     | None  | None  | None  | None  | None  | C-Max    |          | None  | C-Max    |     |
| Walk Time (s)           |       | 10.0     | 10.0  |       | 10.0  | 10.0  |       | 10.0     |          |       | 10.0     |     |
| Flash Dont Walk (s)     |       | 22.0     | 22.0  |       | 22.0  | 22.0  |       | 19.0     |          |       | 19.0     |     |
| Pedestrian Calls (#/hr) |       | 10       | 10    |       | 10    | 10    |       | 10       |          |       | 20       |     |
| Act Effct Green (s)     | 38.9  | 28.6     | 28.6  | 52.8  | 38.5  | 38.5  | 59.2  | 46.2     |          | 49.4  | 40.4     |     |
| Actuated g/C Ratio      | 0.32  | 0.24     | 0.24  | 0.44  | 0.32  | 0.32  | 0.49  | 0.38     |          | 0.41  | 0.34     |     |
| v/c Ratio               | 0.61  | 0.85     | 0.31  | 0.91  | 0.73  | 0.27  | 0.81  | 0.76     |          | 0.74  | 0.66     |     |
| Control Delay           | 32.3  | 54.0     | 6.0   | 62.7  | 40.0  | 8.6   | 44.5  | 35.7     |          | 49.4  | 36.8     |     |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |          | 0.0   | 0.0      |     |
| Total Delay             | 32.3  | 54.0     | 6.0   | 62.7  | 40.0  | 8.6   | 44.5  | 35.7     |          | 49.4  | 36.8     |     |
| LOS                     | С     | D        | Α     | Е     | D     | Α     | D     | D        |          | D     | D        |     |
| Approach Delay          |       | 43.6     |       |       | 41.8  |       |       | 37.0     |          |       | 38.2     |     |
| Approach LOS            |       | D        |       |       | D     |       |       | D        |          |       | D        |     |
| Queue Length 50th (m)   | 19.7  | 79.8     | 0.0   | 54.9  | 84.5  | 4.8   | 32.8  | 108.3    |          | 17.4  | 81.5     |     |
| Queue Length 95th (m)   | 30.8  | 99.4     | 12.9  | #96.6 | 102.5 | 18.7  | #77.6 | 128.8    |          | #51.2 | 98.2     |     |
| Internal Link Dist (m)  |       | 434.3    |       |       | 86.3  |       |       | 196.1    |          |       | 187.9    |     |
| Turn Bay Length (m)     | 30.0  |          | 50.0  | 30.0  |       | 30.0  | 90.0  |          |          | 75.0  |          |     |
| Base Capacity (vph)     | 253   | 906      | 511   | 367   | 1217  | 609   | 297   | 1840     |          | 183   | 1611     |     |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        |          | 0     | 0        |     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        |          | 0     | 0        |     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        |          | 0     | 0        |     |
| Reduced v/c Ratio       | 0.57  | 0.75     | 0.29  | 0.84  | 0.65  | 0.25  | 0.79  | 0.76     |          | 0.73  | 0.66     |     |

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.91

Intersection Signal Delay: 39.7 Intersection LOS: D
Intersection Capacity Utilization 88.6% ICU Level of Service E

05/16/2019 Synchro 10 Report WSP Page 2

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



05/16/2019 Synchro 10 Report WSP Page 3

|                            | ٠       | <b>→</b> | •       | •       | <b>←</b> | •       | •       | †      | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4     |
|----------------------------|---------|----------|---------|---------|----------|---------|---------|--------|-------------|----------|----------|-------|
| Lane Group                 | EBL     | EBT      | EBR     | WBL     | WBT      | WBR     | NBL     | NBT    | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | ¥       | <b>†</b> | 7       | ሻ       | <b>†</b> | 7       |         | 4      |             |          | 4        |       |
| Traffic Volume (vph)       | 25      | 909      | 8       | 6       | 926      | 19      | 83      | 0      | 19          | 4        | 0        | 53    |
| Future Volume (vph)        | 25      | 909      | 8       | 6       | 926      | 19      | 83      | 0      | 19          | 4        | 0        | 53    |
| Ideal Flow (vphpl)         | 1800    | 1800     | 1800    | 1800    | 1800     | 1800    | 1800    | 1800   | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 30.0    |          | 20.0    | 30.0    |          | 20.0    | 0.0     |        | 0.0         | 0.0      |          | 0.0   |
| Storage Lanes              | 1       |          | 1       | 1       |          | 1       | 0       |        | 0           | 0        |          | 0     |
| Taper Length (m)           | 30.0    |          |         | 30.0    |          |         | 30.0    |        |             | 30.0     |          |       |
| Lane Util. Factor          | 1.00    | 1.00     | 1.00    | 1.00    | 1.00     | 1.00    | 1.00    | 1.00   | 1.00        | 1.00     | 1.00     | 1.00  |
| Frt                        |         |          | 0.850   |         |          | 0.850   |         | 0.974  |             |          | 0.874    |       |
| Flt Protected              | 0.950   |          |         | 0.950   |          |         |         | 0.961  |             |          | 0.997    |       |
| Satd. Flow (prot)          | 1679    | 1502     | 1502    | 1679    | 1502     | 1502    | 0       | 1654   | 0           | 0        | 1309     | 0     |
| Flt Permitted              | 0.185   |          |         | 0.194   |          |         |         | 0.767  |             |          | 0.984    |       |
| Satd. Flow (perm)          | 327     | 1502     | 1502    | 343     | 1502     | 1502    | 0       | 1320   | 0           | 0        | 1292     | 0     |
| Right Turn on Red          |         |          | Yes     |         |          | Yes     |         |        | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |         |          | 16      |         |          | 16      |         | 16     |             |          | 58       |       |
| Link Speed (k/h)           |         | 50       |         |         | 50       |         |         | 50     |             |          | 50       |       |
| Link Distance (m)          |         | 114.1    |         |         | 103.2    |         |         | 145.5  |             |          | 205.8    |       |
| Travel Time (s)            |         | 8.2      |         |         | 7.4      |         |         | 10.5   |             |          | 14.8     |       |
| Peak Hour Factor           | 0.92    | 0.92     | 0.92    | 0.92    | 0.92     | 0.92    | 0.92    | 0.92   | 0.92        | 0.92     | 0.92     | 0.92  |
| Parking (#/hr)             |         | 10       |         |         | 10       |         |         |        |             |          | 10       |       |
| Adj. Flow (vph)            | 27      | 988      | 9       | 7       | 1007     | 21      | 90      | 0      | 21          | 4        | 0        | 58    |
| Shared Lane Traffic (%)    |         |          |         |         |          |         |         |        |             |          |          |       |
| Lane Group Flow (vph)      | 27      | 988      | 9       | 7       | 1007     | 21      | 0       | 111    | 0           | 0        | 62       | 0     |
| Enter Blocked Intersection | No      | No       | No      | No      | No       | No      | No      | No     | No          | No       | No       | No    |
| Lane Alignment             | Left    | Left     | Right   | Left    | Left     | Right   | Left    | Left   | Right       | Left     | Left     | Right |
| Median Width(m)            |         | 3.7      |         |         | 3.7      |         |         | 0.0    |             |          | 0.0      | 9     |
| Link Offset(m)             |         | 0.0      |         |         | 0.0      |         |         | 0.0    |             |          | 0.0      |       |
| Crosswalk Width(m)         |         | 1.6      |         |         | 1.6      |         |         | 1.6    |             |          | 1.6      |       |
| Two way Left Turn Lane     |         |          |         |         |          |         |         |        |             |          |          |       |
| Headway Factor             | 1.06    | 1.30     | 1.06    | 1.06    | 1.30     | 1.06    | 1.06    | 1.06   | 1.06        | 1.06     | 1.30     | 1.06  |
| Turning Speed (k/h)        | 24      |          | 14      | 24      |          | 14      | 24      |        | 14          | 24       |          | 14    |
| Number of Detectors        | 1       | 2        | 1       | 1       | 2        | 1       | 1       | 2      |             | 1        | 2        |       |
| Detector Template          | Left    | Thru     | Right   | Left    | Thru     | Right   | Left    | Thru   |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1     | 30.5     | 6.1     | 6.1     | 30.5     | 6.1     | 6.1     | 30.5   |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1     | 1.8      | 6.1     | 6.1     | 1.8      | 6.1     | 6.1     | 1.8    |             | 6.1      | 1.8      |       |
| Detector 1 Type            | CI+Ex   | CI+Ex    | CI+Ex   | CI+Ex   | Cl+Ex    | CI+Ex   | CI+Ex   | Cl+Ex  |             | CI+Ex    | CI+Ex    |       |
| Detector 1 Channel         | OI - EX | OI - EX  | OI - EX | OI LX   | OI ZX    | OI LX   | OI - EX | OI LX  |             | OI LX    | OI LX    |       |
| Detector 1 Extend (s)      | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0    |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     | 0.0     | 28.7     | 0.0     | 0.0     | 28.7     | 0.0     | 0.0     | 28.7   |             | 0.0      | 28.7     |       |
| Detector 2 Size(m)         |         | 1.8      |         |         | 1.8      |         |         | 1.8    |             |          | 1.8      |       |
| Detector 2 Type            |         | Cl+Ex    |         |         | Cl+Ex    |         |         | CI+Ex  |             |          | CI+Ex    |       |
| Detector 2 Channel         |         | OI. LX   |         |         | OI · LX  |         |         | OI. LX |             |          | O1 · LX  |       |
| Detector 2 Extend (s)      |         | 0.0      |         |         | 0.0      |         |         | 0.0    |             |          | 0.0      |       |
| Turn Type                  | Perm    | NA       | Perm    | Perm    | NA       | Perm    | Perm    | NA     |             | Perm     | NA       |       |
| Protected Phases           | i Gilli | 6        | i Gilli | i Cilli | 2        | i Cilli | i Gilli | 3      |             | I GIIII  | 8        |       |
| i Totootou i Hases         |         | U        |         |         |          |         |         | J      |             |          | U        |       |

|                         | ٠     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ     | 1   |
|-------------------------|-------|----------|-------|-------|----------|-------|-------|----------|----------|-------------|-------|-----|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |          | 6     | 2     |          | 2     | 3     |          |          | 8           |       |     |
| Detector Phase          | 6     | 6        | 6     | 2     | 2        | 2     | 3     | 3        |          | 8           | 8     |     |
| Switch Phase            |       |          |       |       |          |       |       |          |          |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |          | 10.0        | 10.0  |     |
| Minimum Split (s)       | 25.5  | 25.5     | 25.5  | 25.5  | 25.5     | 25.5  | 30.5  | 30.5     |          | 30.5        | 30.5  |     |
| Total Split (s)         | 69.4  | 69.4     | 69.4  | 69.4  | 69.4     | 69.4  | 30.6  | 30.6     |          | 30.6        | 30.6  |     |
| Total Split (%)         | 69.4% | 69.4%    | 69.4% | 69.4% | 69.4%    | 69.4% | 30.6% | 30.6%    |          | 30.6%       | 30.6% |     |
| Maximum Green (s)       | 64.9  | 64.9     | 64.9  | 64.9  | 64.9     | 64.9  | 26.1  | 26.1     |          | 26.1        | 26.1  |     |
| Yellow Time (s)         | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      |          | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |          | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |       | 0.0      |          |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5      | 4.5   | 4.5   | 4.5      | 4.5   |       | 4.5      |          |             | 4.5   |     |
| Lead/Lag                |       |          |       |       |          |       |       |          |          |             |       |     |
| Lead-Lag Optimize?      |       |          |       |       |          |       |       |          |          |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |          | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min    | C-Min | C-Min | C-Min    | C-Min | None  | None     |          | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |          | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0      | 8.0   | 8.0   | 8.0      | 8.0   | 16.0  | 16.0     |          | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20       | 20    | 20    | 20       | 20    | 20    | 20       |          | 20          | 20    |     |
| Act Effct Green (s)     | 74.2  | 74.2     | 74.2  | 74.2  | 74.2     | 74.2  |       | 16.8     |          |             | 16.8  |     |
| Actuated g/C Ratio      | 0.74  | 0.74     | 0.74  | 0.74  | 0.74     | 0.74  |       | 0.17     |          |             | 0.17  |     |
| v/c Ratio               | 0.11  | 0.89     | 0.01  | 0.03  | 0.90     | 0.02  |       | 0.47     |          |             | 0.23  |     |
| Control Delay           | 7.0   | 24.5     | 1.9   | 6.2   | 26.2     | 3.2   |       | 36.6     |          |             | 11.2  |     |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 7.3      | 0.0   |       | 0.0      |          |             | 0.0   |     |
| Total Delay             | 7.0   | 24.5     | 1.9   | 6.2   | 33.6     | 3.2   |       | 36.6     |          |             | 11.2  |     |
| LOS                     | Α     | С        | Α     | Α     | С        | Α     |       | D        |          |             | В     |     |
| Approach Delay          |       | 23.8     |       |       | 32.8     |       |       | 36.6     |          |             | 11.2  |     |
| Approach LOS            |       | С        |       |       | С        |       |       | D        |          |             | В     |     |
| Queue Length 50th (m)   | 0.9   | 91.9     | 0.0   | 0.2   | 97.3     | 0.2   |       | 17.8     |          |             | 0.7   |     |
| Queue Length 95th (m)   | 5.5   | #275.7   | 1.2   | 2.0   | #283.8   | 2.7   |       | 29.7     |          |             | 10.3  |     |
| Internal Link Dist (m)  |       | 90.1     |       |       | 79.2     |       |       | 121.5    |          |             | 181.8 |     |
| Turn Bay Length (m)     | 30.0  |          | 20.0  | 30.0  |          | 20.0  |       |          |          |             |       |     |
| Base Capacity (vph)     | 242   | 1114     | 1118  | 254   | 1114     | 1118  |       | 356      |          |             | 380   |     |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 87       | 0     |       | 0        |          |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |          |             | 0     |     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |          |             | 0     |     |
| Reduced v/c Ratio       | 0.11  | 0.89     | 0.01  | 0.03  | 0.98     | 0.02  |       | 0.31     |          |             | 0.16  |     |
|                         |       |          |       |       |          |       |       |          |          |             |       |     |

Area Type: Other

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

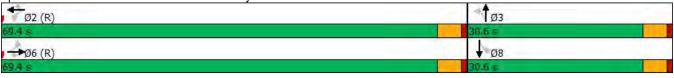
Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 28.2 Intersection LOS: C
Intersection Capacity Utilization 71.7% ICU Level of Service C


Analysis Period (min) 15


**WSP** 

# 95th percentile volume exceeds capacity, queue may be longer.

05/16/2019

Queue shown is maximum after two cycles.





|                            | ٠       | <b>→</b> | •       | •       | <b>←</b> | •       | •       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4     |
|----------------------------|---------|----------|---------|---------|----------|---------|---------|----------|-------------|----------|----------|-------|
| Lane Group                 | EBL     | EBT      | EBR     | WBL     | WBT      | WBR     | NBL     | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations        | ¥       | <b>†</b> | 7       | ሻ       | <b>†</b> | 7       |         | 4        |             |          | 4        |       |
| Traffic Volume (vph)       | 38      | 836      | 26      | 66      | 848      | 12      | 27      | 0        | 45          | 15       | 0        | 40    |
| Future Volume (vph)        | 38      | 836      | 26      | 66      | 848      | 12      | 27      | 0        | 45          | 15       | 0        | 40    |
| Ideal Flow (vphpl)         | 1800    | 1800     | 1800    | 1800    | 1800     | 1800    | 1800    | 1800     | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)         | 40.0    |          | 20.0    | 40.0    |          | 20.0    | 0.0     |          | 0.0         | 0.0      |          | 0.0   |
| Storage Lanes              | 1       |          | 1       | 1       |          | 1       | 0       |          | 0           | 0        |          | 0     |
| Taper Length (m)           | 30.0    |          |         | 30.0    |          |         | 30.0    |          |             | 30.0     |          |       |
| Lane Util. Factor          | 1.00    | 1.00     | 1.00    | 1.00    | 1.00     | 1.00    | 1.00    | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Frt                        |         |          | 0.850   |         |          | 0.850   |         | 0.915    |             |          | 0.902    |       |
| Flt Protected              | 0.950   |          |         | 0.950   |          |         |         | 0.982    |             |          | 0.987    |       |
| Satd. Flow (prot)          | 1679    | 1502     | 1502    | 1679    | 1502     | 1502    | 0       | 1588     | 0           | 0        | 1573     | 0     |
| FIt Permitted              | 0.226   |          |         | 0.233   |          |         |         | 0.880    |             |          | 0.918    |       |
| Satd. Flow (perm)          | 399     | 1502     | 1502    | 412     | 1502     | 1502    | 0       | 1423     | 0           | 0        | 1463     | 0     |
| Right Turn on Red          |         |          | Yes     |         |          | Yes     |         |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)          |         |          | 18      |         |          | 18      |         | 49       |             |          | 43       |       |
| Link Speed (k/h)           |         | 50       |         |         | 50       |         |         | 48       |             |          | 50       |       |
| Link Distance (m)          |         | 102.4    |         |         | 103.2    |         |         | 139.3    |             |          | 228.4    |       |
| Travel Time (s)            |         | 7.4      |         |         | 7.4      |         |         | 10.4     |             |          | 16.4     |       |
| Peak Hour Factor           | 0.92    | 0.92     | 0.92    | 0.92    | 0.92     | 0.92    | 0.92    | 0.92     | 0.92        | 0.92     | 0.92     | 0.92  |
| Parking (#/hr)             |         | 10       |         |         | 10       |         |         |          |             | 10       |          |       |
| Adj. Flow (vph)            | 41      | 909      | 28      | 72      | 922      | 13      | 29      | 0        | 49          | 16       | 0        | 43    |
| Shared Lane Traffic (%)    |         |          |         |         |          |         |         |          |             |          |          |       |
| Lane Group Flow (vph)      | 41      | 909      | 28      | 72      | 922      | 13      | 0       | 78       | 0           | 0        | 59       | 0     |
| Enter Blocked Intersection | No      | No       | No      | No      | No       | No      | No      | No       | No          | No       | No       | No    |
| Lane Alignment             | Left    | Left     | Right   | Left    | Left     | Right   | Left    | Left     | Right       | Left     | Left     | Right |
| Median Width(m)            |         | 3.7      | ,g      |         | 3.7      |         |         | 0.0      |             |          | 0.0      |       |
| Link Offset(m)             |         | 0.0      |         |         | 0.0      |         |         | 0.0      |             |          | 0.0      |       |
| Crosswalk Width(m)         |         | 1.6      |         |         | 1.6      |         |         | 1.6      |             |          | 1.6      |       |
| Two way Left Turn Lane     |         |          |         |         |          |         |         |          |             |          |          |       |
| Headway Factor             | 1.06    | 1.30     | 1.06    | 1.06    | 1.30     | 1.06    | 1.06    | 1.06     | 1.06        | 1.06     | 1.06     | 1.06  |
| Turning Speed (k/h)        | 24      |          | 14      | 24      |          | 14      | 24      |          | 14          | 24       |          | 14    |
| Number of Detectors        | 1       | 2        | 1       | 1       | 2        | 1       | 1       | 2        |             | 1        | 2        |       |
| Detector Template          | Left    | Thru     | Right   | Left    | Thru     | Right   | Left    | Thru     |             | Left     | Thru     |       |
| Leading Detector (m)       | 6.1     | 30.5     | 6.1     | 6.1     | 30.5     | 6.1     | 6.1     | 30.5     |             | 6.1      | 30.5     |       |
| Trailing Detector (m)      | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Position(m)     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Size(m)         | 6.1     | 1.8      | 6.1     | 6.1     | 1.8      | 6.1     | 6.1     | 1.8      |             | 6.1      | 1.8      |       |
| Detector 1 Type            | CI+Ex   | CI+Ex    | CI+Ex   | CI+Ex   | Cl+Ex    | CI+Ex   | CI+Ex   | CI+Ex    |             | CI+Ex    | CI+Ex    |       |
| Detector 1 Channel         | OI - EX | OI ZX    | OI - EX | OI - EX | OI ZX    | OI LX   | OI - EX | OI LX    |             | OI - EX  | OI LX    |       |
| Detector 1 Extend (s)      | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Queue (s)       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 1 Delay (s)       | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0      |             | 0.0      | 0.0      |       |
| Detector 2 Position(m)     | 0.0     | 28.7     | 0.0     | 0.0     | 28.7     | 0.0     | 0.0     | 28.7     |             | 0.0      | 28.7     |       |
| Detector 2 Size(m)         |         | 1.8      |         |         | 1.8      |         |         | 1.8      |             |          | 1.8      |       |
| Detector 2 Type            |         | CI+Ex    |         |         | Cl+Ex    |         |         | CI+Ex    |             |          | CI+Ex    |       |
| Detector 2 Channel         |         | O1 · LA  |         |         | OI · LX  |         |         | O1 · LX  |             |          | OI · LX  |       |
| Detector 2 Extend (s)      |         | 0.0      |         |         | 0.0      |         |         | 0.0      |             |          | 0.0      |       |
| Turn Type                  | Perm    | NA       | Perm    | Perm    | NA       | Perm    | Perm    | NA       |             | Perm     | NA       |       |
| Protected Phases           | i Gilli | 6        | i Gilli | i Cilli | 2        | i Cilli | i Gilli | 3        |             | i Gilli  | 8        |       |
| i Totolica i Hases         |         | U        |         |         |          |         |         | J        |             |          | O        |       |

|                         | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 1   |
|-------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|-------------|-------|-----|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |          | 6     | 2     |          | 2     | 3     |          |             | 8           |       |     |
| Detector Phase          | 6     | 6        | 6     | 2     | 2        | 2     | 3     | 3        |             | 8           | 8     |     |
| Switch Phase            |       |          |       |       |          |       |       |          |             |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Minimum Split (s)       | 24.5  | 24.5     | 24.5  | 24.5  | 24.5     | 24.5  | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (s)         | 59.5  | 59.5     | 59.5  | 59.5  | 59.5     | 59.5  | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (%)         | 66.1% | 66.1%    | 66.1% | 66.1% | 66.1%    | 66.1% | 33.9% | 33.9%    |             | 33.9%       | 33.9% |     |
| Maximum Green (s)       | 55.0  | 55.0     | 55.0  | 55.0  | 55.0     | 55.0  | 26.0  | 26.0     |             | 26.0        | 26.0  |     |
| Yellow Time (s)         | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |       | 0.0      |             |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5      | 4.5   | 4.5   | 4.5      | 4.5   |       | 4.5      |             |             | 4.5   |     |
| Lead/Lag                |       |          |       |       |          |       |       |          |             |             |       |     |
| Lead-Lag Optimize?      |       |          |       |       |          |       |       |          |             |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min    | C-Min | C-Min | C-Min    | C-Min | None  | None     |             | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0      | 8.0   | 8.0   | 8.0      | 8.0   | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20       | 20    | 20    | 20       | 20    | 20    | 20       |             | 20          | 20    |     |
| Act Effct Green (s)     | 68.4  | 68.4     | 68.4  | 68.4  | 68.4     | 68.4  |       | 16.4     |             |             | 16.4  |     |
| Actuated g/C Ratio      | 0.76  | 0.76     | 0.76  | 0.76  | 0.76     | 0.76  |       | 0.18     |             |             | 0.18  |     |
| v/c Ratio               | 0.14  | 0.80     | 0.02  | 0.23  | 0.81     | 0.01  |       | 0.26     |             |             | 0.20  |     |
| Control Delay           | 7.7   | 19.0     | 3.8   | 9.0   | 19.6     | 2.7   |       | 14.7     |             |             | 13.0  |     |
| Queue Delay             | 0.0   | 0.9      | 0.0   | 0.0   | 0.0      | 0.0   |       | 0.0      |             |             | 0.0   |     |
| Total Delay             | 7.7   | 19.9     | 3.8   | 9.0   | 19.6     | 2.7   |       | 14.7     |             |             | 13.0  |     |
| LOS                     | Α     | В        | Α     | Α     | В        | Α     |       | В        |             |             | В     |     |
| Approach Delay          |       | 18.9     |       |       | 18.6     |       |       | 14.7     |             |             | 13.0  |     |
| Approach LOS            |       | В        |       |       | В        |       |       | В        |             |             | В     |     |
| Queue Length 50th (m)   | 1.3   | 63.4     | 0.3   | 2.4   | 65.7     | 0.0   |       | 4.6      |             |             | 2.5   |     |
| Queue Length 95th (m)   | 7.9   | #233.3   | 3.6   | 13.6  | #238.0   | 1.8   |       | 13.7     |             |             | 10.7  |     |
| Internal Link Dist (m)  |       | 78.4     |       |       | 79.2     |       |       | 115.3    |             |             | 204.4 |     |
| Turn Bay Length (m)     | 40.0  |          | 20.0  | 40.0  |          | 20.0  |       |          |             |             |       |     |
| Base Capacity (vph)     | 303   | 1141     | 1145  | 313   | 1141     | 1145  |       | 445      |             |             | 453   |     |
| Starvation Cap Reductn  | 0     | 70       | 0     | 0     | 0        | 0     |       | 0        |             |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |             |             | 0     |     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |             |             | 0     |     |
| Reduced v/c Ratio       | 0.14  | 0.85     | 0.02  | 0.23  | 0.81     | 0.01  |       | 0.18     |             |             | 0.13  |     |

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81


Intersection Signal Delay: 18.5 Intersection LOS: B
Intersection Capacity Utilization 73.7% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

05/16/2019 WSP Synchro 10 Report Page 8 Queue shown is maximum after two cycles.





|                            | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | <b>†</b>   | <i>&gt;</i> | <b>&gt;</b> | <b></b>    | -√    |
|----------------------------|-------|----------|-------|-------|----------|-------|-------|------------|-------------|-------------|------------|-------|
| Lane Group                 | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT        | NBR         | SBL         | SBT        | SBR   |
| Lane Configurations        | ሻ     | <b>†</b> | 7     | ሻ     | 4î       |       | 7     | <b>↑</b> ↑ |             | ሻ           | <b>†</b> † | 7     |
| Traffic Volume (vph)       | 318   | 93       | 485   | 21    | 90       | 18    | 549   | 1269       | 17          | 13          | 878        | 254   |
| Future Volume (vph)        | 318   | 93       | 485   | 21    | 90       | 18    | 549   | 1269       | 17          | 13          | 878        | 254   |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800  | 1800  | 1800     | 1800  | 1800  | 1800       | 1800        | 1800        | 1800       | 1800  |
| Storage Length (m)         | 40.0  |          | 0.0   | 10.0  |          | 0.0   | 35.0  |            | 60.0        | 45.0        |            | 0.0   |
| Storage Lanes              | 1     |          | 1     | 1     |          | 0     | 1     |            | 0           | 1           |            | 1     |
| Taper Length (m)           | 23.0  |          |       | 10.0  |          |       | 25.0  |            |             | 35.0        |            |       |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 0.95       | 0.95        | 1.00        | 0.95       | 1.00  |
| Ped Bike Factor            | 1.00  |          |       |       | 1.00     |       |       |            |             |             |            | 0.92  |
| Frt                        |       |          | 0.850 |       | 0.975    |       |       | 0.998      |             |             |            | 0.850 |
| Flt Protected              | 0.950 |          |       | 0.950 |          |       | 0.950 |            |             | 0.950       |            |       |
| Satd. Flow (prot)          | 1695  | 1784     | 1517  | 1695  | 1712     | 0     | 1695  | 3383       | 0           | 1695        | 3390       | 1517  |
| Flt Permitted              | 0.495 |          |       | 0.692 |          |       | 0.107 |            |             | 0.192       |            |       |
| Satd. Flow (perm)          | 880   | 1784     | 1517  | 1235  | 1712     | 0     | 191   | 3383       | 0           | 343         | 3390       | 1394  |
| Right Turn on Red          |       |          | Yes   |       |          | Yes   |       |            | Yes         |             |            | Yes   |
| Satd. Flow (RTOR)          |       |          | 527   |       | 8        |       |       | 2          |             |             |            | 256   |
| Link Speed (k/h)           |       | 50       |       |       | 50       |       |       | 50         |             |             | 50         |       |
| Link Distance (m)          |       | 105.7    |       |       | 332.1    |       |       | 329.7      |             |             | 294.1      |       |
| Travel Time (s)            |       | 7.6      |       |       | 23.9     |       |       | 23.7       |             |             | 21.2       |       |
| Confl. Peds. (#/hr)        | 4     |          |       |       |          | 4     | 51    |            |             |             |            | 51    |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92  | 0.92  | 0.92       | 0.92        | 0.92        | 0.92       | 0.92  |
| Heavy Vehicles (%)         | 2%    | 2%       | 2%    | 2%    | 3%       | 5%    | 2%    | 2%         | 2%          | 2%          | 2%         | 2%    |
| Adj. Flow (vph)            | 346   | 101      | 527   | 23    | 98       | 20    | 597   | 1379       | 18          | 14          | 954        | 276   |
| Shared Lane Traffic (%)    |       |          |       |       |          |       |       |            |             |             |            |       |
| Lane Group Flow (vph)      | 346   | 101      | 527   | 23    | 118      | 0     | 597   | 1397       | 0           | 14          | 954        | 276   |
| Enter Blocked Intersection | No    | No       | No    | No    | No       | No    | No    | No         | No          | No          | No         | No    |
| Lane Alignment             | Left  | Left     | Right | Left  | Left     | Right | Left  | Left       | Right       | Left        | Left       | Right |
| Median Width(m)            |       | 3.7      |       |       | 3.7      |       |       | 4.7        |             |             | 4.7        |       |
| Link Offset(m)             |       | 0.0      |       |       | 1.8      |       |       | 0.0        |             |             | 0.0        |       |
| Crosswalk Width(m)         |       | 1.6      |       |       | 1.6      |       |       | 1.6        |             |             | 1.6        |       |
| Two way Left Turn Lane     |       |          |       |       |          |       |       |            |             |             |            |       |
| Headway Factor             | 1.06  | 1.06     | 1.06  | 1.06  | 1.06     | 1.06  | 1.06  | 1.06       | 1.06        | 1.06        | 1.06       | 1.06  |
| Turning Speed (k/h)        | 24    |          | 14    | 24    |          | 14    | 24    |            | 14          | 24          |            | 14    |
| Number of Detectors        | 1     | 2        | 1     | 1     | 2        |       | 1     | 2          |             | 1           | 2          | 1     |
| Detector Template          | Left  | Thru     | Right | Left  | Thru     |       | Left  | Thru       |             | Left        | Thru       | Right |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |       | 6.1   | 30.5       |             | 6.1         | 30.5       | 6.1   |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0         | 0.0        | 0.0   |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0         | 0.0        | 0.0   |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |       | 6.1   | 1.8        |             | 6.1         | 1.8        | 6.1   |
| Detector 1 Type            | CI+Ex | Cl+Ex    | Cl+Ex | CI+Ex | CI+Ex    |       | CI+Ex | Cl+Ex      |             | Cl+Ex       | Cl+Ex      | CI+Ex |
| Detector 1 Channel         |       |          |       |       |          |       |       |            |             |             |            |       |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0         | 0.0        | 0.0   |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0         | 0.0        | 0.0   |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0        |             | 0.0         | 0.0        | 0.0   |
| Detector 2 Position(m)     |       | 28.7     |       |       | 28.7     |       |       | 28.7       |             |             | 28.7       |       |
| Detector 2 Size(m)         |       | 1.8      |       |       | 1.8      |       |       | 1.8        |             |             | 1.8        |       |
| Detector 2 Type            |       | Cl+Ex    |       |       | Cl+Ex    |       |       | CI+Ex      |             |             | Cl+Ex      |       |
| Detector 2 Channel         |       |          |       |       |          |       |       |            |             |             |            |       |
| Detector 2 Extend (s)      |       | 0.0      |       |       | 0.0      |       |       | 0.0        |             |             | 0.0        |       |

05/16/2019 WSP

|                         | •      | -     | •     | •     | <b>←</b> | •   | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ      | 4     |
|-------------------------|--------|-------|-------|-------|----------|-----|--------|----------|-------------|-------------|--------|-------|
| Lane Group              | EBL    | EBT   | EBR   | WBL   | WBT      | WBR | NBL    | NBT      | NBR         | SBL         | SBT    | SBR   |
| Turn Type               | pm+pt  | NA    | Perm  | pm+pt | NA       |     | pm+pt  | NA       |             | Perm        | NA     | Perm  |
| Protected Phases        | 7      | 4     |       | 3     | 8        |     | 5      | 2        |             |             | 6      |       |
| Permitted Phases        | 4      |       | 4     | 8     |          |     | 2      |          |             | 6           |        | 6     |
| Detector Phase          | 7      | 4     | 4     | 3     | 8        |     | 5      | 2        |             | 6           | 6      | 6     |
| Switch Phase            |        |       |       |       |          |     |        |          |             |             |        |       |
| Minimum Initial (s)     | 7.0    | 10.0  | 10.0  | 7.0   | 10.0     |     | 7.0    | 15.0     |             | 15.0        | 15.0   | 15.0  |
| Minimum Split (s)       | 11.0   | 14.5  | 14.5  | 11.0  | 36.5     |     | 11.0   | 19.5     |             | 30.5        | 30.5   | 30.5  |
| Total Split (s)         | 11.0   | 36.5  | 36.5  | 11.0  | 36.5     |     | 33.0   | 72.5     |             | 39.5        | 39.5   | 39.5  |
| Total Split (%)         | 9.2%   | 30.4% | 30.4% | 9.2%  | 30.4%    |     | 27.5%  | 60.4%    |             | 32.9%       | 32.9%  | 32.9% |
| Maximum Green (s)       | 7.0    | 32.0  | 32.0  | 7.0   | 32.0     |     | 29.0   | 68.0     |             | 35.0        | 35.0   | 35.0  |
| Yellow Time (s)         | 3.0    | 3.5   | 3.5   | 3.0   | 3.5      |     | 3.0    | 3.5      |             | 3.5         | 3.5    | 3.5   |
| All-Red Time (s)        | 1.0    | 1.0   | 1.0   | 1.0   | 1.0      |     | 1.0    | 1.0      |             | 1.0         | 1.0    | 1.0   |
| Lost Time Adjust (s)    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0      |     | 0.0    | 0.0      |             | 0.0         | 0.0    | 0.0   |
| Total Lost Time (s)     | 4.0    | 4.5   | 4.5   | 4.0   | 4.5      |     | 4.0    | 4.5      |             | 4.5         | 4.5    | 4.5   |
| Lead/Lag                | Lead   | Lag   | Lag   | Lead  | Lag      |     | Lead   |          |             | Lag         | Lag    | Lag   |
| Lead-Lag Optimize?      | Yes    | Yes   | Yes   | Yes   | Yes      |     | Yes    |          |             | Yes         | Yes    | Yes   |
| Vehicle Extension (s)   | 2.0    | 2.0   | 2.0   | 2.0   | 2.0      |     | 2.0    | 2.0      |             | 2.0         | 2.0    | 2.0   |
| Recall Mode             | None   | None  | None  | None  | None     |     | None   | C-Max    |             | C-Max       | C-Max  | C-Max |
| Walk Time (s)           |        |       |       |       | 10.0     |     |        |          |             | 10.0        | 10.0   | 10.0  |
| Flash Dont Walk (s)     |        |       |       |       | 22.0     |     |        |          |             | 16.0        | 16.0   | 16.0  |
| Pedestrian Calls (#/hr) |        |       |       |       | 4        |     |        |          |             | 25          | 25     | 25    |
| Act Effct Green (s)     | 24.8   | 20.1  | 20.1  | 23.2  | 15.7     |     | 84.8   | 84.3     |             | 35.0        | 35.0   | 35.0  |
| Actuated g/C Ratio      | 0.21   | 0.17  | 0.17  | 0.19  | 0.13     |     | 0.71   | 0.70     |             | 0.29        | 0.29   | 0.29  |
| v/c Ratio               | 1.51   | 0.34  | 0.76  | 0.09  | 0.51     |     | 0.85   | 0.59     |             | 0.14        | 0.97   | 0.47  |
| Control Delay           | 282.7  | 46.9  | 11.3  | 33.2  | 51.1     |     | 40.3   | 11.7     |             | 35.8        | 63.7   | 8.1   |
| Queue Delay             | 0.0    | 0.0   | 0.0   | 0.0   | 0.0      |     | 0.0    | 0.0      |             | 0.0         | 0.0    | 0.0   |
| Total Delay             | 282.7  | 46.9  | 11.3  | 33.2  | 51.1     |     | 40.3   | 11.7     |             | 35.8        | 63.7   | 8.1   |
| LOS                     | F      | D     | В     | С     | D        |     | D      | В        |             | D           | Е      | Α     |
| Approach Delay          |        | 111.4 |       |       | 48.1     |     |        | 20.3     |             |             | 51.0   |       |
| Approach LOS            |        | F     |       |       | D        |     |        | С        |             |             | D      |       |
| Queue Length 50th (m)   | ~99.1  | 23.0  | 0.0   | 4.5   | 25.3     |     | 102.4  | 69.2     |             | 2.4         | 116.5  | 3.4   |
| Queue Length 95th (m)   | #135.3 | 33.2  | 29.3  | 9.1   | 36.2     |     | #230.6 | 147.9    |             | 8.2         | #158.5 | 24.8  |
| Internal Link Dist (m)  |        | 81.7  |       |       | 308.1    |     |        | 305.7    |             |             | 270.1  |       |
| Turn Bay Length (m)     | 40.0   |       |       | 10.0  |          |     | 35.0   |          |             | 45.0        |        |       |
| Base Capacity (vph)     | 229    | 475   | 791   | 265   | 462      |     | 702    | 2376     |             | 100         | 988    | 587   |
| Starvation Cap Reductn  | 0      | 0     | 0     | 0     | 0        |     | 0      | 0        |             | 0           | 0      | 0     |
| Spillback Cap Reductn   | 0      | 0     | 0     | 0     | 0        |     | 0      | 0        |             | 0           | 0      | 0     |
| Storage Cap Reductn     | 0      | 0     | 0     | 0     | 0        |     | 0      | 0        |             | 0           | 0      | 0     |
| Reduced v/c Ratio       | 1.51   | 0.21  | 0.67  | 0.09  | 0.26     |     | 0.85   | 0.59     |             | 0.14        | 0.97   | 0.47  |

Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

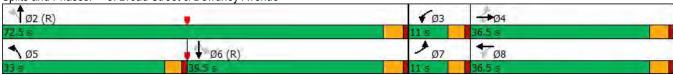
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.51

Intersection Signal Delay: 50.4 Intersection LOS: D
Intersection Capacity Utilization 93.8% ICU Level of Service F


05/16/2019 WSP

### Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
   Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Intersection           |        |            |       |        |             |          |        |      |       |        |       |      |
|------------------------|--------|------------|-------|--------|-------------|----------|--------|------|-------|--------|-------|------|
| Int Delay, s/veh       | 2.1    |            |       |        |             |          |        |      |       |        |       |      |
| Movement               | EBL    | EBT        | EBR   | WBL    | WBT         | WBR      | NBL    | NBT  | NBR   | SBL    | SBT   | SBR  |
| Lane Configurations    | ሻ      | <b>†</b> ‡ |       | ሻ      | <b>∱</b> 1≽ |          |        | 4    | 7     |        | र्स   | 7    |
| Traffic Vol, veh/h     | 42     | 889        | 23    | 18     | 1051        | 19       | 6      | 2    | 62    | 5      | 1     | 96   |
| Future Vol, veh/h      | 42     | 889        | 23    | 18     | 1051        | 19       | 6      | 2    | 62    | 5      | 1     | 96   |
| Conflicting Peds, #/hr | 0      | 0          | 0     | 0      | 0           | 0        | 0      | 0    | 0     | 0      | 0     | 0    |
| Sign Control           | Free   | Free       | Free  | Free   | Free        | Free     | Stop   | Stop | Stop  | Stop   | Stop  | Stop |
| RT Channelized         | -      | -          | None  | -      | -           | None     | -      | -    | None  | -      | -     | None |
| Storage Length         | 200    | -          | -     | 250    | -           | -        | -      | -    | 200   | -      | -     | 200  |
| Veh in Median Storage, | # -    | 0          | -     | -      | 0           | -        | -      | 0    | -     | -      | 0     | -    |
| Grade, %               | -      | 0          | -     | -      | 0           | -        | -      | 0    | -     | -      | 0     | -    |
| Peak Hour Factor       | 92     | 92         | 92    | 92     | 92          | 92       | 92     | 92   | 92    | 92     | 92    | 92   |
| Heavy Vehicles, %      | 3      | 3          | 3     | 3      | 3           | 3        | 3      | 3    | 3     | 3      | 3     | 3    |
| Mvmt Flow              | 46     | 966        | 25    | 20     | 1142        | 21       | 7      | 2    | 67    | 5      | 1     | 104  |
|                        |        |            |       |        |             |          |        |      |       |        |       |      |
| Major/Minor M          | lajor1 |            | 1     | Major2 |             | <u> </u> | Minor1 |      | ľ     | Minor2 |       |      |
|                        | 1163   | 0          | 0     | 991    | 0           | 0        | 1683   | 2274 | 496   | 1769   | 2276  | 582  |
| Stage 1                | -      | -          | -     | -      | -           | -        | 1071   | 1071 | -     | 1193   | 1193  | -    |
| Stage 2                | -      | -          | -     | -      | -           | -        | 612    | 1203 | -     | 576    | 1083  | -    |
| Critical Hdwy          | 4.16   | -          | -     | 4.16   | -           | -        | 7.56   | 6.56 | 6.96  | 7.56   | 6.56  | 6.96 |
| Critical Hdwy Stg 1    | -      | -          | -     | -      | -           | -        | 6.56   | 5.56 | -     | 6.56   | 5.56  | -    |
| Critical Hdwy Stg 2    | -      | -          | -     | -      | -           | -        | 6.56   | 5.56 | -     | 6.56   | 5.56  | -    |
| Follow-up Hdwy         | 2.23   | -          | -     | 2.23   | -           | -        | 3.53   | 4.03 | 3.33  | 3.53   | 4.03  | 3.33 |
| Pot Cap-1 Maneuver     | 591    | -          | -     | 687    | -           | -        | 61     | 39   | 517   | 52     | 39    | 454  |
| Stage 1                | -      | -          | -     | -      | -           | -        | 234    | 293  | -     | 197    | 256   | -    |
| Stage 2                | -      | -          | -     | -      | -           | -        | 445    | 254  | -     | 467    | 289   | -    |
| Platoon blocked, %     |        | -          | -     |        | -           | -        |        |      |       |        |       |      |
| Mov Cap-1 Maneuver     | 591    | -          | -     | 687    | -           | -        | 42     | 35   | 517   | 40     | 35    | 454  |
| Mov Cap-2 Maneuver     | -      | -          | -     | -      | -           | -        | 42     | 35   | -     | 40     | 35    | -    |
| Stage 1                | -      | -          | -     | -      | -           | -        | 216    | 270  | -     | 182    | 249   | -    |
| Stage 2                | -      | -          | -     | -      | -           | -        | 331    | 247  | -     | 372    | 266   | -    |
|                        |        |            |       |        |             |          |        |      |       |        |       |      |
| Approach               | EB     |            |       | WB     |             |          | NB     |      |       | SB     |       |      |
| HCM Control Delay, s   | 0.5    |            |       | 0.2    |             |          | 25     |      |       | 21.2   |       |      |
| HCM LOS                |        |            |       |        |             |          | D      |      |       | С      |       |      |
|                        |        |            |       |        |             |          |        |      |       |        |       |      |
| Minor Lane/Major Mvmt  |        | NBLn11     | NBLn2 | EBL    | EBT         | EBR      | WBL    | WBT  | WBR S | SBLn1  | SBLn2 |      |
| Capacity (veh/h)       |        | 40         | 517   | 591    | -           | -        | 687    | -    | -     | 39     | 454   |      |
| HCM Lane V/C Ratio     |        | 0.217      |       | 0.077  | -           | -        | 0.028  | -    | -     | 0.167  | 0.23  |      |
| HCM Control Delay (s)  |        | 118.4      | 13    | 11.6   | -           | -        | 10.4   | -    | -     | 115    | 15.3  |      |
| HCM Lane LOS           |        | F          | В     | В      | -           | -        | В      | -    | -     | F      | С     |      |
| HCM 95th %tile Q(veh)  |        | 0.7        | 0.4   | 0.2    | _           | -        | 0.1    | -    | -     | 0.5    | 0.9   |      |
|                        |        |            |       |        |             |          |        |      |       |        |       |      |

| Intersection           |       |          |        |      |        |       |
|------------------------|-------|----------|--------|------|--------|-------|
| Int Delay, s/veh       | 0.9   |          |        |      |        |       |
|                        | EBL   | EBT      | WDT    | WDD  | CDI    | SBR   |
| Movement               | EBL   |          | WBT    | WBR  | SBL    | SBK   |
| Lane Configurations    | 45    | <b>4</b> | 1017   | 7    | M      | 11    |
| Traffic Vol, veh/h     | 15    | 941      | 1047   | 14   | 5      | 41    |
| Future Vol, veh/h      | 15    | 941      | 1047   | 14   | 5      | 41    |
| Conflicting Peds, #/hr | _ 0   | _ 0      | _ 0    | _ 0  | 0      | 0     |
| 3                      | Free  | Free     | Free   | Free | Stop   | Stop  |
| RT Channelized         | -     | None     | -      |      | -      | None  |
| Storage Length         | -     | -        | -      | 200  | 0      | -     |
| Veh in Median Storage, | # -   | 0        | 0      | -    | 0      | -     |
| Grade, %               | -     | 0        | 0      | -    | 0      | -     |
| Peak Hour Factor       | 92    | 92       | 92     | 92   | 92     | 92    |
| Heavy Vehicles, %      | 3     | 3        | 3      | 3    | 3      | 3     |
| Mvmt Flow              | 16    | 1023     | 1138   | 15   | 5      | 45    |
|                        |       |          |        |      |        |       |
|                        |       | _        |        |      |        |       |
|                        | ajor1 |          | Major2 |      | Minor2 |       |
|                        | 1153  | 0        | -      | 0    | 2193   | 1138  |
| Stage 1                | -     | -        | -      | -    | 1138   | -     |
| Stage 2                | -     | -        | -      | -    | 1055   | -     |
| Critical Hdwy          | 4.13  | -        | -      | -    | 6.43   | 6.23  |
| Critical Hdwy Stg 1    | -     | -        | -      | -    | 5.43   | -     |
| Critical Hdwy Stg 2    | -     | _        | -      | -    | 5.43   | -     |
|                        | 2.227 | -        | -      | -    | 3.527  | 3.327 |
| Pot Cap-1 Maneuver     | 602   | _        | -      | -    | 49     | 244   |
| Stage 1                | _     | _        | _      | _    | 304    |       |
| Stage 2                | _     | _        | _      | _    | 333    | _     |
| Platoon blocked, %     |       | _        | _      | _    | 000    |       |
| Mov Cap-1 Maneuver     | 602   | _        |        | _    | 46     | 244   |
| Mov Cap-1 Maneuver     | -     | _        | _      | _    | 46     | - 244 |
|                        |       | -        | -      |      |        |       |
| Stage 1                | -     | -        | -      | -    | 285    | -     |
| Stage 2                | -     | -        | -      | -    | 333    | -     |
|                        |       |          |        |      |        |       |
| Approach               | EB    |          | WB     |      | SB     |       |
| HCM Control Delay, s   | 0.2   |          | 0      |      | 35.8   |       |
| HCM LOS                | 0.2   |          |        |      | E      |       |
| TIOM EGG               |       |          |        |      |        |       |
|                        |       |          |        |      |        |       |
| Minor Lane/Major Mvmt  |       | EBL      | EBT    | WBT  | WBR :  | SBLn1 |
| Capacity (veh/h)       |       | 602      | -      | -    | -      | 166   |
| HCM Lane V/C Ratio     |       | 0.027    | -      | -    | -      | 0.301 |
| HCM Control Delay (s)  |       | 11.1     | 0      | -    | -      |       |
| HCM Lane LOS           |       | В        | A      | -    | -      | Е     |
| HCM 95th %tile Q(veh)  |       | 0.1      | _      | _    | _      | 1.2   |
|                        |       |          |        |      |        |       |

| Intersection           |        |          |          |        |          |          |          |      |       |          |      |       |
|------------------------|--------|----------|----------|--------|----------|----------|----------|------|-------|----------|------|-------|
| Int Delay, s/veh       | 0.6    |          |          |        |          |          |          |      |       |          |      |       |
| Movement               | EBL    | EBT      | EBR      | WBL    | WBT      | WBR      | NBL      | NBT  | NBR   | SBL      | SBT  | SBR   |
| Lane Configurations    |        | <b>†</b> | 7        |        | <b>↑</b> | 7        |          |      | 7     |          |      | 7     |
| Traffic Vol, veh/h     | 0      | 882      | 50       | 0      | 904      | 11       | 0        | 0    | 18    | 0        | 0    | 47    |
| Future Vol, veh/h      | 0      | 882      | 50       | 0      | 904      | 11       | 0        | 0    | 18    | 0        | 0    | 47    |
| Conflicting Peds, #/hr | 0      | 0        | 0        | 0      | 0        | 0        | 0        | 0    | 0     | 0        | 0    | 0     |
| Sign Control           | Free   | Free     | Free     | Free   | Free     | Free     | Stop     | Stop | Stop  | Stop     | Stop | Stop  |
| RT Channelized         | -      | _        | None     | _      | _        | None     | -        | -    | None  | - 11     | -    | None  |
| Storage Length         | _      | -        | 200      | -      | -        | 200      | -        | -    | 0     | -        | -    | 0     |
| Veh in Median Storage  | e.# -  | 0        |          | -      | 0        |          | -        | 0    | -     | -        | 0    | _     |
| Grade, %               | -,     | 0        | -        | -      | 0        | _        | -        | 0    | _     | -        | 0    | -     |
| Peak Hour Factor       | 92     | 92       | 92       | 92     | 92       | 92       | 92       | 92   | 92    | 92       | 92   | 92    |
| Heavy Vehicles, %      | 3      | 3        | 3        | 3      | 3        | 3        | 3        | 3    | 3     | 3        | 3    | 3     |
| Mvmt Flow              | 0      | 959      | 54       | 0      | 983      | 12       | 0        | 0    | 20    | 0        | 0    | 51    |
|                        |        |          | O I      |        | 000      |          |          |      |       |          |      | 0.1   |
| Major/Minor            | Major1 |          | ľ        | Major2 |          | N        | /linor1  |      | N     | /linor2  |      |       |
| Conflicting Flow All   | -      | 0        | 0        | -      | -        | 0        | -        | -    | 959   | -        | -    | 983   |
| Stage 1                | -      | -        | -        | -      | -        | _        | _        | -    | -     | -        | -    | _     |
| Stage 2                | -      | -        | -        | -      | -        | -        | -        | -    | -     | -        | -    | _     |
| Critical Hdwy          | -      | -        | -        | -      | -        | -        | _        | -    | 6.23  | -        | -    | 6.23  |
| Critical Hdwy Stg 1    | _      | _        | _        | _      | _        | _        | _        | _    | -     | _        | _    | -     |
| Critical Hdwy Stg 2    | -      | -        | _        | _      | _        | _        | _        | _    | _     | -        | _    | _     |
| Follow-up Hdwy         | _      | _        | _        | _      | _        | _        | _        | _    | 3.327 | _        | _    | 3.327 |
| Pot Cap-1 Maneuver     | 0      | _        | _        | 0      | _        | _        | 0        | 0    | 310   | 0        | 0    | 301   |
| Stage 1                | 0      | _        | _        | 0      | _        | _        | 0        | 0    | -     | 0        | 0    | -     |
| Stage 2                | 0      | _        | _        | 0      | _        | _        | 0        | 0    | _     | 0        | 0    | _     |
| Platoon blocked, %     | - 0    | _        | <u>-</u> | - 0    | <u>-</u> | <u>-</u> |          |      |       | U        |      |       |
| Mov Cap-1 Maneuver     | _      | _        | _        | _      | _        | _        | _        | _    | 310   | _        | _    | 301   |
| Mov Cap-1 Maneuver     | _      | _        | _        | _      | _        | _        | _        | _    | -     | <u>-</u> | _    | - 501 |
| Stage 1                | _      |          | _        | _      | _        |          | _        | _    |       | _        | _    | _     |
| Stage 2                | _      | _        |          |        |          |          |          |      | _     | _        | _    | _     |
| Olaye 2                | _      | -        | _        | _      | _        | -        | -        | _    | -     | -        | _    | _     |
| Approach               | EB     |          |          | WB     |          |          | NB       |      |       | SB       |      |       |
| HCM Control Delay, s   | 0      |          |          | 0      |          |          | 17.4     |      |       | 19.4     |      |       |
| HCM LOS                | - 0    |          |          | - 0    |          |          | C        |      |       | C        |      |       |
|                        |        |          |          |        |          |          | <u> </u> |      |       |          |      |       |
| Minor Lane/Major Mvm   | nt 1   | NBLn1    | EBT      | EBR    | WBT      | WBR S    | SBLn1    |      |       |          |      |       |
| Capacity (veh/h)       |        | 310      | _        | _      | _        |          | 301      |      |       |          |      |       |
| HCM Lane V/C Ratio     |        | 0.063    | _        | _      | -        | -        | 0.17     |      |       |          |      |       |
| HCM Control Delay (s)  |        | 17.4     | _        | _      | -        | -        | 19.4     |      |       |          |      |       |
| HCM Lane LOS           |        | С        | _        | _      | _        | -        | С        |      |       |          |      |       |
| HCM 95th %tile Q(veh)  | )      | 0.2      | _        | _      | _        | _        | 0.6      |      |       |          |      |       |
|                        | ,      | J.L      |          |        |          |          | 3.0      |      |       |          |      |       |

| Intersection           |          |          |            |          |         |        |
|------------------------|----------|----------|------------|----------|---------|--------|
| Int Delay, s/veh       | 0.3      |          |            |          |         |        |
|                        |          | EDT      | WDT        | WPD      | CDI     | CDD    |
| Movement               | EBL      | EBT      | WBT        | WBR      | SBL     | SBR    |
| Lane Configurations    | •        | <b>†</b> | <b>†</b> ‡ | 40       | •       | 7      |
| Traffic Vol, veh/h     | 0        | 896      | 875        | 18       | 0       | 51     |
| Future Vol, veh/h      | 0        | 896      | 875        | 18       | 0       | 51     |
| Conflicting Peds, #/hr | 0        | 0        | 0          | 0        | 0       | 0      |
| Sign Control           | Free     | Free     | Free       | Free     | Stop    | Stop   |
| RT Channelized         | -        | None     | -          | None     | -       | None   |
| Storage Length         | -        | -        | -          | -        | -       | 0      |
| Veh in Median Storage  | e, # -   | 0        | 0          | -        | 0       | -      |
| Grade, %               | _        | 0        | 0          | -        | 0       | -      |
| Peak Hour Factor       | 92       | 92       | 92         | 92       | 92      | 92     |
| Heavy Vehicles, %      | 3        | 3        | 3          | 3        | 3       | 3      |
| Mvmt Flow              | 0        | 974      | 951        | 20       | 0       | 55     |
|                        |          |          |            |          |         |        |
| NA ' (NA)              |          |          | 4 : 0      |          | ı. o    |        |
|                        | Major1   |          | Major2     |          | /linor2 |        |
| Conflicting Flow All   | -        | 0        | -          | 0        | -       | 486    |
| Stage 1                | -        | -        | -          | -        | -       | -      |
| Stage 2                | -        | -        | -          | -        | -       | -      |
| Critical Hdwy          | -        | -        | -          | -        | -       | 6.945  |
| Critical Hdwy Stg 1    | -        | -        | -          | -        | -       | -      |
| Critical Hdwy Stg 2    | _        | _        | -          | -        | -       | -      |
| Follow-up Hdwy         | -        | -        | -          | -        | - (     | 3.3285 |
| Pot Cap-1 Maneuver     | 0        | -        | _          | -        | 0       | 526    |
| Stage 1                | 0        | -        | -          | -        | 0       | -      |
| Stage 2                | 0        | _        | _          | -        | 0       | _      |
| Platoon blocked, %     | •        | _        | _          | _        |         |        |
| Mov Cap-1 Maneuver     | _        | _        | _          | _        | _       | 526    |
| Mov Cap-2 Maneuver     | <u>-</u> | _        | _          | <u>-</u> | _       | -      |
| Stage 1                | _        |          |            | _        | _       | _      |
| _                      | _        | _        | _          | _        |         | _      |
| Stage 2                | -        | -        | -          | -        | -       | -      |
|                        |          |          |            |          |         |        |
| Approach               | EB       |          | WB         |          | SB      |        |
| HCM Control Delay, s   | 0        |          | 0          |          | 12.6    |        |
| HCM LOS                |          |          |            |          | В       |        |
|                        |          |          |            |          |         |        |
| N. C                   |          | EST      | 14/5-      | 14/00 1  | )DI (   |        |
| Minor Lane/Major Mvm   | it       | EBT      | WBT        | WBR S    |         |        |
| Capacity (veh/h)       |          | -        | -          | -        | 526     |        |
| HCM Lane V/C Ratio     |          | -        | -          | -        | 0.105   |        |
| HCM Control Delay (s)  |          | -        | -          | -        | 12.6    |        |
| HCM Lane LOS           |          | -        | -          | -        | В       |        |
| HCM 95th %tile Q(veh)  | )        | -        | -          | -        | 0.4     |        |
|                        |          |          |            |          |         |        |

|                            | ۶     | <b>→</b> | •        | •     | <b>←</b> | •        | •     | <b>†</b>        | <i>&gt;</i> | <b>/</b> | <b>↓</b>       | -√    |
|----------------------------|-------|----------|----------|-------|----------|----------|-------|-----------------|-------------|----------|----------------|-------|
| Lane Group                 | EBL   | EBT      | EBR      | WBL   | WBT      | WBR      | NBL   | NBT             | NBR         | SBL      | SBT            | SBR   |
| Lane Configurations        | ۲     | <b>^</b> | 7        | ۲     | <b>^</b> | 7        | ሻ     | ተተ <sub>ጉ</sub> |             | ሻ        | ተተ <sub></sub> |       |
| Traffic Volume (vph)       | 76    | 264      | 90       | 256   | 553      | 141      | 296   | 764             | 86          | 51       | 528            | 54    |
| Future Volume (vph)        | 76    | 264      | 90       | 256   | 553      | 141      | 296   | 764             | 86          | 51       | 528            | 54    |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800     | 1800  | 1800     | 1800     | 1800  | 1800            | 1800        | 1800     | 1800           | 1800  |
| Storage Length (m)         | 30.0  |          | 50.0     | 30.0  |          | 30.0     | 90.0  |                 | 0.0         | 75.0     |                | 0.0   |
| Storage Lanes              | 1     |          | 1        | 1     |          | 1        | 1     |                 | 0           | 1        |                | 0     |
| Taper Length (m)           | 20.0  |          |          | 25.0  |          |          | 35.0  |                 |             | 40.0     |                |       |
| Lane Util. Factor          | 1.00  | 0.95     | 1.00     | 1.00  | 0.95     | 1.00     | 1.00  | 0.91            | 0.91        | 1.00     | 0.91           | 0.91  |
| Ped Bike Factor            | 0.99  |          | 0.97     | 0.99  |          | 0.97     | 0.99  | 1.00            |             | 0.99     | 1.00           |       |
| Frt                        |       |          | 0.850    |       |          | 0.850    |       | 0.985           |             |          | 0.986          |       |
| Flt Protected              | 0.950 |          |          | 0.950 |          |          | 0.950 |                 |             | 0.950    |                |       |
| Satd. Flow (prot)          | 1695  | 3390     | 1517     | 1695  | 3390     | 1517     | 1695  | 4781            | 0           | 1695     | 4780           | 0     |
| Flt Permitted              | 0.329 |          |          | 0.369 |          |          | 0.330 |                 |             | 0.297    |                |       |
| Satd. Flow (perm)          | 584   | 3390     | 1478     | 653   | 3390     | 1477     | 581   | 4781            | 0           | 526      | 4780           | 0     |
| Right Turn on Red          |       |          | Yes      |       |          | Yes      |       |                 | Yes         |          |                | Yes   |
| Satd. Flow (RTOR)          |       |          | 159      |       |          | 123      |       | 19              |             |          | 14             |       |
| Link Speed (k/h)           |       | 50       |          |       | 50       |          |       | 50              |             |          | 50             |       |
| Link Distance (m)          |       | 458.3    |          |       | 110.3    |          |       | 220.1           |             |          | 211.9          |       |
| Travel Time (s)            |       | 33.0     |          |       | 7.9      |          |       | 15.8            |             |          | 15.3           |       |
| Confl. Peds. (#/hr)        | 13    |          | 12       | 12    |          | 13       | 32    |                 | 20          | 20       |                | 32    |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92     | 0.92  | 0.92     | 0.92     | 0.92  | 0.92            | 0.92        | 0.92     | 0.92           | 0.92  |
| Heavy Vehicles (%)         | 2%    | 2%       | 2%       | 2%    | 2%       | 2%       | 2%    | 2%              | 2%          | 2%       | 2%             | 2%    |
| Adj. Flow (vph)            | 83    | 287      | 98       | 278   | 601      | 153      | 322   | 830             | 93          | 55       | 574            | 59    |
| Shared Lane Traffic (%)    |       |          |          |       |          |          |       |                 |             |          |                |       |
| Lane Group Flow (vph)      | 83    | 287      | 98       | 278   | 601      | 153      | 322   | 923             | 0           | 55       | 633            | 0     |
| Enter Blocked Intersection | No    | No       | No       | No    | No       | No       | No    | No              | No          | No       | No             | No    |
| Lane Alignment             | Left  | Left     | Right    | Left  | Left     | Right    | Left  | Left            | Right       | Left     | Left           | Right |
| Median Width(m)            |       | 4.7      | <u> </u> |       | 3.7      | <u> </u> |       | 4.7             |             |          | 4.7            | - U   |
| Link Offset(m)             |       | 0.0      |          |       | 0.0      |          |       | 0.0             |             |          | 0.0            |       |
| Crosswalk Width(m)         |       | 1.6      |          |       | 1.6      |          |       | 1.6             |             |          | 1.6            |       |
| Two way Left Turn Lane     |       |          |          |       |          |          |       |                 |             |          |                |       |
| Headway Factor             | 1.06  | 1.06     | 1.06     | 1.06  | 1.06     | 1.06     | 1.06  | 1.06            | 1.06        | 1.06     | 1.06           | 1.06  |
| Turning Speed (k/h)        | 24    |          | 14       | 24    |          | 14       | 24    |                 | 14          | 24       |                | 14    |
| Number of Detectors        | 1     | 2        | 1        | 1     | 2        | 1        | 1     | 2               |             | 1        | 2              |       |
| Detector Template          | Left  | Thru     | Right    | Left  | Thru     | Right    | Left  | Thru            |             | Left     | Thru           |       |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1      | 6.1   | 30.5     | 6.1      | 6.1   | 30.5            |             | 6.1      | 30.5           |       |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0             |             | 0.0      | 0.0            |       |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0             |             | 0.0      | 0.0            |       |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1      | 6.1   | 1.8      | 6.1      | 6.1   | 1.8             |             | 6.1      | 1.8            |       |
| Detector 1 Type            | Cl+Ex | CI+Ex    | CI+Ex    | CI+Ex | CI+Ex    | CI+Ex    | CI+Ex | Cl+Ex           |             | Cl+Ex    | CI+Ex          |       |
| Detector 1 Channel         |       |          |          |       |          |          |       |                 |             |          |                |       |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0             |             | 0.0      | 0.0            |       |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0             |             | 0.0      | 0.0            |       |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0             |             | 0.0      | 0.0            |       |
| Detector 2 Position(m)     |       | 28.7     |          |       | 28.7     |          |       | 28.7            |             |          | 28.7           |       |
| Detector 2 Size(m)         |       | 1.8      |          |       | 1.8      |          |       | 1.8             |             |          | 1.8            |       |
| Detector 2 Type            |       | Cl+Ex    |          |       | Cl+Ex    |          |       | CI+Ex           |             |          | CI+Ex          |       |
| Detector 2 Channel         |       |          |          |       |          |          |       |                 |             |          |                |       |
| Detector 2 Extend (s)      |       | 0.0      |          |       | 0.0      |          |       | 0.0             |             |          | 0.0            |       |

05/16/2019 WSP

|                         | ۶     | -     | •     | •     | •     | •     | •     | <b>†</b> | ~   | -     | <b>↓</b> | 4   |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|----------|-----|-------|----------|-----|
| Lane Group              | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR | SBL   | SBT      | SBR |
| Turn Type               | pm+pt | NA    | Perm  | pm+pt | NA    | Perm  | pm+pt | NA       |     | pm+pt | NA       |     |
| Protected Phases        | 7     | 4     |       | 3     | 8     |       | 5     | 2        |     | 1     | 6        |     |
| Permitted Phases        | 4     |       | 4     | 8     |       | 8     | 2     |          |     | 6     |          |     |
| Detector Phase          | 7     | 4     | 4     | 3     | 8     | 8     | 5     | 2        |     | 1     | 6        |     |
| Switch Phase            |       |       |       |       |       |       |       |          |     |       |          |     |
| Minimum Initial (s)     | 7.0   | 10.0  | 10.0  | 7.0   | 10.0  | 10.0  | 7.0   | 15.0     |     | 7.0   | 15.0     |     |
| Minimum Split (s)       | 11.0  | 36.5  | 36.5  | 11.0  | 36.5  | 36.5  | 11.0  | 33.5     |     | 12.0  | 33.5     |     |
| Total Split (s)         | 11.0  | 36.6  | 36.6  | 20.0  | 45.6  | 45.6  | 28.0  | 51.4     |     | 12.0  | 35.4     |     |
| Total Split (%)         | 9.2%  | 30.5% | 30.5% | 16.7% | 38.0% | 38.0% | 23.3% | 42.8%    |     | 10.0% | 29.5%    |     |
| Maximum Green (s)       | 7.0   | 32.1  | 32.1  | 16.0  | 41.1  | 41.1  | 24.0  | 46.9     |     | 8.0   | 30.9     |     |
| Yellow Time (s)         | 3.0   | 3.5   | 3.5   | 3.0   | 3.5   | 3.5   | 3.0   | 3.5      |     | 3.0   | 3.5      |     |
| All-Red Time (s)        | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0      |     | 1.0   | 1.0      |     |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |     | 0.0   | 0.0      |     |
| Total Lost Time (s)     | 4.0   | 4.5   | 4.5   | 4.0   | 4.5   | 4.5   | 4.0   | 4.5      |     | 4.0   | 4.5      |     |
| Lead/Lag                | Lead  | Lag   | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      |     | Lead  | Lag      |     |
| Lead-Lag Optimize?      | Yes      |     | Yes   | Yes      |     |
| Vehicle Extension (s)   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      |     | 2.0   | 2.0      |     |
| Recall Mode             | None  | C-Max    |     | None  | C-Max    |     |
| Walk Time (s)           |       | 10.0  | 10.0  |       | 10.0  | 10.0  |       | 10.0     |     |       | 10.0     |     |
| Flash Dont Walk (s)     |       | 22.0  | 22.0  |       | 22.0  | 22.0  |       | 19.0     |     |       | 19.0     |     |
| Pedestrian Calls (#/hr) |       | 10    | 10    |       | 10    | 10    |       | 10       |     |       | 20       |     |
| Act Effct Green (s)     | 26.8  | 19.3  | 19.3  | 39.5  | 30.2  | 30.2  | 72.5  | 63.0     |     | 59.7  | 52.0     |     |
| Actuated g/C Ratio      | 0.22  | 0.16  | 0.16  | 0.33  | 0.25  | 0.25  | 0.60  | 0.52     |     | 0.50  | 0.43     |     |
| v/c Ratio               | 0.43  | 0.53  | 0.26  | 0.79  | 0.70  | 0.33  | 0.65  | 0.37     |     | 0.17  | 0.30     |     |
| Control Delay           | 33.7  | 48.3  | 2.3   | 48.3  | 45.3  | 10.8  | 19.7  | 18.8     |     | 14.6  | 24.8     |     |
| Queue Delay             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |     | 0.0   | 0.0      |     |
| Total Delay             | 33.7  | 48.3  | 2.3   | 48.3  | 45.3  | 10.8  | 19.7  | 18.8     |     | 14.6  | 24.8     |     |
| LOS                     | С     | D     | Α     | D     | D     | В     | В     | В        |     | В     | С        |     |
| Approach Delay          |       | 36.1  |       |       | 41.0  |       |       | 19.0     |     |       | 24.0     |     |
| Approach LOS            |       | D     |       |       | D     |       |       | В        |     |       | С        |     |
| Queue Length 50th (m)   | 14.0  | 33.4  | 0.0   | 53.2  | 70.6  | 5.6   | 33.9  | 44.8     |     | 4.9   | 33.1     |     |
| Queue Length 95th (m)   | 21.2  | 40.8  | 1.6   | 64.7  | 76.8  | 19.3  | 67.5  | 70.7     |     | 13.5  | 58.2     |     |
| Internal Link Dist (m)  |       | 434.3 |       |       | 86.3  |       |       | 196.1    |     |       | 187.9    |     |
| Turn Bay Length (m)     | 30.0  |       | 50.0  | 30.0  |       | 30.0  | 90.0  |          |     | 75.0  |          |     |
| Base Capacity (vph)     | 195   | 906   | 511   | 353   | 1161  | 586   | 574   | 2518     |     | 343   | 2079     |     |
| Starvation Cap Reductn  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        |     | 0     | 0        |     |
| Spillback Cap Reductn   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        |     | 0     | 0        |     |
| Storage Cap Reductn     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0        |     | 0     | 0        |     |
| Reduced v/c Ratio       | 0.43  | 0.32  | 0.19  | 0.79  | 0.52  | 0.26  | 0.56  | 0.37     |     | 0.16  | 0.30     |     |

### Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 29.0 Intersection LOS: C
Intersection Capacity Utilization 85.0% ICU Level of Service E

05/16/2019 Synchro 10 Report WSP Page 2

Analysis Period (min) 15



05/16/2019 Synchro 10 Report WSP Page 3

|                            | ۶     | <b>→</b> | •      | •     | <b>←</b> | •        | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | - ✓     |
|----------------------------|-------|----------|--------|-------|----------|----------|-------|----------|-------------|----------|----------|---------|
| Lane Group                 | EBL   | EBT      | EBR    | WBL   | WBT      | WBR      | NBL   | NBT      | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations        | 7     | <b>†</b> | 7      | ሻ     | <b>†</b> | 7        |       | 4        |             |          | 4        |         |
| Traffic Volume (vph)       | 11    | 440      | 21     | 20    | 539      | 8        | 138   | 6        | 37          | 58       | 0        | 92      |
| Future Volume (vph)        | 11    | 440      | 21     | 20    | 539      | 8        | 138   | 6        | 37          | 58       | 0        | 92      |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800   | 1800  | 1800     | 1800     | 1800  | 1800     | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)         | 30.0  |          | 20.0   | 30.0  |          | 20.0     | 0.0   |          | 0.0         | 0.0      |          | 0.0     |
| Storage Lanes              | 1     |          | 1      | 1     |          | 1        | 0     |          | 0           | 0        |          | 0       |
| Taper Length (m)           | 30.0  |          |        | 30.0  |          |          | 30.0  |          |             | 30.0     |          |         |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00   | 1.00  | 1.00     | 1.00     | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00    |
| Frt                        |       |          | 0.850  |       |          | 0.850    |       | 0.973    |             |          | 0.917    |         |
| Flt Protected              | 0.950 |          |        | 0.950 |          |          |       | 0.963    |             |          | 0.981    |         |
| Satd. Flow (prot)          | 1679  | 1502     | 1502   | 1679  | 1502     | 1502     | 0     | 1656     | 0           | 0        | 1351     | 0       |
| FIt Permitted              | 0.363 |          |        | 0.437 |          |          |       | 0.678    |             |          | 0.842    |         |
| Satd. Flow (perm)          | 641   | 1502     | 1502   | 772   | 1502     | 1502     | 0     | 1166     | 0           | 0        | 1160     | 0       |
| Right Turn on Red          |       |          | Yes    |       |          | Yes      |       |          | Yes         | -        |          | Yes     |
| Satd. Flow (RTOR)          |       |          | 25     |       |          | 25       |       | 24       |             |          | 100      | . 00    |
| Link Speed (k/h)           |       | 50       |        |       | 50       |          |       | 50       |             |          | 50       |         |
| Link Distance (m)          |       | 114.1    |        |       | 103.2    |          |       | 288.6    |             |          | 205.8    |         |
| Travel Time (s)            |       | 8.2      |        |       | 7.4      |          |       | 20.8     |             |          | 14.8     |         |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92   | 0.92  | 0.92     | 0.92     | 0.92  | 0.92     | 0.92        | 0.92     | 0.92     | 0.92    |
| Parking (#/hr)             | 0.02  | 10       | 0.02   | 0.02  | 10       | 0.02     | 0.02  | 0.02     | 0.02        | 0.02     | 10       | 0.02    |
| Adj. Flow (vph)            | 12    | 478      | 23     | 22    | 586      | 9        | 150   | 7        | 40          | 63       | 0        | 100     |
| Shared Lane Traffic (%)    | 12    | 770      | 20     |       | 000      | <u> </u> | 100   | ,        | -10         | 00       | <u> </u> | 100     |
| Lane Group Flow (vph)      | 12    | 478      | 23     | 22    | 586      | 9        | 0     | 197      | 0           | 0        | 163      | 0       |
| Enter Blocked Intersection | No    | No       | No     | No    | No       | No       | No    | No       | No          | No       | No       | No      |
| Lane Alignment             | Left  | Left     | Right  | Left  | Left     | Right    | Left  | Left     | Right       | Left     | Left     | Right   |
| Median Width(m)            | Loit  | 3.7      | rugiit | Loit  | 3.7      | rtigiti  | Loit  | 0.0      | rtigitt     | Loit     | 0.0      | rtigitt |
| Link Offset(m)             |       | 0.0      |        |       | 0.0      |          |       | 0.0      |             |          | 0.0      |         |
| Crosswalk Width(m)         |       | 1.6      |        |       | 1.6      |          |       | 1.6      |             |          | 1.6      |         |
| Two way Left Turn Lane     |       | 1.0      |        |       | 1.0      |          |       | 1.0      |             |          | 1.0      |         |
| Headway Factor             | 1.06  | 1.30     | 1.06   | 1.06  | 1.30     | 1.06     | 1.06  | 1.06     | 1.06        | 1.06     | 1.30     | 1.06    |
| Turning Speed (k/h)        | 24    | 1.00     | 14     | 24    | 1.00     | 14       | 24    | 1.00     | 14          | 24       | 1.00     | 14      |
| Number of Detectors        | 1     | 2        | 1      | 1     | 2        | 1        | 1     | 2        | 17          | 1        | 2        | 17      |
| Detector Template          | Left  | Thru     | Right  | Left  | Thru     | Right    | Left  | Thru     |             | Left     | Thru     |         |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1    | 6.1   | 30.5     | 6.1      | 6.1   | 30.5     |             | 6.1      | 30.5     |         |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0    | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      |             | 0.0      | 0.0      |         |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0    | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      |             | 0.0      | 0.0      |         |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1    | 6.1   | 1.8      | 6.1      | 6.1   | 1.8      |             | 6.1      | 1.8      |         |
| Detector 1 Type            | CI+Ex | Cl+Ex    | Cl+Ex  | CI+Ex | Cl+Ex    | Cl+Ex    | Cl+Ex | CI+Ex    |             | CI+Ex    | CI+Ex    |         |
| Detector 1 Channel         | CITEX | CITEX    | CITEX  | CITEX | CITEX    | CITEX    | CITEX | CITEX    |             | CITEX    | CITEX    |         |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0    | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      |             | 0.0      | 0.0      |         |
| ` ,                        | 0.0   | 0.0      | 0.0    | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      |             | 0.0      | 0.0      |         |
| Detector 1 Queue (s)       | 0.0   |          | 0.0    |       | 0.0      | 0.0      |       | 0.0      |             | 0.0      | 0.0      |         |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0    | 0.0   |          | 0.0      | 0.0   |          |             | 0.0      | 28.7     |         |
| Detector 2 Position(m)     |       | 28.7     |        |       | 28.7     |          |       | 28.7     |             |          |          |         |
| Detector 2 Size(m)         |       | 1.8      |        |       | 1.8      |          |       | 1.8      |             |          | 1.8      |         |
| Detector 2 Type            |       | Cl+Ex    |        |       | Cl+Ex    |          |       | Cl+Ex    |             |          | CI+Ex    |         |
| Detector 2 Channel         |       | 0.0      |        |       | 0.0      |          |       | 0.0      |             |          | 0.0      |         |
| Detector 2 Extend (s)      | _     | 0.0      | _      | _     | 0.0      | _        | _     | 0.0      |             | -        | 0.0      |         |
| Turn Type                  | Perm  | NA       | Perm   | Perm  | NA       | Perm     | Perm  | NA       |             | Perm     | NA       |         |
| Protected Phases           |       | 6        |        |       | 2        |          |       | 3        |             |          | 8        |         |

|                         | ٦     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | <b>†</b> | /   | <b>&gt;</b> | ļ     | 1   |
|-------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-----|-------------|-------|-----|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |          | 6     | 2     |          | 2     | 3     |          |     | 8           |       |     |
| Detector Phase          | 6     | 6        | 6     | 2     | 2        | 2     | 3     | 3        |     | 8           | 8     |     |
| Switch Phase            |       |          |       |       |          |       |       |          |     |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |     | 10.0        | 10.0  |     |
| Minimum Split (s)       | 25.5  | 25.5     | 25.5  | 25.5  | 25.5     | 25.5  | 30.5  | 30.5     |     | 30.5        | 30.5  |     |
| Total Split (s)         | 34.5  | 34.5     | 34.5  | 34.5  | 34.5     | 34.5  | 30.5  | 30.5     |     | 30.5        | 30.5  |     |
| Total Split (%)         | 53.1% | 53.1%    | 53.1% | 53.1% | 53.1%    | 53.1% | 46.9% | 46.9%    |     | 46.9%       | 46.9% |     |
| Maximum Green (s)       | 30.0  | 30.0     | 30.0  | 30.0  | 30.0     | 30.0  | 26.0  | 26.0     |     | 26.0        | 26.0  |     |
| Yellow Time (s)         | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      |     | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |     | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |       | 0.0      |     |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5      | 4.5   | 4.5   | 4.5      | 4.5   |       | 4.5      |     |             | 4.5   |     |
| Lead/Lag                |       |          |       |       |          |       |       |          |     |             |       |     |
| Lead-Lag Optimize?      |       |          |       |       |          |       |       |          |     |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |     | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min    | C-Min | C-Min | C-Min    | C-Min | None  | None     |     | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     | 10.0  | 10.0  | 10.0     |     | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0      | 8.0   | 8.0   | 8.0      | 8.0   | 16.0  | 16.0     |     | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20       | 20    | 20    | 20       | 20    | 20    | 20       |     | 20          | 20    |     |
| Act Effct Green (s)     | 40.5  | 40.5     | 40.5  | 40.5  | 40.5     | 40.5  |       | 15.5     |     |             | 15.5  |     |
| Actuated g/C Ratio      | 0.62  | 0.62     | 0.62  | 0.62  | 0.62     | 0.62  |       | 0.24     |     |             | 0.24  |     |
| v/c Ratio               | 0.03  | 0.51     | 0.02  | 0.05  | 0.63     | 0.01  |       | 0.67     |     |             | 0.46  |     |
| Control Delay           | 7.9   | 11.2     | 3.8   | 7.8   | 14.5     | 1.9   |       | 29.6     |     |             | 12.3  |     |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |       | 0.0      |     |             | 0.0   |     |
| Total Delay             | 7.9   | 11.2     | 3.8   | 7.8   | 14.5     | 1.9   |       | 29.6     |     |             | 12.3  |     |
| LOS                     | Α     | В        | Α     | Α     | В        | Α     |       | С        |     |             | В     |     |
| Approach Delay          |       | 10.7     |       |       | 14.1     |       |       | 29.6     |     |             | 12.3  |     |
| Approach LOS            |       | В        |       |       | В        |       |       | С        |     |             | В     |     |
| Queue Length 50th (m)   | 0.4   | 25.1     | 0.0   | 0.8   | 34.3     | 0.0   |       | 19.5     |     |             | 6.4   |     |
| Queue Length 95th (m)   | 3.3   | 74.3     | 3.1   | 4.8   | #115.3   | 1.0   |       | 29.6     |     |             | 15.7  |     |
| Internal Link Dist (m)  |       | 90.1     |       |       | 79.2     |       |       | 264.6    |     |             | 181.8 |     |
| Turn Bay Length (m)     | 30.0  |          | 20.0  | 30.0  |          | 20.0  |       |          |     |             |       |     |
| Base Capacity (vph)     | 399   | 935      | 945   | 481   | 935      | 945   |       | 480      |     |             | 524   |     |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |     |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |     |             | 0     |     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0        | 0     |       | 0        |     |             | 0     |     |
| Reduced v/c Ratio       | 0.03  | 0.51     | 0.02  | 0.05  | 0.63     | 0.01  |       | 0.41     |     |             | 0.31  |     |
|                         |       |          |       |       |          |       |       |          |     |             |       |     |

Intersection Summary

Area Type: Other

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67


Intersection Signal Delay: 14.8 Intersection LOS: B
Intersection Capacity Utilization 54.9% ICU Level of Service A

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

05/16/2019 Synchro 10 Report WSP Page 5

Queue shown is maximum after two cycles.





|                            | ٠     | <b>→</b> | •     | •     | ←        | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 4     |
|----------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|-------------|-------|-------|
| Lane Group                 | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT   | SBR   |
| Lane Configurations        | 7     | <b>†</b> | 7     | ሻ     | <b>†</b> | 7     |       | 4        |             |             | 4     |       |
| Traffic Volume (vph)       | 16    | 494      | 11    | 28    | 386      | 5     | 57    | 11       | 55          | 51          | 0     | 63    |
| Future Volume (vph)        | 16    | 494      | 11    | 28    | 386      | 5     | 57    | 11       | 55          | 51          | 0     | 63    |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800  | 1800  | 1800     | 1800  | 1800  | 1800     | 1800        | 1800        | 1800  | 1800  |
| Storage Length (m)         | 40.0  |          | 20.0  | 40.0  |          | 20.0  | 0.0   |          | 0.0         | 0.0         |       | 0.0   |
| Storage Lanes              | 1     |          | 1     | 1     |          | 1     | 0     |          | 0           | 0           |       | 0     |
| Taper Length (m)           | 30.0  |          |       | 30.0  |          |       | 30.0  |          |             | 30.0        |       |       |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00        | 1.00  | 1.00  |
| Frt                        |       |          | 0.850 |       |          | 0.850 |       | 0.940    |             |             | 0.925 |       |
| Flt Protected              | 0.950 |          |       | 0.950 |          |       |       | 0.977    |             |             | 0.978 |       |
| Satd. Flow (prot)          | 1679  | 1502     | 1502  | 1679  | 1502     | 1502  | 0     | 1623     | 0           | 0           | 1599  | 0     |
| Flt Permitted              | 0.495 |          |       | 0.416 |          |       |       | 0.829    |             |             | 0.834 |       |
| Satd. Flow (perm)          | 875   | 1502     | 1502  | 735   | 1502     | 1502  | 0     | 1377     | 0           | 0           | 1363  | 0     |
| Right Turn on Red          |       |          | Yes   |       |          | Yes   |       |          | Yes         |             |       | Yes   |
| Satd. Flow (RTOR)          |       |          | 27    |       |          | 27    |       | 60       |             |             | 68    |       |
| Link Speed (k/h)           |       | 50       |       |       | 50       |       |       | 48       |             |             | 50    |       |
| Link Distance (m)          |       | 102.4    |       |       | 103.2    |       |       | 268.0    |             |             | 228.4 |       |
| Travel Time (s)            |       | 7.4      |       |       | 7.4      |       |       | 20.1     |             |             | 16.4  |       |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92        | 0.92        | 0.92  | 0.92  |
| Parking (#/hr)             |       | 10       |       |       | 10       |       |       |          |             | 10          |       |       |
| Adj. Flow (vph)            | 17    | 537      | 12    | 30    | 420      | 5     | 62    | 12       | 60          | 55          | 0     | 68    |
| Shared Lane Traffic (%)    |       |          |       |       |          |       |       |          |             |             |       |       |
| Lane Group Flow (vph)      | 17    | 537      | 12    | 30    | 420      | 5     | 0     | 134      | 0           | 0           | 123   | 0     |
| Enter Blocked Intersection | No    | No       | No    | No    | No       | No    | No    | No       | No          | No          | No    | No    |
| Lane Alignment             | Left  | Left     | Right | Left  | Left     | Right | Left  | Left     | Right       | Left        | Left  | Right |
| Median Width(m)            |       | 3.7      |       |       | 3.7      |       |       | 0.0      |             |             | 0.0   |       |
| Link Offset(m)             |       | 0.0      |       |       | 0.0      |       |       | 0.0      |             |             | 0.0   |       |
| Crosswalk Width(m)         |       | 1.6      |       |       | 1.6      |       |       | 1.6      |             |             | 1.6   |       |
| Two way Left Turn Lane     |       |          |       |       |          |       |       |          |             |             |       |       |
| Headway Factor             | 1.06  | 1.30     | 1.06  | 1.06  | 1.30     | 1.06  | 1.06  | 1.06     | 1.06        | 1.06        | 1.06  | 1.06  |
| Turning Speed (k/h)        | 24    |          | 14    | 24    |          | 14    | 24    |          | 14          | 24          |       | 14    |
| Number of Detectors        | 1     | 2        | 1     | 1     | 2        | 1     | 1     | 2        |             | 1           | 2     |       |
| Detector Template          | Left  | Thru     | Right | Left  | Thru     | Right | Left  | Thru     |             | Left        | Thru  |       |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     | 6.1   | 6.1   | 30.5     |             | 6.1         | 30.5  |       |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |       |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |       |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      | 6.1   | 6.1   | 1.8      |             | 6.1         | 1.8   |       |
| Detector 1 Type            | CI+Ex | CI+Ex    | Cl+Ex | CI+Ex | Cl+Ex    | CI+Ex | CI+Ex | CI+Ex    |             | CI+Ex       | CI+Ex |       |
| Detector 1 Channel         |       |          |       |       |          |       |       |          |             |             |       |       |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |       |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |       |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |             | 0.0         | 0.0   |       |
| Detector 2 Position(m)     |       | 28.7     |       |       | 28.7     |       |       | 28.7     |             |             | 28.7  |       |
| Detector 2 Size(m)         |       | 1.8      |       |       | 1.8      |       |       | 1.8      |             |             | 1.8   |       |
| Detector 2 Type            |       | CI+Ex    |       |       | Cl+Ex    |       |       | CI+Ex    |             |             | CI+Ex |       |
| Detector 2 Channel         |       |          |       |       |          |       |       |          |             |             |       |       |
| Detector 2 Extend (s)      |       | 0.0      |       |       | 0.0      |       |       | 0.0      |             |             | 0.0   |       |
| Turn Type                  | Perm  | NA       | Perm  | Perm  | NA       | Perm  | Perm  | NA       |             | Perm        | NA    |       |
| Protected Phases           |       | 6        |       |       | 2        |       |       | 3        |             |             | 8     |       |

|                         | ۶     | <b>→</b> | •     | •     | ←     | •     | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 4   |
|-------------------------|-------|----------|-------|-------|-------|-------|-------|----------|-------------|-------------|-------|-----|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR         | SBL         | SBT   | SBR |
| Permitted Phases        | 6     |          | 6     | 2     |       | 2     | 3     |          |             | 8           |       |     |
| Detector Phase          | 6     | 6        | 6     | 2     | 2     | 2     | 3     | 3        |             | 8           | 8     |     |
| Switch Phase            |       |          |       |       |       |       |       |          |             |             |       |     |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Minimum Split (s)       | 24.5  | 24.5     | 24.5  | 24.5  | 24.5  | 24.5  | 30.5  | 30.5     |             | 30.5        | 30.5  |     |
| Total Split (s)         | 29.4  | 29.4     | 29.4  | 29.4  | 29.4  | 29.4  | 30.6  | 30.6     |             | 30.6        | 30.6  |     |
| Total Split (%)         | 49.0% | 49.0%    | 49.0% | 49.0% | 49.0% | 49.0% | 51.0% | 51.0%    |             | 51.0%       | 51.0% |     |
| Maximum Green (s)       | 24.9  | 24.9     | 24.9  | 24.9  | 24.9  | 24.9  | 26.1  | 26.1     |             | 26.1        | 26.1  |     |
| Yellow Time (s)         | 3.5   | 3.5      | 3.5   | 3.5   | 3.5   | 3.5   | 3.5   | 3.5      |             | 3.5         | 3.5   |     |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0      |             | 1.0         | 1.0   |     |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |       | 0.0      |             |             | 0.0   |     |
| Total Lost Time (s)     | 4.5   | 4.5      | 4.5   | 4.5   | 4.5   | 4.5   |       | 4.5      |             |             | 4.5   |     |
| Lead/Lag                |       |          |       |       |       |       |       |          |             |             |       |     |
| Lead-Lag Optimize?      |       |          |       |       |       |       |       |          |             |             |       |     |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      |             | 2.0         | 2.0   |     |
| Recall Mode             | C-Min | C-Min    | C-Min | C-Min | C-Min | C-Min | None  | None     |             | None        | None  |     |
| Walk Time (s)           | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0     |             | 10.0        | 10.0  |     |
| Flash Dont Walk (s)     | 8.0   | 8.0      | 8.0   | 8.0   | 8.0   | 8.0   | 16.0  | 16.0     |             | 16.0        | 16.0  |     |
| Pedestrian Calls (#/hr) | 20    | 20       | 20    | 20    | 20    | 20    | 20    | 20       |             | 20          | 20    |     |
| Act Effct Green (s)     | 41.6  | 41.6     | 41.6  | 41.6  | 41.6  | 41.6  |       | 13.2     |             |             | 13.2  |     |
| Actuated g/C Ratio      | 0.69  | 0.69     | 0.69  | 0.69  | 0.69  | 0.69  |       | 0.22     |             |             | 0.22  |     |
| v/c Ratio               | 0.03  | 0.52     | 0.01  | 0.06  | 0.40  | 0.00  |       | 0.38     |             |             | 0.35  |     |
| Control Delay           | 7.3   | 11.9     | 2.4   | 6.6   | 10.1  | 0.6   |       | 13.8     |             |             | 11.6  |     |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |       | 0.0      |             |             | 0.0   |     |
| Total Delay             | 7.3   | 11.9     | 2.4   | 6.6   | 10.1  | 0.6   |       | 13.8     |             |             | 11.6  |     |
| LOS                     | Α     | В        | Α     | Α     | В     | Α     |       | В        |             |             | В     |     |
| Approach Delay          |       | 11.6     |       |       | 9.7   |       |       | 13.8     |             |             | 11.6  |     |
| Approach LOS            |       | В        |       |       | Α     |       |       | В        |             |             | В     |     |
| Queue Length 50th (m)   | 0.5   | 23.0     | 0.0   | 1.7   | 31.7  | 0.0   |       | 7.3      |             |             | 5.3   |     |
| Queue Length 95th (m)   | 4.2   | #103.2   | 1.4   | 4.9   | 84.0  | m0.3  |       | 13.3     |             |             | 11.5  |     |
| Internal Link Dist (m)  |       | 78.4     |       |       | 79.2  |       |       | 244.0    |             |             | 204.4 |     |
| Turn Bay Length (m)     | 40.0  |          | 20.0  | 40.0  |       | 20.0  |       |          |             |             |       |     |
| Base Capacity (vph)     | 606   | 1041     | 1049  | 509   | 1041  | 1049  |       | 632      |             |             | 631   |     |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 0     | 0     |       | 0        |             |             | 0     |     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0     | 0     |       | 0        |             |             | 0     |     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0     | 0     |       | 0        |             |             | 0     |     |
| Reduced v/c Ratio       | 0.03  | 0.52     | 0.01  | 0.06  | 0.40  | 0.00  |       | 0.21     |             |             | 0.19  |     |
|                         |       |          |       |       |       |       |       |          |             |             |       |     |

Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:WBTL and 6:EBTL, Start of Green

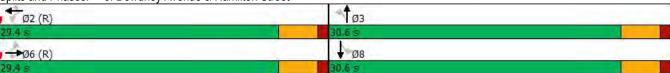
Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.52

Intersection Signal Delay: 11.2 Intersection LOS: B
Intersection Capacity Utilization 44.6% ICU Level of Service A

Analysis Period (min) 15


# 95th percentile volume exceeds capacity, queue may be longer.

05/16/2019 Synchro 10 Report WSP Page 8

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Dewdney Avenue & Hamilton Street



|                            | ٠     | <b>→</b> | •     | •     | +       | •     | •     | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>+</b>   | - ✓         |
|----------------------------|-------|----------|-------|-------|---------|-------|-------|------------|-------------|----------|------------|-------------|
| Lane Group                 | EBL   | EBT      | EBR   | WBL   | WBT     | WBR   | NBL   | NBT        | NBR         | SBL      | SBT        | SBR         |
| Lane Configurations        | ሻ     | <b>†</b> | 7     | ሻ     | f)      |       | ሻ     | <b>∱</b> ∱ |             | ሻ        | <b>†</b> † | 7           |
| Traffic Volume (vph)       | 174   | 50       | 376   | 28    | 38      | 21    | 231   | 739        | 7           | 5        | 561        | 107         |
| Future Volume (vph)        | 174   | 50       | 376   | 28    | 38      | 21    | 231   | 739        | 7           | 5        | 561        | 107         |
| Ideal Flow (vphpl)         | 1800  | 1800     | 1800  | 1800  | 1800    | 1800  | 1800  | 1800       | 1800        | 1800     | 1800       | 1800        |
| Storage Length (m)         | 40.0  |          | 0.0   | 10.0  |         | 0.0   | 35.0  |            | 60.0        | 45.0     |            | 0.0         |
| Storage Lanes              | 1     |          | 1     | 1     |         | 0     | 1     |            | 0           | 1        |            | 1           |
| Taper Length (m)           | 23.0  |          |       | 10.0  |         |       | 25.0  |            |             | 35.0     |            |             |
| Lane Util. Factor          | 1.00  | 1.00     | 1.00  | 1.00  | 1.00    | 1.00  | 1.00  | 0.95       | 0.95        | 1.00     | 0.95       | 1.00        |
| Ped Bike Factor            | 1.00  |          |       |       | 0.99    |       | 0.97  |            |             |          |            | 0.86        |
| Frt                        |       |          | 0.850 |       | 0.946   |       |       | 0.999      |             |          |            | 0.850       |
| Flt Protected              | 0.950 |          |       | 0.950 |         |       | 0.950 |            |             | 0.950    |            |             |
| Satd. Flow (prot)          | 1695  | 1784     | 1517  | 1695  | 1650    | 0     | 1695  | 3387       | 0           | 1695     | 3390       | 1517        |
| Flt Permitted              | 0.548 |          |       | 0.722 |         |       | 0.359 |            |             | 0.346    |            |             |
| Satd. Flow (perm)          | 974   | 1784     | 1517  | 1288  | 1650    | 0     | 619   | 3387       | 0           | 617      | 3390       | 1311        |
| Right Turn on Red          |       |          | Yes   |       |         | Yes   |       |            | Yes         |          |            | Yes         |
| Satd. Flow (RTOR)          |       |          | 409   |       | 23      |       |       | 1          |             |          |            | 116         |
| Link Speed (k/h)           |       | 50       |       |       | 50      |       |       | 50         |             |          | 50         |             |
| Link Distance (m)          |       | 105.7    |       |       | 332.1   |       |       | 329.7      |             |          | 294.1      |             |
| Travel Time (s)            |       | 7.6      |       |       | 23.9    |       |       | 23.7       |             |          | 21.2       |             |
| Confl. Peds. (#/hr)        | 4     |          |       |       |         | 4     | 51    |            |             |          |            | 51          |
| Peak Hour Factor           | 0.92  | 0.92     | 0.92  | 0.92  | 0.92    | 0.92  | 0.92  | 0.92       | 0.92        | 0.92     | 0.92       | 0.92        |
| Heavy Vehicles (%)         | 2%    | 2%       | 2%    | 2%    | 3%      | 5%    | 2%    | 2%         | 2%          | 2%       | 2%         | 2%          |
| Adj. Flow (vph)            | 189   | 54       | 409   | 30    | 41      | 23    | 251   | 803        | 8           | 5        | 610        | 116         |
| Shared Lane Traffic (%)    |       |          |       |       |         |       |       |            |             |          |            |             |
| Lane Group Flow (vph)      | 189   | 54       | 409   | 30    | 64      | 0     | 251   | 811        | 0           | 5        | 610        | 116         |
| Enter Blocked Intersection | No    | No       | No    | No    | No      | No    | No    | No         | No          | No       | No         | No          |
| Lane Alignment             | Left  | Left     | Right | Left  | Left    | Right | Left  | Left       | Right       | Left     | Left       | Right       |
| Median Width(m)            |       | 3.7      |       |       | 3.7     |       |       | 4.7        | <u> </u>    |          | 4.7        | J           |
| Link Offset(m)             |       | 0.0      |       |       | 1.8     |       |       | 0.0        |             |          | 0.0        |             |
| Crosswalk Width(m)         |       | 1.6      |       |       | 1.6     |       |       | 1.6        |             |          | 1.6        |             |
| Two way Left Turn Lane     |       |          |       |       |         |       |       |            |             |          |            |             |
| Headway Factor             | 1.06  | 1.06     | 1.06  | 1.06  | 1.06    | 1.06  | 1.06  | 1.06       | 1.06        | 1.06     | 1.06       | 1.06        |
| Turning Speed (k/h)        | 24    |          | 14    | 24    |         | 14    | 24    |            | 14          | 24       |            | 14          |
| Number of Detectors        | 1     | 2        | 1     | 1     | 2       |       | 1     | 2          |             | 1        | 2          | 1           |
| Detector Template          | Left  | Thru     | Right | Left  | Thru    |       | Left  | Thru       |             | Left     | Thru       | Right       |
| Leading Detector (m)       | 6.1   | 30.5     | 6.1   | 6.1   | 30.5    |       | 6.1   | 30.5       |             | 6.1      | 30.5       | 6.1         |
| Trailing Detector (m)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0         |
| Detector 1 Position(m)     | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0         |
| Detector 1 Size(m)         | 6.1   | 1.8      | 6.1   | 6.1   | 1.8     |       | 6.1   | 1.8        |             | 6.1      | 1.8        | 6.1         |
| Detector 1 Type            | CI+Ex | Cl+Ex    | Cl+Ex | CI+Ex | CI+Ex   |       | CI+Ex | CI+Ex      |             | CI+Ex    | CI+Ex      | CI+Ex       |
| Detector 1 Channel         | O     | O        | O     | 0     | O       |       | O     | O          |             | 0        | O          | <b>0. 1</b> |
| Detector 1 Extend (s)      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0         |
| Detector 1 Queue (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0         |
| Detector 1 Delay (s)       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     |       | 0.0   | 0.0        |             | 0.0      | 0.0        | 0.0         |
| Detector 2 Position(m)     | 3.0   | 28.7     | 3.0   | 0.0   | 28.7    |       | 0.0   | 28.7       |             | 0.0      | 28.7       | 0.0         |
| Detector 2 Size(m)         |       | 1.8      |       |       | 1.8     |       |       | 1.8        |             |          | 1.8        |             |
| Detector 2 Type            |       | Cl+Ex    |       |       | CI+Ex   |       |       | CI+Ex      |             |          | CI+Ex      |             |
| Detector 2 Channel         |       | OI. EX   |       |       | OI - LX |       |       | OI - EX    |             |          | OI / LX    |             |
| Detector 2 Extend (s)      |       | 0.0      |       |       | 0.0     |       |       | 0.0        |             |          | 0.0        |             |

|                         | •     | <b>→</b> | •     | •     | <b>←</b> | •   | •     | <b>†</b> | ~   | <b>&gt;</b> | <b>↓</b> | 4     |
|-------------------------|-------|----------|-------|-------|----------|-----|-------|----------|-----|-------------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR | NBL   | NBT      | NBR | SBL         | SBT      | SBR   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       |     | pm+pt | NA       |     | Perm        | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8        |     | 5     | 2        |     |             | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |          |     | 2     |          |     | 6           |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        |     | 5     | 2        |     | 6           | 6        | 6     |
| Switch Phase            |       |          |       |       |          |     |       |          |     |             |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     |     | 7.0   | 15.0     |     | 15.0        | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5     |     | 11.0  | 19.5     |     | 30.5        | 30.5     | 30.5  |
| Total Split (s)         | 14.0  | 40.0     | 40.0  | 11.0  | 37.0     |     | 26.0  | 69.0     |     | 43.0        | 43.0     | 43.0  |
| Total Split (%)         | 11.7% | 33.3%    | 33.3% | 9.2%  | 30.8%    |     | 21.7% | 57.5%    |     | 35.8%       | 35.8%    | 35.8% |
| Maximum Green (s)       | 10.0  | 35.5     | 35.5  | 7.0   | 32.5     |     | 22.0  | 64.5     |     | 38.5        | 38.5     | 38.5  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      |     | 3.0   | 3.5      |     | 3.5         | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |     | 1.0   | 1.0      |     | 1.0         | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |     | 0.0   | 0.0      |     | 0.0         | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      |     | 4.0   | 4.5      |     | 4.5         | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      |     | Lead  |          |     | Lag         | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      |     | Yes   |          |     | Yes         | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |     | 2.0   | 2.0      |     | 2.0         | 2.0      | 2.0   |
| Recall Mode             | None  | None     | None  | None  | None     |     | None  | C-Max    |     | C-Max       | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0     |     |       |          |     | 10.0        | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0     |     |       |          |     | 16.0        | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 4        |     |       |          |     | 25          | 25       | 25    |
| Act Effct Green (s)     | 25.5  | 19.0     | 19.0  | 19.8  | 14.4     |     | 85.9  | 85.4     |     | 70.1        | 70.1     | 70.1  |
| Actuated g/C Ratio      | 0.21  | 0.16     | 0.16  | 0.16  | 0.12     |     | 0.72  | 0.71     |     | 0.58        | 0.58     | 0.58  |
| v/c Ratio               | 0.71  | 0.19     | 0.70  | 0.13  | 0.29     |     | 0.46  | 0.34     |     | 0.01        | 0.31     | 0.14  |
| Control Delay           | 51.7  | 42.2     | 12.6  | 33.5  | 33.8     |     | 10.6  | 8.7      |     | 19.2        | 16.4     | 4.5   |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |     | 0.0   | 0.0      |     | 0.0         | 0.0      | 0.0   |
| Total Delay             | 51.7  | 42.2     | 12.6  | 33.5  | 33.8     |     | 10.6  | 8.7      |     | 19.2        | 16.4     | 4.5   |
| LOS                     | D     | D        | В     | С     | C        |     | В     | A        |     | В           | В        | Α     |
| Approach Delay          |       | 26.4     |       |       | 33.7     |     |       | 9.2      |     |             | 14.5     |       |
| Approach LOS            | 20.4  | C        | 0.0   |       | С        |     | 40.5  | A        |     | 0.5         | В        | 0.0   |
| Queue Length 50th (m)   | 36.4  | 10.6     | 8.8   | 5.8   | 9.2      |     | 16.5  | 32.0     |     | 0.5         | 34.0     | 0.0   |
| Queue Length 95th (m)   | 51.8  | m19.6    | 36.6  | 10.6  | 18.3     |     | 46.0  | 72.9     |     | 3.7         | 77.3     | 12.3  |
| Internal Link Dist (m)  | 40.0  | 81.7     |       | 40.0  | 308.1    |     | 05.0  | 305.7    |     | 45.0        | 270.1    |       |
| Turn Bay Length (m)     | 40.0  | 507      | 700   | 10.0  | 400      |     | 35.0  | 0.440    |     | 45.0        | 4070     | 0.40  |
| Base Capacity (vph)     | 267   | 527      | 736   | 236   | 463      |     | 640   | 2410     |     | 360         | 1979     | 813   |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Reduced v/c Ratio       | 0.71  | 0.10     | 0.56  | 0.13  | 0.14     |     | 0.39  | 0.34     |     | 0.01        | 0.31     | 0.14  |

### Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 16.0 Intersection LOS: B
Intersection Capacity Utilization 62.9% ICU Level of Service B

05/16/2019 Synchro 10 Report WSP Page 11

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Int Delay, s/veh       | 3.7      |             |          |          |          |      |           |      |       |        |      |      |
|------------------------|----------|-------------|----------|----------|----------|------|-----------|------|-------|--------|------|------|
| Movement               | EBL      | EBT         | EBR      | WBL      | WBT      | WBR  | NBL       | NBT  | NBR   | SBL    | SBT  | SBR  |
| Lane Configurations    | 7        | <b>∱</b> î≽ |          | ٦        | ħβ       |      |           | ર્ન  | 7     |        | ર્ન  | 7    |
| Traffic Vol, veh/h     | 18       | 373         | 10       | 7        | 838      | 8    | 49        | 1    | 26    | 51     | 0    | 63   |
| Future Vol, veh/h      | 18       | 373         | 10       | 7        | 838      | 8    | 49        | 1    | 26    | 51     | 0    | 63   |
| Conflicting Peds, #/hr | 0        | 0           | 0        | 0        | 0        | 0    | 0         | 0    | 0     | 0      | 0    | 0    |
| Sign Control           | Free     | Free        | Free     | Free     | Free     | Free | Stop      | Stop | Stop  | Stop   | Stop | Stop |
| RT Channelized         | -        | -           | None     | -        | -        | None | -         | -    | None  | -      | -    | None |
| Storage Length         | 200      | -           | -        | 250      | -        | -    | -         | -    | 200   | -      | -    | 200  |
| Veh in Median Storage, | # -      | 0           | -        | -        | 0        | -    | -         | 0    | -     | -      | 0    | -    |
| Grade, %               | -        | 0           | -        | -        | 0        | -    | -         | 0    | -     | -      | 0    | -    |
| Peak Hour Factor       | 92       | 92          | 92       | 92       | 92       | 92   | 92        | 92   | 92    | 92     | 92   | 92   |
| Heavy Vehicles, %      | 3        | 3           | 3        | 3        | 3        | 3    | 3         | 3    | 3     | 3      | 3    | 3    |
| Mvmt Flow              | 20       | 405         | 11       | 8        | 911      | 9    | 53        | 1    | 28    | 55     | 0    | 68   |
|                        |          |             |          |          |          |      |           |      |       |        |      |      |
| Major/Minor M          | lajor1   |             |          | Major2   |          | 1    | Minor1    |      | N     | Minor2 |      |      |
| Conflicting Flow All   | 920      | 0           | 0        | 416      | 0        | 0    | 923       | 1387 | 208   | 1175   | 1388 | 460  |
| Stage 1                | -        | -           | -        | -        | -        | -    | 451       | 451  | -     | 932    | 932  | -    |
| Stage 2                | _        | _           | _        | _        | _        | _    | 472       | 936  | _     | 243    | 456  | _    |
| Critical Hdwy          | 4.16     | _           | _        | 4.16     | _        | _    | 7.56      | 6.56 | 6.96  | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1    | -        | _           | _        |          | _        | _    | 6.56      | 5.56 | -     | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2    | _        | _           | _        | _        | _        | _    | 6.56      | 5.56 | _     | 6.56   | 5.56 | _    |
| Follow-up Hdwy         | 2.23     | _           | _        | 2.23     | _        | _    | 3.53      | 4.03 | 3.33  | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver     | 731      | _           | _        | 1132     | _        | _    | 223       | 141  | 795   | 146    | 140  | 545  |
| Stage 1                | -        | _           | _        |          | _        | _    | 555       | 567  | -     | 285    | 341  | -    |
| Stage 2                | _        | _           | _        | _        | _        | _    | 539       | 340  | _     | 736    | 564  | _    |
| Platoon blocked, %     |          | _           | <u>-</u> |          | <u>-</u> | _    | 000       | 0-10 |       | , 00   | JU-7 |      |
| Mov Cap-1 Maneuver     | 731      | _           | _        | 1132     | _        | _    | 190       | 136  | 795   | 136    | 135  | 545  |
| Mov Cap-2 Maneuver     | -        | _           | _        |          | _        | _    | 190       | 136  | -     | 136    | 135  | -    |
| Stage 1                | _        | _           | _        | _        | _        | _    | 540       | 552  | _     | 277    | 339  | _    |
| Stage 2                | <u>-</u> | _           | _        | <u>-</u> | <u>-</u> | _    | 468       | 338  | _     | 689    | 549  | _    |
| Jugo 2                 |          |             |          |          |          |      | 100       | 500  |       | 303    | J-10 |      |
| Approach               | EB       |             |          | WB       |          |      | NB        |      |       | SB     |      |      |
| HCM Control Delay, s   | 0.5      |             |          | 0.1      |          |      | 24.1      |      |       | 28.7   |      |      |
| HCM LOS                | 0.5      |             |          | U. I     |          |      | 24.1<br>C |      |       |        |      |      |
| I IOW LOS              |          |             |          |          |          |      | U         |      |       | D      |      |      |
| Mineral and Maria No.  |          | UDL 4       | VIDL C   | EDI      | CDT      | EDD  | \A/DI     | MOT  | WDD   | 2DL 4  |      |      |
| Minor Lane/Major Mvmt  |          | VBLn11      |          | EBL      | EBT      | EBR  | WBL       | WBT  | WBR S |        |      |      |
| Capacity (veh/h)       |          | 189         | 795      | 731      | -        | -    | 1132      | -    | -     | 136    | 545  |      |
| HCM Lane V/C Ratio     |          |             | 0.036    |          | -        | -    | 0.007     | -    |       | 0.408  |      |      |
| HCM Control Delay (s)  |          | 31.6        | 9.7      | 10.1     | -        | -    | 8.2       | -    | -     | 48.6   | 12.6 |      |
| HCM Lane LOS           |          | D           | A        | В        | -        | -    | A         | -    | -     | E      | В    |      |
| HCM 95th %tile Q(veh)  |          | 1.1         | 0.1      | 0.1      | -        | -    | 0         | -    | -     | 1.8    | 0.4  |      |

| Intersection           |        |       |         |      |        |        |
|------------------------|--------|-------|---------|------|--------|--------|
| Int Delay, s/veh       | 0.9    |       |         |      |        |        |
| Movement               | EBL    | EBT   | WBT     | WBR  | SBL    | SBR    |
| Lane Configurations    |        | 4     | <b></b> | 7    | ¥      |        |
| Traffic Vol, veh/h     | 6      | 470   | 763     | 6    | 2      | 64     |
| Future Vol. veh/h      | 6      | 470   | 763     | 6    | 2      | 64     |
| Conflicting Peds, #/hr | 0      | 0     | 0       | 0    | 0      | 0      |
| Sign Control           | Free   | Free  | Free    | Free | Stop   | Stop   |
| RT Channelized         | _      |       | _       | None | -      | None   |
| Storage Length         | _      | -     | _       | 200  | 0      | -      |
| Veh in Median Storage  | e.# -  | 0     | 0       |      | 0      | _      |
| Grade, %               | -,     | 0     | 0       | _    | 0      | _      |
| Peak Hour Factor       | 92     | 92    | 92      | 92   | 92     | 92     |
| Heavy Vehicles, %      | 3      | 3     | 3       | 3    | 3      | 3      |
| Mymt Flow              | 7      | 511   | 829     | 7    | 2      | 70     |
| WWIIICI IOW            | ,      | 011   | 023     | ı    |        | 10     |
|                        |        |       |         |      |        |        |
|                        | Major1 |       | Major2  |      | Minor2 |        |
| Conflicting Flow All   | 836    | 0     | -       | 0    | 1354   | 829    |
| Stage 1                | -      | -     | -       | -    | 829    | -      |
| Stage 2                | -      | -     | -       | -    | 525    | -      |
| Critical Hdwy          | 4.13   | -     | -       | -    | 6.43   | 6.23   |
| Critical Hdwy Stg 1    | -      | -     | -       | -    | 5.43   | -      |
| Critical Hdwy Stg 2    | -      | -     | -       | -    | 5.43   | -      |
| Follow-up Hdwy         | 2.227  | -     | -       | -    | 3.527  | 3.327  |
| Pot Cap-1 Maneuver     | 793    | -     | -       | -    | 164    | 369    |
| Stage 1                | -      | -     | -       | -    | 427    | -      |
| Stage 2                | -      | -     | _       | _    | 591    | _      |
| Platoon blocked, %     |        | _     | -       | _    |        |        |
| Mov Cap-1 Maneuver     | 793    | _     | _       | _    | 162    | 369    |
| Mov Cap-2 Maneuver     | -      | _     | _       | _    | 162    | -      |
| Stage 1                | _      | _     | _       | _    | 422    | _      |
| Stage 2                | _      | _     | _       | _    | 591    | _      |
| Olago Z                |        |       |         |      | 551    |        |
|                        |        |       |         |      |        |        |
| Approach               | EB     |       | WB      |      | SB     |        |
| HCM Control Delay, s   | 0.1    |       | 0       |      | 17.7   |        |
| HCM LOS                |        |       |         |      | С      |        |
|                        |        |       |         |      |        |        |
| Minor Lanc/Major Mys   | nt .   | EDI   | EDT     | WDT  | W/PD   | CDI n1 |
| Minor Lane/Major Mvn   | IL     | EBL   | EBT     | WBT  | WBR :  |        |
| Capacity (veh/h)       |        | 793   | -       | -    | -      | 355    |
| HCM Lane V/C Ratio     |        | 0.008 | -       | -    | -      | 0.202  |
| HCM Control Delay (s)  |        | 9.6   | 0       | -    | -      | 17.7   |
| HCM Lane LOS           | ,      | Α     | Α       | -    | -      | С      |
| HCM 95th %tile Q(veh   |        | 0     | -       | -    | -      | 0.7    |
|                        |        |       |         |      |        |        |

| Intersection           |          |        |          |        |      |          |           |           |          |           |           |          |  |
|------------------------|----------|--------|----------|--------|------|----------|-----------|-----------|----------|-----------|-----------|----------|--|
| Int Delay, s/veh       | 0.8      |        |          |        |      |          |           |           |          |           |           |          |  |
| Movement               | EBL      | EBT    | EBR      | WBL    | WBT  | WBR      | NBL       | NBT       | NBR      | SBL       | SBT       | SBR      |  |
| Lane Configurations    | LDL      |        | EDK 7    | WDL    | VVD1 | WDK      | NDL       | NDT       | NDK<br>ř | ODL       | ODT       | JDK<br>7 |  |
| Traffic Vol, veh/h     | 0        | 514    | 21       | 0      | 501  | 5        | 0         | 0         | 7        | 0         | 0         | 66       |  |
| Future Vol, veh/h      | 0        | 514    | 21       | 0      | 501  | 5        | 0         | 0         | 7        | 0         | 0         | 66       |  |
| Conflicting Peds, #/hr | 0        | 0      | 0        | 0      | 0    | 0        | 0         | 0         | 0        | 0         | 0         | 0        |  |
| Sign Control           | Free     | Free   | Free     | Free   | Free | Free     | Stop      | Stop      | Stop     | Stop      | Stop      | Stop     |  |
| RT Channelized         | -        | -      | None     | -      | -    | None     | Slop<br>- | Stop<br>- | None     | Stop<br>- | Stop<br>- | None     |  |
| Storage Length         | _        | _      | 200      | -      | -    | 200      | _         | _         | 0        | _         | _         | 0        |  |
| Veh in Median Storage, |          | 0      | 200      | _      | 0    | 200      | _         | 0         | -        | _         | 0         | -        |  |
| Grade, %               | # -<br>- | 0      | -        | -      | 0    | -        | -         | 0         | -        | -         | 0         | -        |  |
| Peak Hour Factor       | 92       | 92     | 92       | 92     | 92   | 92       | 92        | 92        | 92       | 92        | 92        | 92       |  |
| Heavy Vehicles, %      | 3        | 3      | 3        | 3      | 3    | 3        | 3         | 3         | 3        | 3         | 3         | 3        |  |
| Mvmt Flow              | 0        | 559    | 23       | 0      | 545  | 5<br>5   | 0         | 0         | 8        | 0         | 0         | 72       |  |
| IVIVIIIL FIOW          | U        | 559    | 23       | U      | 545  | 5        | U         | U         | 0        | U         | U         | 12       |  |
|                        |          |        |          |        |      |          |           |           |          |           |           |          |  |
| Major/Minor N          | 1ajor1   |        | <u> </u> | Major2 |      | <u> </u> | Minor1    |           | N        | /linor2   |           |          |  |
| Conflicting Flow All   | -        | 0      | 0        | -      | -    | 0        | -         | -         | 559      | -         | -         | 545      |  |
| Stage 1                | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Stage 2                | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Critical Hdwy          | -        | -      | -        | -      | -    | -        | -         | -         | 6.23     | -         | -         | 6.23     |  |
| Critical Hdwy Stg 1    | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Critical Hdwy Stg 2    | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Follow-up Hdwy         | -        | -      | -        | -      | -    | -        | -         | -         | 3.327    | -         | -         | 3.327    |  |
| Pot Cap-1 Maneuver     | 0        | -      | -        | 0      | -    | -        | 0         | 0         | 527      | 0         | 0         | 536      |  |
| Stage 1                | 0        | -      | -        | 0      | -    | -        | 0         | 0         | -        | 0         | 0         | -        |  |
| Stage 2                | 0        | -      | -        | 0      | -    | -        | 0         | 0         | -        | 0         | 0         | -        |  |
| Platoon blocked, %     |          | -      | -        |        | -    | -        |           |           |          |           |           |          |  |
| Mov Cap-1 Maneuver     | -        | -      | -        | -      | -    | -        | -         | -         | 527      | -         | -         | 536      |  |
| Mov Cap-2 Maneuver     | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Stage 1                | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
| Stage 2                | -        | -      | -        | -      | -    | -        | -         | -         | -        | -         | -         | -        |  |
|                        |          |        |          |        |      |          |           |           |          |           |           |          |  |
| Approach               | EB       |        |          | WB     |      |          | NB        |           |          | SB        |           |          |  |
| HCM Control Delay, s   | 0        |        |          | 0      |      |          | 11.9      |           |          | 12.8      |           |          |  |
| HCM LOS                | U        |        |          | U      |      |          | 11.9      |           |          | 12.0<br>B |           |          |  |
| TIOWI LOG              |          |        |          |        |      |          | U         |           |          | D         |           |          |  |
| Minor Lane/Major Mvmt  |          | NBLn1  | EBT      | EBR    | WBT  | WBR S    | SBI n1    |           |          |           |           |          |  |
| Capacity (veh/h)       |          | 527    |          |        |      | -        | 536       |           |          |           |           |          |  |
| HCM Lane V/C Ratio     |          | 0.014  | -        | -      | -    |          | 0.134     |           |          |           |           |          |  |
| HCM Control Delay (s)  |          | 11.9   |          | -      | -    |          | 12.8      |           |          |           |           |          |  |
| HCM Lane LOS           |          |        | -        | -      | -    | -        | 12.0<br>B |           |          |           |           |          |  |
| HCM 95th %tile Q(veh)  |          | B<br>0 | -        | -      | -    | -        | 0.5       |           |          |           |           |          |  |
| HOW SOUL WILLE CALVEU) |          | U      | -        | -      | -    | -        | 0.5       |           |          |           |           |          |  |

| Intersection                |           |          |           |          |         |              |
|-----------------------------|-----------|----------|-----------|----------|---------|--------------|
| Int Delay, s/veh            | 0.5       |          |           |          |         |              |
| Movement                    | EBL       | EBT      | WBT       | WBR      | SBL     | SBR          |
| Lane Configurations         | LDL       | <u></u>  | <u>₩Ы</u> | VVDK     | ODL     | JDK<br>ř     |
| Traffic Vol, veh/h          | 0         | 600      | 369       | 7        | ٥       | 50           |
| Future Vol, veh/h           | 0         | 600      | 369       | 7        | 0       | 50           |
| <u> </u>                    | 0         | 000      | 309       | 0        | 0       | 0            |
| Conflicting Peds, #/hr      | Free      | Free     | Free      | Free     |         |              |
| Sign Control RT Channelized |           | None     |           | None     | Stop    | Stop<br>None |
|                             | -         |          | -         |          | -       |              |
| Storage Length              | -         | -        | -         | 200      | -       | 0            |
| Veh in Median Storage       | e, # -    | 0        | 0         | -        | 0       | -            |
| Grade, %                    | -         | 0        | 0         | -        | 0       | -            |
| Peak Hour Factor            | 92        | 92       | 92        | 92       | 92      | 92           |
| Heavy Vehicles, %           | 3         | 3        | 3         | 3        | 3       | 3            |
| Mvmt Flow                   | 0         | 652      | 401       | 8        | 0       | 54           |
|                             |           |          |           |          |         |              |
| Major/Minor I               | Major1    | N        | Major2    | N        | /linor2 |              |
| Conflicting Flow All        | -<br>-    | 0        | -         | 0        | -       | 401          |
| Stage 1                     | _         | -        | _         | _        | _       | -            |
| Stage 2                     | <u>-</u>  | <u>-</u> | _         | <u>-</u> | _       | _            |
| Critical Hdwy               | -         | _        | _         | _        |         | 6.23         |
|                             |           | _        |           | _        | _       | 0.23         |
| Critical Hdwy Stg 1         | -         |          | -         |          |         | -            |
| Critical Hdwy Stg 2         | -         | -        | -         | -        | -       | 3.327        |
| Follow-up Hdwy              | -         | -        | -         | -        |         |              |
| Pot Cap-1 Maneuver          | 0         | -        | -         | -        | 0       | 647          |
| Stage 1                     | 0         | -        | -         | -        | 0       | -            |
| Stage 2                     | 0         | -        | -         | -        | 0       | -            |
| Platoon blocked, %          |           | -        | -         | -        |         |              |
| Mov Cap-1 Maneuver          | -         | -        | -         | -        | -       | 647          |
| Mov Cap-2 Maneuver          | -         | -        | -         | -        | -       | -            |
| Stage 1                     | -         | -        | -         | -        | -       | -            |
| Stage 2                     | -         | -        | -         | -        | -       | -            |
|                             |           |          |           |          |         |              |
| Approach                    | EB        |          | WB        |          | SB      |              |
| HCM Control Delay, s        | 0         |          | 0         |          | 11.1    |              |
| HCM LOS                     | U         |          | U         |          | В       |              |
| TIOWI LOG                   |           |          |           |          | U       |              |
|                             |           |          |           |          |         |              |
| Minor Lane/Major Mvm        | <u>nt</u> | EBT      | WBT       | WBR S    | BLn1    |              |
| Capacity (veh/h)            |           | -        | -         | -        | 647     |              |
| HCM Lane V/C Ratio          |           | -        | -         | -        | 0.084   |              |
| HCM Control Delay (s)       |           | -        | -         | -        | 11.1    |              |
| HCM Lane LOS                |           | -        | -         | -        | В       |              |
| HCM 95th %tile Q(veh)       | )         | -        | -         |          | 0.3     |              |
|                             |           |          |           |          |         |              |

### **CITY OF REGINA**

## REGINA REVITALIZATION INITIATIVE RAILYARD RENEWAL PROJECT TRANSPORTATION IMPACT ANALYSIS

MARCH 02, 2018







# REGINA REVITALIZATION INITIATIVE RAILYARD RENEWAL PROJECT TRANSPORTATION IMPACT ANALYSIS

CITY OF REGINA

PROJECT NO.: 151-09273-00 DATE: MARCH 2018

WSP 395 Maxwell Crescent Regina, Saskatchewan S4N 5X9

Phone: 306-585-1990 Fax: 306-586-9113

WSP.COM

### REVISION HISTORY

| VERSION | DATE          | DESCRIPTION      |
|---------|---------------|------------------|
| 1       | July 28, 2017 | Draft For Review |
| 2       | March 2, 2018 | Final Report     |
| 3       |               |                  |

### SIGNATURES

PREPARED BY

James Sun, M. Sc., P. Eng., PTOE

Transportation Engineer

REVIEWED BY

This Ford Ded

Practice Lead, Urban Transportation

Northern Alberta

Association of Professional Engineers & Geoscientists of Saskatchewan

CERTIFICATE OF AUTHORIZATION

WSP Canada Inc.

Number C0868

Permission to Consult held by: Discipline Sk. Reg. No. Signature

TRANSPORTATION 15556

This report was prepared by WSP Canada Inc. for the account of the **City of Regina**, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

Mar. 2, 2018

ONAL

J.L. FONG MEMBER 15556

### **EXECUTIVE SUMMARY**

WSP Canada Inc. was retained by the City of Regina to complete a transportation impact analysis for the Railyard Renewal Project (RRP) which is the second phase of the Regina Revitalization Initiative (RRI). The RRP will transform 17.5 acres land on Dewdney Avenue into a vibrant urban neighborhood that will connect the Warehouse District to the Downtown core. The Railyard Renewal Project is located on the old CP Intermodal Land site, north of the City's downtown area and is bounded by the CP rail main line to the south, Dewdney Avenue to the north, Albert Street to the west, and Broad Street to the east.

The Regina Revitalization Initiative is the largest urban revitalization project ever undertaken in the City of Regina and consists of three (3) primary components: the Stadium Project; Railyard Renewal Project; and, the redevelopment of Taylor Field Neighbourhood. The Railyard Renewal Project will be a major infill development site in the heart of Regina and will have significant impacts on the surrounding road networks, pedestrian facilities and parking facilities. The existing CP rail mainline is currently a barrier between the Downtown area and the railyard site. A future pedestrian connection over the CP rail mainline is a key feature linking the RRP site to the downtown core.

The Railyard Renewal Project will revitalize a strategically and centrally located former industrial railyard site, comprising of approximately 17.5 acres, into a new mixed-use neighbourhood. In 2012, City Council authorized the acquisition of the railyard site from Canadian Pacific Railway. The land acquired included a former intermodal facility; however, other railway activities remain in operation adjacent to the site (i.e. an interchange line, servicing area, wye interchange, and national main rail lines). The Railyard Renewal Project provides an unparalleled opportunity for the City of Regina to guide the redevelopment of the railyard site and to continue to pursue urban revitalization through the RRI by removing and/or mitigating long-existing barriers between the Warehouse District and Downtown

The purpose of this study is to identify and assess the potential traffic impacts on the study intersections associated with the proposed development, and to suggest required mitigation measures (if any) to allow that the adjacent roadways safely accommodate traffic generated by the proposed development.

Primary vehicular access to the CP Railyard site will be obtained via Dewdney Avenue, Albert Street, and Broad Street. Due to the CP rail mainline to the south, adjacent commercial development and CP spur line to the west, and the Broad Street underpass to the east, the main accesses in to the railyard site will be from Dewdney Avenue to the north.

In the vicinity of the CP Railyard site, Dewdney Avenue is a four-lane undivided arterial road with on-street parking on both sides. There are six intersections and twelve property accesses along the 800 m stretch long Dewdney Avenue between Albert Street and Broad Street. Dewdney Avenue currently provides direct access to the commercial and industrial properties north of it. The current Average Annual Daily Traffic (AADT) on Dewdney Avenue between Albert Street and Broad Street ranges from 15,700 to 17,000 vehicles per day.

Sidewalks exist along Albert Street and Broad Street on both sides that are in relatively sound condition except for the Broad Street underpass section where only west side sidewalk is provided. There is no sidewalk on the east side. The section of Dewdney Avenue north of the CP Railyard, between Albert Street and Broad Street, currently has sidewalks on the north side of Dewdney Avenue, but no pedestrian infrastructure on the south side.

Trails or lanes dedicated to cyclist are not provided in the Railyard surrounding area. Cyclists currently have to share sidewalks with pedestrians or share roadways with automobiles.

The identified existing constraints on the RRP site are listed below:

- CP Rail mainline on south side and CP Rail spur line on west side of the site.
- Broad Street underpass structure on the east side.
- The lands surrounding Dewdney Avenue are well developed and there is limited space for road widening.

- Closely spaced intersections and property accesses along Dewdney Avenue may have operational and safety issues and
  may adversely impact the capacity on the Dewdney Avenue corridor during the peak hours in the future with
  increased traffic volumes on Dewdney Avenue,
- Capacity constraints during peak hours at the Albert Street and Broad Street intersections,
- On-street parking on both sides of Dewdney Avenue may decrease the capacity of the intersections on Dewdney Avenue,

The proposed concept plan shows that the major land uses on the RRP site will be residential with a portion of retail, office, and community entertainment uses. Table E-1 summarizes the proposed development in the railyard. The proposed concept plan and breakdown development details of each building are attached in Appendix B

Table E.1 Proposed Development Summary

| DEVELOPMENT | GROSS FLOOR AREA (m²) | UNITS |
|-------------|-----------------------|-------|
| Residential | 107,100               | 1,071 |
| Retail      | 10,000                | -     |
| Office      | 8,800                 | -     |
| Community   | 3,200                 | -     |
| Cultural    | 4,100                 | -     |
| Total       | 133,200               | 1,071 |

The Institute of Transportation Engineers (ITE) *Trip Generation Manual (9th Edition)* was used in this study to estimate the traffic generated by the proposed development.

To accommodate the forecasted future post-development traffic and develop a Complete Street framework for the Dewdney Avenue corridor, the following recommendations were reached:

### CONCEPTUAL CROSS SECTIONS ON DEWDNEY AVENUE

Complete Street principles were applied in the process of developing cross sections for Dewdney Avenue adjacent to the RRP site. One of the challenging aspects of designing Complete Streets is the balancing act required in finding space for all of the desired uses within a limited ROW resource. The proposed concept for the mid-block road cross section is illustrated in Figure E-1 and the road cross section at signalized intersections is shown in Figure E-2.

The conceptual cross sections will accommodate public transit buses, future bike lanes on both sides, wide sidewalks, and on-street parking during off-peak periods. Four through lanes (two-way) are proposed to carry traffic during the AM and PM peak hours, while two through lanes are deemed to be adequate to accommodate the off-peak traffic volumes. The curb lanes can be used for parking during off-peak hours. Dedicated left turn lanes will be provided at the proposed signalized intersections.

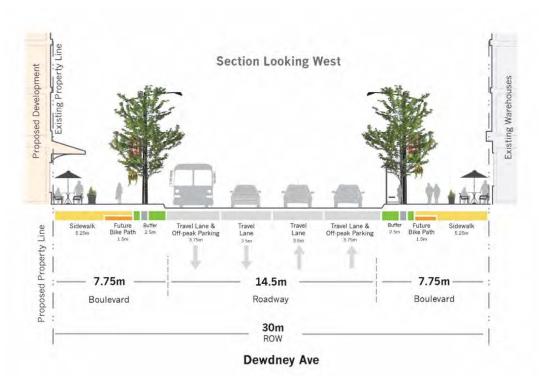
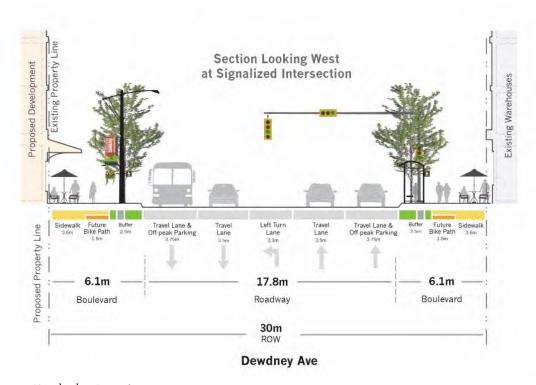




Figure E-1 Proposed Mid-Block Cross Section



Source: WSP and Urban Strategies Inc.

Figure E-2 Proposed Cross Section at Signalized Intersection

### **DEWDNEY AVENUE INTERSECTION ASSESSMENT FINDINGS**

### ALBERT STREET / DEWDNEY AVENUE

- The existing lane configurations at the Albert Street / Dewdney Avenue intersection are not expected to be capable of accommodating the forecasted 2040 PM peak hour post-development traffic. However, this intersection is expected to operate at acceptable levels of service in the AM peak hours and off-peak hours.
- Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way
  constraints and the existing built developments. Transportation demand management strategies and active
  transportation programs should be considered by the City to reduce future traffic demand.
- The proposed two future site access points at the 9<sup>th</sup> Avenue and 10<sup>th</sup> Avenue intersections on Albert Street are anticipated to reduce the traffic burden at the Albert Street / Dewdney Avenue intersection. The proposed pedestrian bridge linking the railyard with downtown is anticipated to reduce the automobile traffic demand from the railyard.

### MCINTYRE STREET / DEWDNEY AVENUE

- The McIntyre Street / Dewdney Avenue intersection is currently controlled by stop signs on McIntyre Street. Left turn lanes are provided for the eastbound and westbound traffic. Two eastbound through lanes and two westbound through lanes are anticipated to be maintained during both peak and off-peak hours at this intersection.
- All traffic movements at this intersection are expected to operate at an acceptable level of service (LOS) E or better during the AM and PM peak hours except for the northbound and southbound left/through movements which are expected to experience longer delay during the AM peak hours. Since the traffic volumes of the northbound and southbound left/through movements will be low, it is deemed that the existing intersection treatment and control type at this intersection will be adequate to accommodate the forecasted future traffic.

### LORNE STREET / DEWDNEY AVENUE

- The Lorne Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the west. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements. On-street parking is recommended to be restricted during peak hours. Two through lanes (one way) will be available on Dewdney Avenue in the AM and PM peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted in the curb lanes.
- All traffic movements at the Lorne Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and will operate at LOS D or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations with signal control will be capable of accommodating the forecasted future traffic.

### **CORNWALL STREET / DEWDNEY AVENUE**

- The Cornwall Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Cornwall Street
  with free flow conditions on Dewdney Avenue. To maintain smooth flows on Dewdney Avenue and minimize collision
  risks, traffic movements from/to Cornwall Street are recommended to be restricted to right-in and right-out
  movements.
- All traffic movements at the Cornwall Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with one through lane under the 2040 post-development traffic conditions.

### SCARTH STREET / DEWDNEY AVENUE

- The Scarth Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Scarth Street with free flow conditions on Dewdney Avenue. Traffic movements from/to Scarth Street are recommended to be restricted to right-in and right-out movements.
- All traffic movements at the Scarth Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better
  in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with
  one through lane under the 2040 post-development traffic conditions.

### HAMILTON STREET / DEWDNEY AVENUE

- The Hamilton Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the east.
   It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue.
- All traffic movements at the Hamilton Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the offpeak hours with one through lane under the 2040 post-development traffic conditions.

### ROSE STREET / DEWDNEY AVENUE

- The Rose Street / Dewdney Avenue intersection is a three-legged intersection and is recommended to be controlled by a stop sign on Rose Street, Traffic movements from/to Rose Street are recommended to be restricted to right-in and right-out movements.
- All traffic movements at the Rose Street / Dewdney Avenue are expected to operate at an acceptable LOS B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and operate at LOS C or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions.

### **BROAD STREET / DEWDNEY AVENUE**

- The existing lane configurations at the Broad Street / Dewdney Avenue intersection are not expected to be capable of
  accommodating the forecasted 2040 peak hour traffic volumes. The eastbound left turn movement is expected to
  operate at LOS F in the off-peak hours.
- Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way
  constraints and the railway overpass bridge on Broad Street to the south. Transportation management strategies and
  active transportation programs to reduce future traffic demand should be considered by the City.

Table E.2 Intersection Improvement Summary

| INTERSECTION    | RECOMMENDED INTERSECTION            | 2040 OVERALL LOS |         |  |  |
|-----------------|-------------------------------------|------------------|---------|--|--|
| INTERSECTION    | CONTROL                             | AM PEAK          | PM PEAK |  |  |
| Albert Street   | Signal (Existing)                   | D                | E       |  |  |
| McIntyre Street | Two-way Stop (Existing)             | Α                | А       |  |  |
| Lorne Street    | Signal                              | С                | В       |  |  |
| Cornwall Street | Two-Way Stop (Right-In / Right-Out) | Α                | Α       |  |  |
| Scarth Street   | Two-Way Stop (Right-In / Right-Out) | Α                | Α       |  |  |
| Hamilton Street | Signal                              | В                | В       |  |  |
| Rose Street     | Two-Way Stop (Right-In / Right-Out) | Α                | Α       |  |  |
| Broad Street    | Signal (Existing)                   | F                | F       |  |  |

<sup>\*</sup> LOS A represents very short delays and the best operating conditions, and LOS F represents very long delays and failure of a movement. LOS E is acceptable during peak hours in urban areas.

### SIGNALIZED INTERSECTION SPACING

— The signalized intersection spacing along Dewdney Avenue between Albert Street and Lorne Street, Lorne Street and Hamilton Street, Hamilton Street and Broad Street is approximately 300 m, 300 m, and 200 m respectively. Although the spacing is not ideal signalized intersection spacing (400 m) for signal progression for a speed of 50 km/h, signal coordination for the Lorne Street and Hamilton Street intersections is recommended to progress traffic flow along the Dewdney Avenue corridor and to reduce overall delays.

### TRANSPORTATION DEMAND MANAGEMENT (TDM)

The forecasted future traffic volumes are expected to exceed the existing intersection capacity at the Dewdney Avenue intersections at Albert Street and at Broad Street. The following TDM strategies should be considered to minimize infrastructure needs by reducing the number and length of auto trips, and by shifting vehicle trips away from Dewdney Avenue:

- Alternative Routes: If alternate routes with suitable traffic operation performance (less congestion, shorter delay, and fewer stops) are available, commuters may use alternative routes to reach their destinations instead of using Dewdney Avenue.
- Public Transit: The City may consider increasing the transit service frequency to meet the future transit patron demand as a result of the Railyard Renewal Project.
- Pedestrian and Bicycle Facilities: To encourage walking and cycling within the City centre, in addition to improving
  the existing pedestrian and bicycle facility conditions, more pedestrian and bicycle facilities such as sidewalks,
  crosswalks, shared pathways, and bike lanes should be developed.
- Carpooling: Carpooling is a form of ridesharing and can reduce traffic congestion. It is recommended that the City develop a website to support carpooling.
- Parking Management: Managing parking helps to reduce the undesirable impacts of parking demand on local and regional traffic levels and the resulting impacts on community livability and design. Parking meters may be installed along Dewdney Avenue with variable parking rates that fluctuate with parking demand.

### **INTERNAL ROADWAY NETWORK**

The internal roadway network within the Railyard site is based on a grid system with the extension of existing north-south local streets and walkways (Lorne Street, Cornwall Street, Scarth Street and Hamilton Street) south across Dewdney Avenue into the site. The north-south local streets will be linked by an east-west local street, extending from Lorne Street to Rose Street, to facilitate movement throughout the site for pedestrians, cyclists and drivers. These internal streets will be contained within a 22-meter right-of-way with 11 meters assigned to the street for two vehicle travel lanes and parking on both sides and 5.5-meters on each side for pedestrian amenities. The pedestrian boulevards will accommodate 2.5 meter sidewalks and zones for street trees, furnishings, utility boxes and streetlights. Pedestrian crossings and traffic control (signage and pavement markings) should be designed to enhance pedestrian safety to create safe interfaces between different modes of travel and a comfortable environment for circulation. The internal streets and intersections should be designed to accommodate the movement of emergency vehicles (e.g., fire truck) and garbage trucks.

### **SECONDARY PLAN AREA**

It should be noted that when individual developments in the Secondary Plan area are proposed, a traffic impact study should be carried out for each particular development.



### TABLE OF CONTENTS

| 1          | INTRODUCTION1                                                    |
|------------|------------------------------------------------------------------|
| 1.1        | Study Purpose And Objectives1                                    |
| 1.2        | Background1                                                      |
| 1.3        | Methodology2                                                     |
| 2          | EXISTING CONDITIONS4                                             |
| 2.1        | Existing Roadway Characteristics4                                |
| 2.2        | Existing Intersection Characteristics4                           |
| 2.3        | Existing Traffic Operational Performance7                        |
| 2.4        | Existing Pedestrian And Cyclist Facilities And Transit Service10 |
| 2.5        | Existing Constraints10                                           |
| 3          | TRAFFIC FORECAST11                                               |
| 3.1        | Background Traffic Growth11                                      |
| 3.2        | Trip Generation11                                                |
| 3.3        | Trip Distribution And Assignment14                               |
| 3.4        | Combined Traffic15                                               |
| 4          | CROSS SECTIONS AND INTERNAL ROADWAYS25                           |
| 4.1        | Dewdney Avenue Cross Sections25                                  |
| 4.2        | Internal Roadway Network25                                       |
| 5          | INTERSECTION ASSESSMENT27                                        |
| 5.1        | Albert Street / Dewdney Avenue27                                 |
| 5.2        | Mcintyre Street / Dewdney Avenue29                               |
| 5.3        | Lorne Street / Dewdney Avenue30                                  |
| 5.4        | Cornwall Street / Dewdney Avenue31                               |
| 5.5        | Scarth Street / Dewdney Avenue32                                 |
| 5.6        | Hamilton Street / Dewdney Avenue33                               |
| <b>5.7</b> | Rose Street / Dewdney Avenue34                                   |
| 5.8        | Broad Street / Dewdney Avenue34                                  |



| 6     | TRANSPORTATION DEMAND MANAGEMENT | 7.36 |
|-------|----------------------------------|------|
| 6.1   | Alternate Routes                 | 36   |
| 6.2   | Public Transit                   | 36   |
| 6.3   | Pedestrian Facilities            | 37   |
| 6.4   | Cycling                          | 37   |
| 6.5   | Carpooling                       | 37   |
| 6.6   | Parking Management               | 37   |
| 7     | CONCLUSIONS AND RECOMMENDATIONS  | 39   |
| BIBLI | OGRAPHY                          | 42   |



| <b>TABLES</b> |                                       |     |
|---------------|---------------------------------------|-----|
|               |                                       |     |
| TABLE E.1     | PROPOSED DEVELOPMENT SUMMARY          |     |
| TABLE E.2     | INTERSECTION IMPROVEMENT SUMMARY      | VII |
| TABLE 2.1     | LEVEL OF SERVICE CRITERIA FOR         | _   |
| T.D. T.O.     | INTERSECTIONS (HCM 2010)              | 7   |
| TABLE 2.2     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | _   |
| TADI E 2.7    | ALBERT STREET / DEWDNEY AVENUE        | 7   |
| TABLE 2.3     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | _   |
| TABLE 2 /     | MCINTYRE STREET / DEWDNEY AVENUE      | 8   |
| TABLE 2.4     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | _   |
| TADLESE       | LORNE STREET / DEWDNEY AVENUE         | 8   |
| TABLE 2.5     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | 0   |
| TADLESC       | CORNWALL STREET / DEWDNEY AVENUE      | 8   |
| TABLE 2.6     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | 0   |
| TADLE 2.7     | SCARTH STREET / DEWDNEY AVENUE        | 8   |
| TABLE 2.7     | HAMILTON STREET / DEWDNEY AVENUE      | 0   |
| TABLE 2.8     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | 9   |
| TABLE 2.0     | ROSE STREET / DEWDNEY AVENUE          | ٥   |
| TABLE 2.9     | CAPACITY ANALYSIS: EXISTING TRAFFIC - | 9   |
| TABLE 2.9     | BROAD STREET / DEWDNEY AVENUE         | 0   |
| TABLE 3.1     | PROPOSED DEVELOPMENT SUMMARY          |     |
| TABLE 3.1     | CORRESPONDING ITE LAND USES           |     |
| TABLE 3.3     | TRIP GENERATION - RESIDENTIAL         | 1∠  |
| TABLE 5.5     | BUILDING (3 TO 10 LEVELS)             | 12  |
| TABLE 3.4     | TRIP GENERATION - RESIDENTIAL         | 1∠  |
| IADLL 3.4     | BUILDING (MORE THAN 10 LEVELS)        | 12  |
| TABLE 3.5     | TRIP GENERATION - RETAIL              |     |
| TABLE 3.6     | TRIP GENERATION - OFFICE              |     |
| TABLE 3.7     | TRIP GENERATION - COMMUNITY           |     |
| TABLE 3.8     | INTERNAL TRIP CAPTURE RATES           |     |
| TABLE 3.9     | TRIP GENERATION SUMMARY               |     |
| TABLE 3.10    | POPULATION AND EMPLOYMENT             |     |
|               | DISTRIBUTION                          | 14  |
| TABLE 5.1     | CAPACITY ANALYSIS: 2040 POST-         |     |
|               | DEVELOPMENT TRAFFIC (PEAK HOUR) -     |     |
|               | ALBERT STREET / DEWDNEY AVENUE        | 27  |
| TABLE 5.2     | CAPACITY ANALYSIS: 2040 POST-         |     |
|               | DEVELOPMENT TRAFFIC (OFF PEAK) -      |     |
|               | ALBERT STREET / DEWDNEY AVENUE        | 28  |
| TABLE 5.3     | CAPACITY ANALYSIS: 2040 POST-         |     |
|               | DEVELOPMENT TRAFFIC (PEAK HOUR) -     |     |
|               | MCINTYRE STREET / DEWDNEY AVENUE      | 29  |



| TABLE 5.4  | CAPACITY ANALYSIS: 2040 POST-      |
|------------|------------------------------------|
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | MCINTYRE STREET / DEWDNEY AVENUE29 |
| TABLE 5.5  | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | LORNE STREET / DEWDNEY AVENUE30    |
| TABLE 5.6  | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | LORNE STREET / DEWDNEY AVENUE30    |
| TABLE 5.7  | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | CORNWALL STREET / DEWDNEY AVENUE31 |
| TABLE 5.8  | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | CORNWALL STREET / DEWDNEY AVENUE31 |
| TABLE 5.9  | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | SCARTH STREET / DEWDNEY AVENUE32   |
| TABLE 5.10 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | SCARTH STREET / DEWDNEY AVENUE32   |
| TABLE 5.11 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | HAMILTON STREET / DEWDNEY AVENUE33 |
| TABLE 5.12 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | HAMILTON STREET / DEWDNEY AVENUE33 |
| TABLE 5.13 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | ROSE STREET / DEWDNEY AVENUE34     |
| TABLE 5.14 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | ROSE STREET / DEWDNEY AVENUE34     |
| TABLE 5.15 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (PEAK HOUR) -  |
|            | BROAD STREET / DEWDNEY AVENUE35    |
| TABLE 5.16 | CAPACITY ANALYSIS: 2040 POST-      |
|            | DEVELOPMENT TRAFFIC (OFF PEAK) -   |
|            | BROAD STREET / DEWDNEY AVENUE35    |



#### **FIGURES**

| PROPOSED MID-BLOCK CROSS SECTION      | V                                                 |
|---------------------------------------|---------------------------------------------------|
|                                       |                                                   |
|                                       |                                                   |
|                                       |                                                   |
| EXISTING (2015) TRAFFIC               | 6                                                 |
| 2040 BACKGROUND TRAFFIC               |                                                   |
| TRIP DISTRIBUTION - RESIDENTIAL       | 17                                                |
| TRIP DISTRIBUTION - OFFICE, RETAIL,   |                                                   |
| AND COMMUNITY                         | 18                                                |
| TRIP DISTRIBUTION - PASS-BY TRIPS     |                                                   |
| (RETAIL)                              | 19                                                |
| TRIP ASSIGNMENT - RESIDENTIAL         |                                                   |
| TRIP ASSIGNMENT - OFFICE, RETAIL, AND |                                                   |
| COMMUNITY                             | 21                                                |
| TRIP ASSIGNMENT - PASS-BY TRIPS       |                                                   |
| (RETAIL)                              | 22                                                |
| 2040 POST-DEVELOPMENT TRAFFIC         | 23                                                |
| 2040 POST-DEVELOPMENT TRAFFIC         |                                                   |
| (RIGHT-IN / RIGHT-OUT)                | 24                                                |
|                                       | PROPOSED CROSS SECTION AT SIGNALIZED INTERSECTION |

#### **APPENDICES**

APPENDIX A: ABBREVIATIONS AND UNITS

APPENDIX B: PROJECT INFORMATION

APPENDIX C: TRAFFIC ANALYSIS

APPENDIX D: INTERSECTION ANALYSIS

APPENDIX E: CAPACITY ANALYSIS

## 1 INTRODUCTION

WSP Canada Inc. was retained by the City of Regina to complete a transportation impact analysis for the Railyard Renewal Project (RRP) which is one of the primary components of the Regina Revitalization Initiative (RRI). The Railyard Renewal Project is located at the old CP Intermodal Land site, north of the City's downtown area and is bounded by CP rail main line to the south, Dewdney Avenue to the north, Albert Street to the west, and Broad Street to the east.. The subject site location is shown in Figure 1.1.

#### 1.1 STUDY PURPOSE AND OBJECTIVES

The purpose of this study is to identify and assess the potential transportation impacts on the study intersections associated with the proposed RRP site development, and to suggest required mitigation measures (if any) to allow that the adjacent roadways safely accommodate traffic generated by the proposed development. The objectives of this study are to:

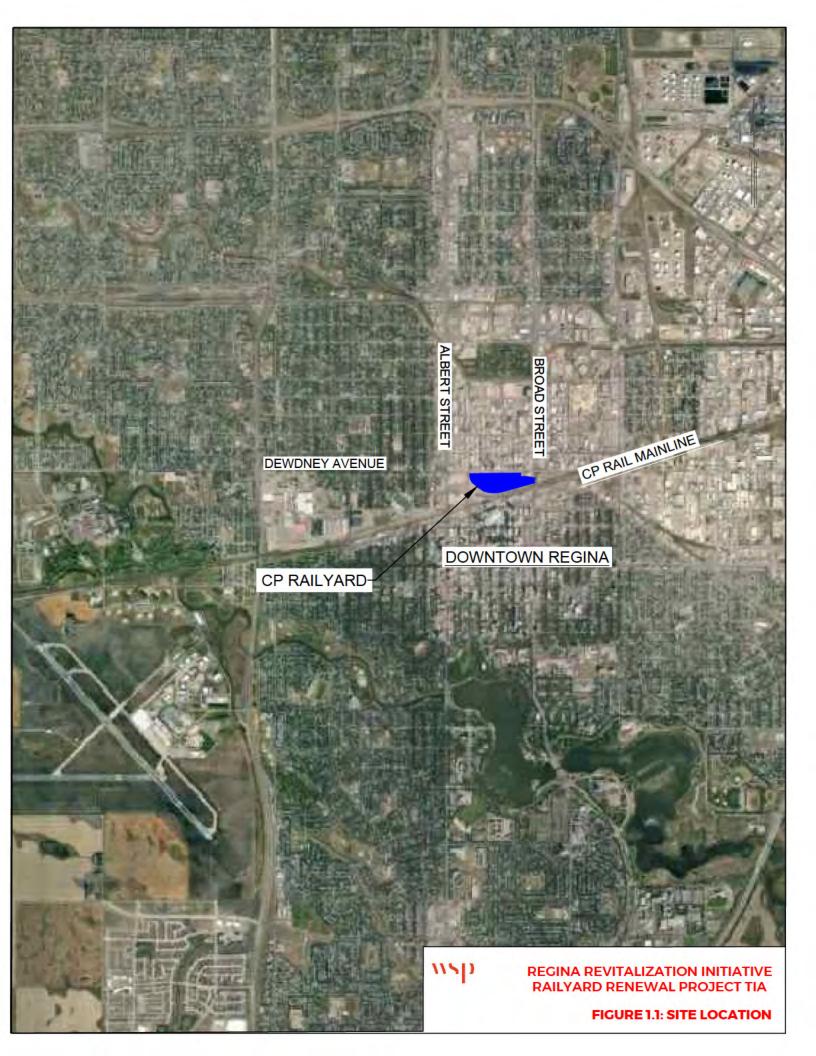
- Assess the existing geometric layout and traffic operations on Dewdney Avenue and at each study intersection; and
- Identify required infrastructure improvements including road network, intersection lane configuration, signals, pedestrian and transit access to facilitate traffic and pedestrian flow, and to improve safety and operational performance along Dewdney Avenue.

#### 1.2 BACKGROUND

The Regina Revitalization Initiative is the largest urban revitalization project ever undertaken in the City of Regina and consists of three (3) primary components: the Stadium Project; Railyard Renewal Project; and, the redevelopment of Taylor Field Neighbourhood.

The Railyard Renewal Project will revitalize a strategically and centrally located former industrial railyard site, comprising approximately 17.5 acres, into a new mixed-use neighbourhood. In 2012, Regina's City Council authorized the acquisition of the railyard site from Canadian Pacific Railway. The land acquired included a former intermodal facility; however, other railway activities remain in operation adjacent to the site (i.e. an interchange line, servicing area, wye interchange, and national main rail lines). The Railyard Renewal Project provides an unparalleled opportunity for the City of Regina to guide the redevelopment of the railyard site and to continue to pursue urban revitalization through the RRI by removing and/or mitigating long-existing barriers between the Warehouse District and Downtown.

The Railyard Renewal Project will be a major infill development site in the heart of Regina and will have significant impacts on the surrounding road networks, pedestrian facilities and parking facilities.


The existing CP rail mainline is currently a barrier between the Downtown area and the railyard site. A future pedestrian connection over the CP rail mainline is a key feature linking the RRP site to the downtown core.

#### 1.3 METHODOLOGY

In order to meet the study objectives, the following methodology was used:

- Review available relevant studies and reports for the RRI project and the City's Transportation Master Plan (Draft),
   Development Standards Manual, and Regina Revitalization Initiative Guiding Principles.
- Obtain existing transportation network characteristics including traffic volumes, geometry, and information on public transit services, parking facilities, and pedestrian facilities.
- Conduct AM, Noon, and PM peak hour traffic counts at the study intersections.
- Obtain the future traffic volumes on surrounding roadways and study intersections from the City's EMME traffic demand forecasting model.
- Estimate the trips generated by the proposed development based on ITE's *Trip Generation Manual (9th Edition)*.
- Analyze the delay, LOS and queue lengths of the study intersections at weekday AM and PM peak periods for the analysis horizon traffic using Synchro Studio 9 (Synchro).

Identify any improvements necessary for the intersections and pedestrian facilities to accommodate the forecasted traffic and pedestrian volumes.



## 2 EXISTING CONDITIONS

The existing conditions of the surrounding roadways and study intersections were reviewed in terms of the following:

- Roadway characteristics.
- Study intersection characteristics.
- Traffic operational performance.
- Pedestrian and cyclist facilities and transit service.
- Constraints.

#### 2.1 EXISTING ROADWAY CHARACTERISTICS

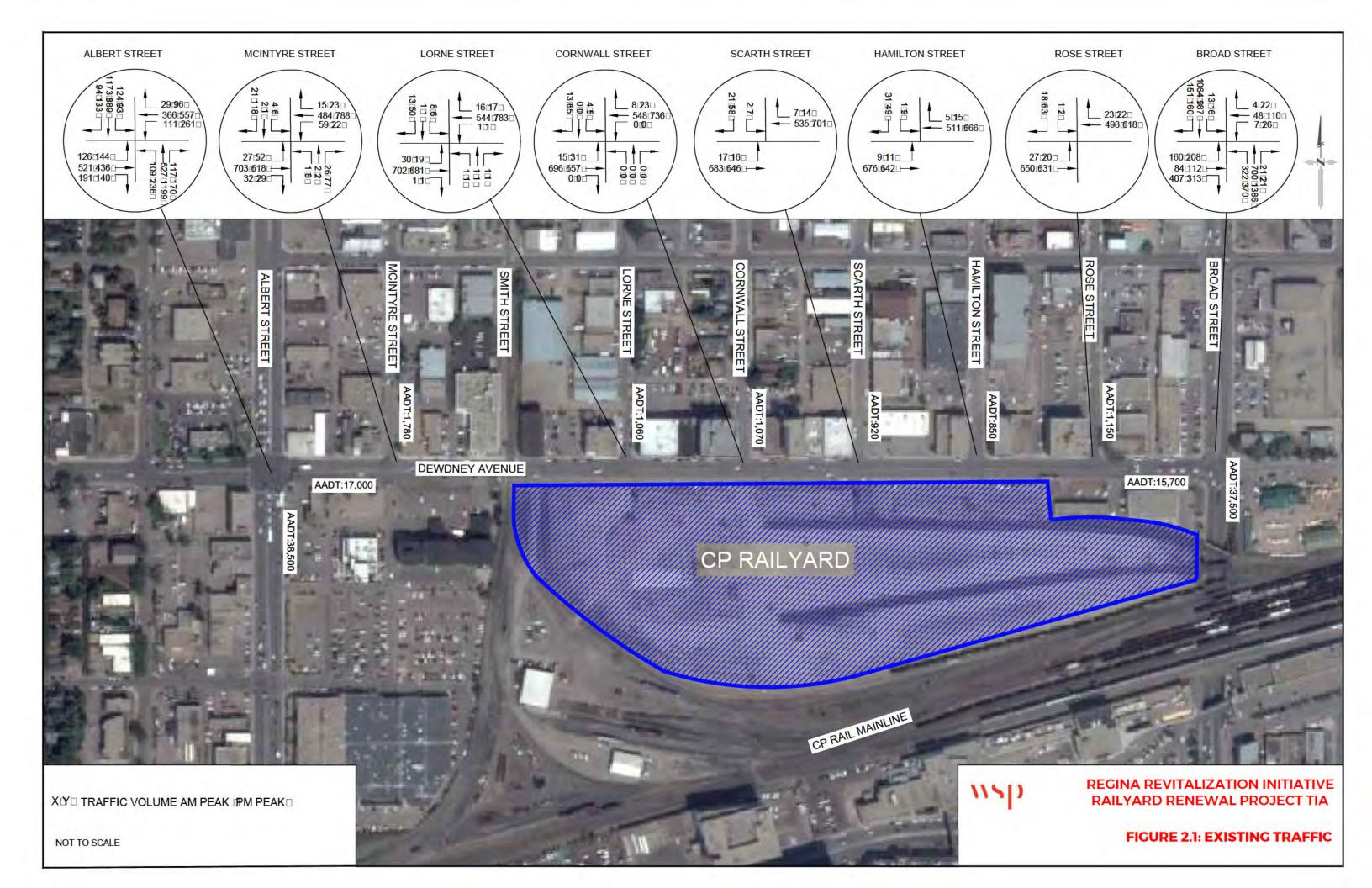
Primary vehicular access to the CP Railyard site will be obtained via Dewdney Avenue, Albert Street, and Broad Street. Due to the CP rail mainline to the south, adjacent commercial development and CP spur line to the west, and the Broad Street underpass to the east, the only accesses to the railyard site will be from Dewdney Avenue to the north.

In the vicinity of the CP Railyard site, Dewdney Avenue is a four-lane undivided arterial road with on-street parking on both sides. There are six intersections and twelve property accesses along the 800 m long Dewdney Avenue corridor between Albert Street and Broad Street. Dewdney Avenue is designated as a truck route and provides accesses to the commercial and industrial properties in the Warehouse District. Several bus routes run through Dewdney Avenue as well. The current Average Annual Daily Traffic (AADT) on Dewdney Avenue between Albert Street and Broad Street ranges from 15,700 to 17,000 vehicles per day.

Albert Street is a major arterial road that runs north-south through the City of Regina. In the vicinity of the Dewdney Avenue intersection, Albert Street presents a divided six-lane cross section with raised concrete median. The current AADT on Albert Street is estimated to be approximately 38,500 vehicles per day.

Broad Street is a major arterial road that runs north-south parallel to Albert Street. South of Dewdney Avenue, Broad Street is a four-lane divided road that underpasses the CP Rail mainline. Broad Street presents a six-lane cross section with raised median north of Dewdney Avenue. The current AADT on Broad Street is estimated to be approximately 37,500 vehicles per day.

McIntyre Street, Lorne Street, Cornwall Street, Scarth Street, Hamilton Street, and Rose Street are local roads that intersect with Dewdney Avenue and provide access to the commercial and industrial developments in the Warehouse District north of Dewdney Avenue.


#### 2.2 EXISTING INTERSECTION CHARACTERISTICS

The Albert Street / Dewdney Avenue intersection is currently controlled by traffic signals. Left turn lanes are provided on all four approaches. Exclusive right turn lanes are provided on the east and west approaches and through / right sharing lanes are provides on the north and south approaches. Actuated pedestrian signals and crosswalks are provided on all four legs.

The Broad Street / Dewdney Avenue intersection is currently controlled by traffic signals. Left turn lanes are provided on the north, south, and west approaches. Exclusive right turn lanes are provided on the north and west approaches and a through / right sharing lane is provides on the south approach. There are no lane designation pavement markings present on the east leg. The east leg road width is capable of accommodating two vehicles maneuvering the intersection (a through vehicle passes a left turning vehicle or a right turning vehicle passes a through vehicle). Actuated pedestrian signals and crosswalks are provided on the north and west legs.

There are no left and right turn lanes provided for the local road intersections at Dewdney Avenue except for the McIntyre Street intersection at which left turn lanes are provided for the east and westbound traffic. Pedestrian crosswalks are not provided at the local road intersections along Dewdney Avenue.

The existing traffic turning movements at the study intersections were estimated based on the AM and PM peak hour traffic counts provided by the City of Regina. Figure 2.1 illustrates the current AM and PM peak hour traffic volumes of each turning movement at the study intersections.



#### 2.3 EXISTING TRAFFIC OPERATIONAL PERFORMANCE

To determine the operating conditions of an intersection or roadway, the concept of level of service (LOS) is generally used. The LOS of an intersection is a qualitative measure of capacity and operating conditions and is directly related to vehicle delay. LOS is given a letter designation from A to F, with LOS A representing very short delays and the best operating conditions, and LOS F representing very long delays and failure of a movement, LOS D is typically considered the limit of acceptable operation because excessive delays tend to occur beyond this threshold, LOS E is also acceptable during peak hours in urban area by some agencies.

For this study, WSP developed Synchro Studio 9 (Synchro) intersection simulation models for the study intersections, Synchro 9 implements the methods of the Highway Capacity Manual, 2010 (HCM 2010) and follows the LOS criteria that is listed in Table 2.1. For two-way stop controlled intersections, the delay is typically calculated for the movements at the minor approaches only, since the major roads are considered to be operating at free flow conditions.

Table 2.1 Level of Service Criteria for Intersections (HCM 2010)

| SIGNALIZED        | UNSIGNALIZED      | LOS BY VOLUME-TO-CAPACITY RATIO |           |  |  |
|-------------------|-------------------|---------------------------------|-----------|--|--|
| CONTROL DELAY (S) | CONTROL DELAY (S) | v/c ≤ 1.0                       | v/c > 1.0 |  |  |
| ≤ 10              | ≤ 10              | A                               | F         |  |  |
| > 10 and ≤ 20     | > 10 and ≤ 15     | В                               | F         |  |  |
| > 20 and ≤ 35     | > 15 and ≤ 25     | С                               | F         |  |  |
| > 35 and ≤ 55     | > 25 and ≤ 35     | D                               | F         |  |  |
| > 55 and ≤ 80     | > 35 and ≤ 50     | E                               | F         |  |  |
| > 80              | > 50              | F                               | F         |  |  |

Source: Highway Capacity Manual 2010 (Transportation Research Board)

Based on the existing intersection lane configurations and traffic volumes, the current traffic operational performance was analyzed for each study intersection. Tables 2.2 to 2.9 summarize the capacity analysis results.

Table 2.2 Capacity Analysis: Existing Traffic - Albert Street / Dewdney Avenue

ANA DE ALCHOUR

| TRAFFIC     |           | AM PEA | K HOUR |                                      | PM PEAK HOUR |     |      |                                      |
|-------------|-----------|--------|--------|--------------------------------------|--------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 21.1      | C      | 0.39   | 25.6                                 | 30.0         | С   | 0.60 | 29.6                                 |
| EBT,T       | 35.5      | D      | 0.65   | 62.0                                 | 36.3         | D   | 0.58 | 51.6                                 |
| EBR         | 5.5       | A      | 0.39   | 12.6                                 | 6.3          | A   | 0.32 | 13.3                                 |
| WBL         | 22.6      | С      | 0.45   | 23.0                                 | 53.9         | D   | 0.88 | 59.6                                 |
| WBT,T       | 31.6      | C      | 0.46   | 43.2                                 | 40.5         | D   | 0.73 | 66.8                                 |
| WBR         | 0.3       | A      | 0.07   | 0.0                                  | 8.5          | A   | 0.24 | 12.8                                 |
| NBL         | 22.9      | C      | 0.52   | 25.2                                 | 27.6         | С   | 0.72 | 66.5                                 |
| NBT,T,TR    | 23.0      | C      | 0.40   | 47.8                                 | 24.7         | С   | 0.65 | 118.5                                |
| SBL         | 16.3      | В      | 0.37   | 25.9                                 | 18.7         | В   | 0.43 | 19.8                                 |
| SBT,T,TR    | 31.8      | C      | 0.78   | 110.9                                | 26.8         | С   | 0.58 | 84.6                                 |
| INT Summary | 27.5      | С      | 0.78   | -                                    | 29.4         | C   | 0.88 | -                                    |

DAA DE ALC LIQUE

Table 2.3 Capacity Analysis: Existing Traffic - McIntyre Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      | PM PEAK HOUR |     |      |                                      |
|-------------|-----------|--------|--------|--------------------------------------|--------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 8.9       | A      | 0.04   | 0.8                                  | 10.1         | В   | 0.08 | 1.9                                  |
| WBL         | 10.4      | В      | 0.10   | 2.1                                  | 9.2          | A   | 0.03 | 0.6                                  |
| NBLTR       | 16.8      | C      | 0.11   | 1.6                                  | 18.3         | С   | 0.26 | 6.2                                  |
| SBLTR       | 19.4      | C      | 0.12   | 2.4                                  | 17.5         | С   | 0.32 | 10.1                                 |
| INT Summary | 1.3       | A      | 0.12   | -                                    | 2.6          | A   | 0.32 | -                                    |

Table 2.4 Capacity Analysis: Existing Traffic - Lorne Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      | PM PEAK HOUR |     |      |                                      |
|-------------|-----------|--------|--------|--------------------------------------|--------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 9.2       | A      | 0.04   | 1.0                                  | 9.7          | A   | 0.03 | 0.6                                  |
| WBL         | 9.7       | A      | 0.00   | 0.0                                  | 8.8          | A   | 0.00 | 0.0                                  |
| NBLTR       | 23.4      | C      | 0.02   | 0.3                                  | 24.0         | С   | 0.01 | 0.2                                  |
| SBLTR       | 19.6      | C      | 0.10   | 2.0                                  | 15.4         | C   | 0.15 | 3.9                                  |
| INT Summary | 0.8       | A      | 0.10   | -                                    | 0.9          | A   | 0.15 | -                                    |

Table 2.5 Capacity Analysis: Existing Traffic - Cornwall Street / Dewdney Avenue

| TRAFFIC   |             |      | AM PEA | K HOUR                               |           | PM PEAK HOUR |     |                                      |     |
|-----------|-------------|------|--------|--------------------------------------|-----------|--------------|-----|--------------------------------------|-----|
| MOVEMENTS | Delay (s)   | LOS  | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS          | V/C | 95 <sup>th</sup> Queue<br>Length (m) |     |
|           | EBL         | 9.1  | A      | 0.02                                 | 0.5       | 9.7          | A   | 0.04                                 | 1.0 |
|           | SBLTR       | 15.6 | В      | 0.06                                 | 1.4       | 14.3         | В   | 0.16                                 | 4.3 |
|           | INT Summary | 0.4  | A      | 0.06                                 | -         | 1.0          | A   | 0.16                                 | -   |

Table 2.6 Capacity Analysis: Existing Traffic - Scarth Street / Dewdney Avenue

| TRAFFIC . MOVEMENTS |             | AM PEA | K HOUR |                                      | PM PEAK HOUR |      |     |                                      |     |
|---------------------|-------------|--------|--------|--------------------------------------|--------------|------|-----|--------------------------------------|-----|
|                     | Delay (s)   | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS  | V/C | 95 <sup>th</sup> Queue<br>Length (m) |     |
|                     | EBL         | 9.1    | A      | 0.02                                 | 0.5          | 9.4  | A   | 0.02                                 | 0.5 |
|                     | SBLTR       | 12.0   | В      | 0.05                                 | 1.2          | 13.7 | В   | 0.15                                 | 3.9 |
|                     | INT Summary | 0.4    | A      | 0.05                                 | -            | 0.8  | A   | 0.15                                 | -   |

Table 2.7 Capacity Analysis: Existing Traffic - Hamilton Street / Dewdney Avenue

| TRAFFIC -<br>MOVEMENTS |             | AM PEA | K HOUR |                                      | PM PEAK HOUR |      |     |                                      |     |
|------------------------|-------------|--------|--------|--------------------------------------|--------------|------|-----|--------------------------------------|-----|
|                        | Delay (s)   | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS  | V/C | 95 <sup>th</sup> Queue<br>Length (m) |     |
|                        | EBL         | 8.9    | A      | 0.01                                 | 0.3          | 9.3  | A   | 0.01                                 | 0.3 |
|                        | SBLTR       | 11.1   | В      | 0.06                                 | 1.5          | 13.9 | В   | 0.14                                 | 3.5 |
|                        | INT Summary | 0.4    | A      | 0.06                                 | -            | 0.7  | A   | 0.14                                 | -   |

Table 2.8 Capacity Analysis: Existing Traffic - Rose Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      | PM PEAK HOUR |     |      |                                      |
|-------------|-----------|--------|--------|--------------------------------------|--------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 9.0       | A      | 0.04   | 0.8                                  | 9.2          | A   | 0.02 | 0.6                                  |
| SBLTR       | 11.3      | В      | 0.04   | 0.9                                  | 11.7         | В   | 0.12 | 2.9                                  |
| INT Summary | 0.5       | A      | 0.04   | -                                    | 0.8          | A   | 0.12 | -                                    |

Table 2.9 Capacity Analysis: Existing Traffic - Broad Street / Dewdney Avenue

| TRAFFIC     | AM PEAK HOUR |     |      |                                      | PM PEAK HOUR |     |      |                                      |  |
|-------------|--------------|-----|------|--------------------------------------|--------------|-----|------|--------------------------------------|--|
| MOVEMENTS   | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |
| EBL         | 49.1         | D   | 0.66 | 42.4                                 | 45.9         | D   | 0.72 | 51.3                                 |  |
| EBT         | 41.2         | D   | 0.30 | 29.9                                 | 40.8         | D   | 0.34 | 35.4                                 |  |
| EBR         | 16.1         | В   | 0.77 | 16.5                                 | 8.1          | A   | 0.58 | 20.8                                 |  |
| WBL         | 29.3         | С   | 0.03 | 4.2                                  | 26.8         | С   | 0.08 | 9.2                                  |  |
| WBTR        | 43.3         | D   | 0.27 | 19.4                                 | 47.8         | D   | 0.55 | 40.2                                 |  |
| NBL         | 37.6         | D   | 0.74 | 126.0                                | 41.9         | D   | 0.83 | 136.2                                |  |
| NBT,TR      | 8.3          | A   | 0.34 | 58.3                                 | 15.2         | В   | 0.66 | 169.0                                |  |
| SBL         | 22.4         | С   | 0.06 | 4.6                                  | 28.8         | С   | 0.14 | 8.7                                  |  |
| SBT,T       | 35.4         | D   | 0.82 | 165.7                                | 34.8         | С   | 0.77 | 160.6                                |  |
| SBR         | 6.5          | A   | 0.24 | 16.3                                 | 6.2          | A   | 0.26 | 16.8                                 |  |
| INT Summary | 25.9         | С   | 0.82 | -                                    | 25.8         | С   | 0.83 | -                                    |  |

The above capacity analyses reveal that all traffic movements at the signal controlled major intersections of Albert Street and Dewdney Avenue, and Broad Street and Dewdney Avenue operate at an acceptable LOS D or better during the AM and PM peak hours under the existing traffic conditions. However, the westbound left turn bay at the Albert Street / Dewdney Avenue intersection does not provide adequate storage length for the left turn movements during the PM peak hours and the westbound left turning queue may block the adjacent westbound through lane. At the Broad Street / Dewdney Avenue intersection, the northbound left turn movement queue may spill on to the adjacent northbound through lane during both the AM and PM peak hours and adversely impact the northbound through movement capacity.

All traffic movements at the local road intersections on Dewdney Avenue operate at an acceptable LOS C or better during the AM and PM peak hours under the existing traffic conditions. No traffic operational issues were found at these local road intersections

## 2.4 EXISTING PEDESTRIAN AND CYCLIST FACILITIES AND TRANSIT SERVICE

Sidewalks are provided along Albert Street and Broad Street on both sides except for the Broad Street underpass section where only the west side sidewalk is provided. There is no sidewalk on the east side. The section of Dewdney Avenue, between Albert Street and Broad Street, is currently lacking in pedestrian infrastructure. Sidewalks are provided only on the north side of Dewdney Avenue.

Trails or lanes dedicated to cyclists are not provided in the RRP surrounding area. Cyclists will have to either share sidewalks with pedestrians or share roadways with automobiles.

The CP railyard area is currently well served by the City's transit system. Several bus routes are offered for this area including Route #1, #2, #4, #5, #10, and #30.

#### 2.5 EXISTING CONSTRAINTS

The identified existing constraints on the RRP site are listed below:

- CP rail mainline on south side and CP rail spur line on west side of the site.
- Broad Street underpass structure on the east side.
- The site surrounding area is well developed. Limited space for road widening.
- Closely spaced intersections and property accesses along Dewdney Avenue may have operational and safety issues and adversely impacts the capacity on the Dewdney Avenue corridor during the peak hours in the future with increased traffic volumes on Dewdney Avenue.
- Capacity constraints during peak hours at the Albert Street and Broad Street intersections.
- On-street parking allowed on both sides of Dewdney Avenue which may decrease the capacity of the intersections on Dewdney Avenue.

## 3 TRAFFIC FORECAST

This section presents the forecasted future traffic volumes for the subject roadways and study intersections.

#### 3.1 BACKGROUND TRAFFIC GROWTH

Background traffic (non-site traffic) is the traffic that exists without the addition of the trips generated by the proposed development.

The background traffic growth on Dewdney Avenue, Albert Street and Broad Street was estimated based on the City's 2012 and 2040 traffic forecast model (EMME) outputs. The City's EMME model produced the PM peak hour traffic volume forecast for the subject roadway links, The traffic volume differences between the 2012 and 2040 PM peak hours were imposed onto the existing PM peak hour traffic volumes of each roadway link to represent the anticipated future background traffic growth. The traffic turning movement volume growths were estimated based on the existing traffic turning proportions at each study intersection. Traffic growth rates were not applied onto the local roads since the area north of Dewdney Avenue is fully developed.

The City's EMME model did not provide the AM peak hour traffic forecast. For the purpose of this study, the PM peak hour traffic growth rates were used to estimate the future AM peak hour volumes. The forecasted future 2040 background traffic turning movements at each study intersection are illustrated in Figure 3.1.

#### 3.2 TRIP GENERATION

The proposed concept plan shows that the major land uses in the RRP site will be residential with a small portion of retail, office, and community entertainment uses. Table 3.1 summarizes the proposed development in the RRP site. The proposed concept plan and development detail breakdown of each building are attached in Appendix B

Table 3.1 Proposed Development Summary

| DEVELOPMENT | GROSS FLOOR AREA (m²) | UNITS |
|-------------|-----------------------|-------|
| Residential | 107,100               | 1,071 |
| Retail      | 10,000                | -     |
| Office      | 8,800                 | -     |
| Community   | 3,200                 | -     |
| Cultural    | 4,100                 | -     |
| Total       | 133,200               | 1,071 |

The Institute of Transportation Engineers (ITE) Trip Generation Manual (9th Edition) was used in this study to estimate the traffic generated by the proposed development,

The corresponding land uses in the ITE Trip Generation Manual that were used to estimate the traffic generated by the proposed developments are summarized in Table 3.2.

Table 3.2 Corresponding ITE Land uses

#### PROPOSED DEVELOPMENT

#### ITE LAND USE (CODE)

| Residential Buildings (3 to 10 Levels)      | Mid-Rise Apartment (223)            |  |  |  |  |  |
|---------------------------------------------|-------------------------------------|--|--|--|--|--|
| Residential Buildings (More Than 10 Levels) | High-Rise Apartment (222)           |  |  |  |  |  |
| Retail                                      | Specialty Retail Center (826)       |  |  |  |  |  |
| Office                                      | General Office (710)                |  |  |  |  |  |
| Community                                   | Recreational Community Center (495) |  |  |  |  |  |
| Cultural                                    | No Corresponding ITE Land Use       |  |  |  |  |  |

It is anticipated that most of the traffic generated by the proposed cultural development would be internal trips and travelling on weekends when events typically are occurring. Therefore, the cultural development generated trips would be negligible and were not included in this study.

Tables 3.3 to 3.7 summarize the estimated trips that would be generated by the proposed RRP development. The trip generation tables for each building are attached in Appendix C.

Table 3.3 Trip Generation - Residential Building (3 to 10 Levels)

| UNITS: 496               | ,     | WEEKDAY |      |       | AM PEAK HOUR |      |       | PM PEAK HOUR |      |  |
|--------------------------|-------|---------|------|-------|--------------|------|-------|--------------|------|--|
| 01113.430                | TOTAL | IN      | OUT  | TOTAL | IN           | OUT  | TOTAL | IN           | OUT  |  |
| Directional Distribution | 100%  | 50%     | 50%  | 100%  | 31%          | 69%  | 100%  | 58%          | 42%  |  |
| Rates (Trips / Unit)     | 4.46  | 2.23    | 2.23 | 0.30  | 0.09         | 0.21 | 0.39  | 0.23         | 0.16 |  |
| Total Trips              | 2212  | 1106    | 1106 | 149   | 46           | 103  | 193   | 112          | 81   |  |

Table 3.4 Trip Generation - Residential Building (More Than 10 Levels)

| UNITS: 575               | WEEKDAY |      |      | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|--------------------------|---------|------|------|--------------|------|------|--------------|------|------|
| ON113.373                | TOTAL   | IN   | OUT  | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution | 100%    | 50%  | 50%  | 100%         | 25%  | 75%  | 100%         | 61%  | 39%  |
| Rates (Trips / Unit)     | 4.20    | 2.10 | 2.10 | 0.30         | 0.08 | 0.23 | 0.35         | 0.21 | 0.14 |
| Total Trips              | 2415    | 1208 | 1208 | 173          | 43   | 129  | 201          | 123  | 78   |

Table 3.5 Trip Generation - Retail

| , | TOTAL GFA: 107,640 ft <sup>2</sup> | '     | WEEKDAY |       |       | AM PEAK HOUR |      |       | PM PEAK HOUR |      |  |
|---|------------------------------------|-------|---------|-------|-------|--------------|------|-------|--------------|------|--|
| _ | 101AL 01 A. 107,040 IC             | TOTAL | IN      | OUT   | TOTAL | IN           | OUT  | TOTAL | IN           | OUT  |  |
|   | Directional Distribution           | 100%  | 50%     | 50%   | 100%  | 62%          | 38%  | 100%  | 44%          | 56%  |  |
|   | Rates (Trips / 1000 ft²)           | 44.32 | 22.16   | 22.16 | 0.96  | 0.60         | 0.36 | 2.71  | 1.19         | 1.52 |  |
|   | Total Trips                        | 4771  | 2385    | 2385  | 103   | 64           | 39   | 292   | 128          | 163  |  |

Table 3.6 Trip Generation - Office

| TOTAL GFA: 94,720 ft <sup>2</sup> | WEEKDAY |      |      | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|-----------------------------------|---------|------|------|--------------|------|------|--------------|------|------|
| 101AE 01 A. 54,720 R              | TOTAL   | IN   | OUT  | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution          | 100%    | 50%  | 50%  | 100%         | 88%  | 12%  | 100%         | 17%  | 83%  |
| Rates (Trips / 1000 ft²)          | 11.03   | 5.52 | 5.52 | 1.56         | 1.37 | 0.19 | 1.49         | 0.25 | 1.24 |
| Total Trips                       | 1045    | 522  | 522  | 148          | 130  | 18   | 141          | 24   | 117  |

Table 3.7 Trip Generation - Community

| TOTAL GFA: 34,450 ft <sup>2</sup> | WEEKDAY |       |       | AM PEAK HOUR |      |      | PM PEAK HOUR |      |      |
|-----------------------------------|---------|-------|-------|--------------|------|------|--------------|------|------|
| TOTAL OFA: 54,450 IL              | TOTAL   | IN    | OUT   | TOTAL        | IN   | OUT  | TOTAL        | IN   | OUT  |
| Directional Distribution          | 100%    | 50%   | 50%   | 100%         | 66%  | 34%  | 100%         | 49%  | 51%  |
| Rates (Trips / 1000 ft²)          | 33.82   | 16.91 | 16.91 | 2.05         | 1.35 | 0.70 | 2.74         | 1.34 | 1.40 |
| Total Trips                       | 1165    | 583   | 583   | 71           | 47   | 24   | 94           | 46   | 48   |

#### 3.2.1 INTERNAL AND PASS-BY TRIPS

Internal trips should be considered for a multi-use development. According to the ITE *Trip Generation Handbook*, a multi-use development is typically a single real-estate project that consists of two or more ITE land use classifications between which trips can be made without using the off-site road system. The internal trips can be made either by walking or by vehicles using internal roadways. In this study, the proposed development is deemed to be a multi-use development (residential, office, and retail), thus to estimate the trips made on the external streets, the internal trips that are not made on the major street system should be deducted from the total trips. To account for the internal trips, ITE NCHRP 684 Internal Trip Capture Estimation Tool was used in this study. Table 3.8 summaries the estimated internal trip capture percentages by land uses and the detailed analysis results were attached in Appendix C. ITE doesn't provide the internal trip capture rate for community land use, the average internal capture rate for residential, retail, and office was applied to the community development.

Table 3.8 Internal Trip Capture Rates

| LAND USE    | AM PEA | K HOUR | PM PEAK HOUR |     |  |
|-------------|--------|--------|--------------|-----|--|
|             | IN     | OUT    | IN           | OUT |  |
| Residential | 2%     | 3%     | 19%          | 10% |  |
| Retail      | 12%    | 20%    | 14%          | 23% |  |
| Office      | 7%     | 28%    | 30%          | 8%  |  |
| Community   | 7%     | 8%     | 18%          | 14% |  |

According to the ITE Trip Generation Handbook, pass-by trips are defined as the trips that are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the generator. Pass-by trips will not add new traffic to the adjacent street system. In this study, the proposed shopper centre and highway commercial developments will attract pass-by trips. In accordance with the ITE Trip Generation Handbook, an average 34% of the trips generated by a shopping center are pass-by trips. In this study, it is assumed that 35% of the total trips generated by the retail development will be pass-by trips

#### 3.2.2 COMMUTE TRIPS

The RRP site is located close to the downtown core which is currently served by Regina public transit, A pedestrian connection over the CP rail tracks is proposed to link the railyard site to the downtown core.

In consultation with the City, it is anticipated that approximately 20% of commute trips would be made by public transit, walking, and bicycle.

#### 3.2.3 TRIP GENERATION SUMMARY

Table 3.9 summarizes the estimated new vehicle trips that will be generated by the proposed railyard development at full build out,

**Table 3.9 Trip Generation Summary** 

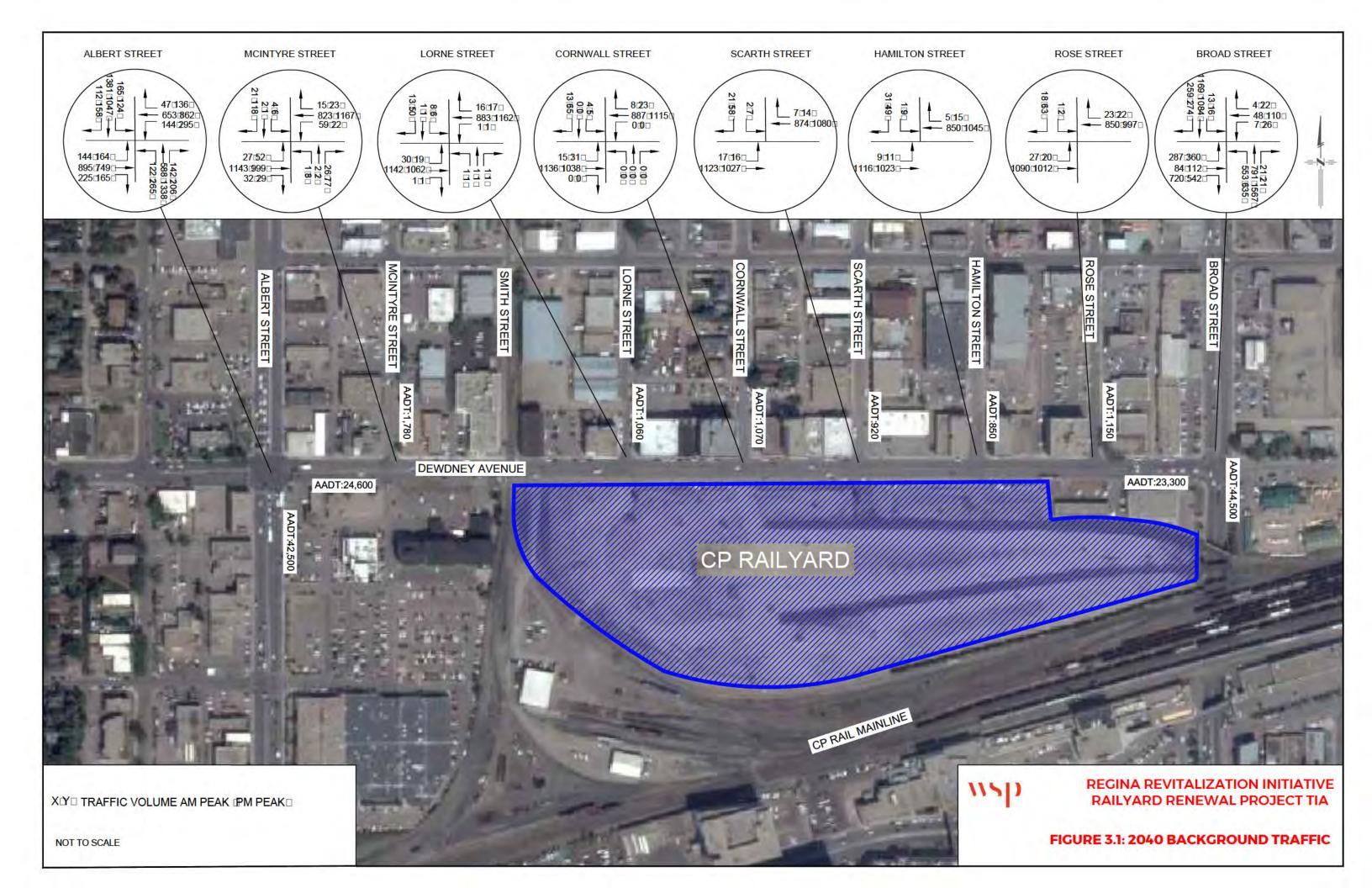
| DEVELOPMENT            | WEEKDAY |      |      | AM    | AM PEAK HOUR |     |       | PM PEAK HOUR |     |  |
|------------------------|---------|------|------|-------|--------------|-----|-------|--------------|-----|--|
| DEVELOPMENT            | TOTAL   | IN   | OUT  | TOTAL | IN           | OUT | TOTAL | IN           | OUT |  |
| Residential            | 4627    | 2314 | 2314 | 321   | 89           | 232 | 395   | 235          | 160 |  |
| Retail                 | 4771    | 2386 | 2386 | 103   | 64           | 39  | 292   | 128          | 163 |  |
| Office                 | 1045    | 522  | 522  | 148   | 130          | 18  | 141   | 24           | 117 |  |
| Community              | 1165    | 583  | 583  | 71    | 47           | 24  | 94    | 46           | 48  |  |
| Total Trips            | 11609   | 5805 | 5805 | 643   | 330          | 313 | 922   | 434          | 488 |  |
| Internal Trips         | 1790    | 895  | 895  | 60    | 30           | 30  | 182   | 91           | 91  |  |
| External Trips         | 9819    | 4910 | 4910 | 583   | 300          | 283 | 740   | 343          | 397 |  |
| Public Transit Trips   | 1964    | 982  | 982  | 117   | 60           | 57  | 148   | 69           | 79  |  |
| External Vehicle Trips | 7856    | 3928 | 3928 | 466   | 240          | 226 | 592   | 274          | 318 |  |
| Pass-by Trips (Retail) | 1000    | 500  | 500  | 25    | 16           | 9   | 66    | 31           | 35  |  |
| Non-Pass-by Trips      | 6855    | 3428 | 3428 | 442   | 224          | 218 | 526   | 243          | 283 |  |

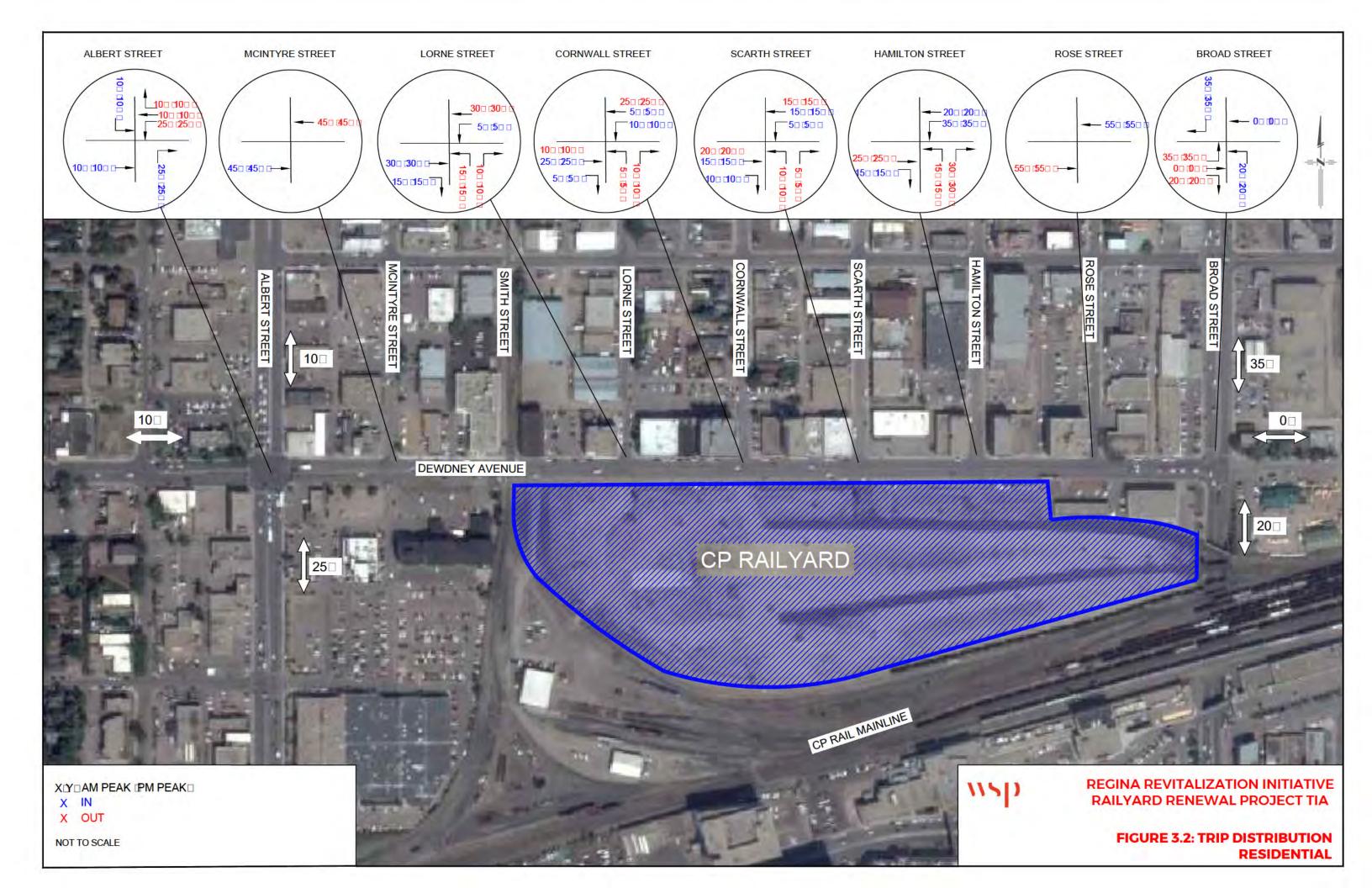
#### 3.3 TRIP DISTRIBUTION AND ASSIGNMENT

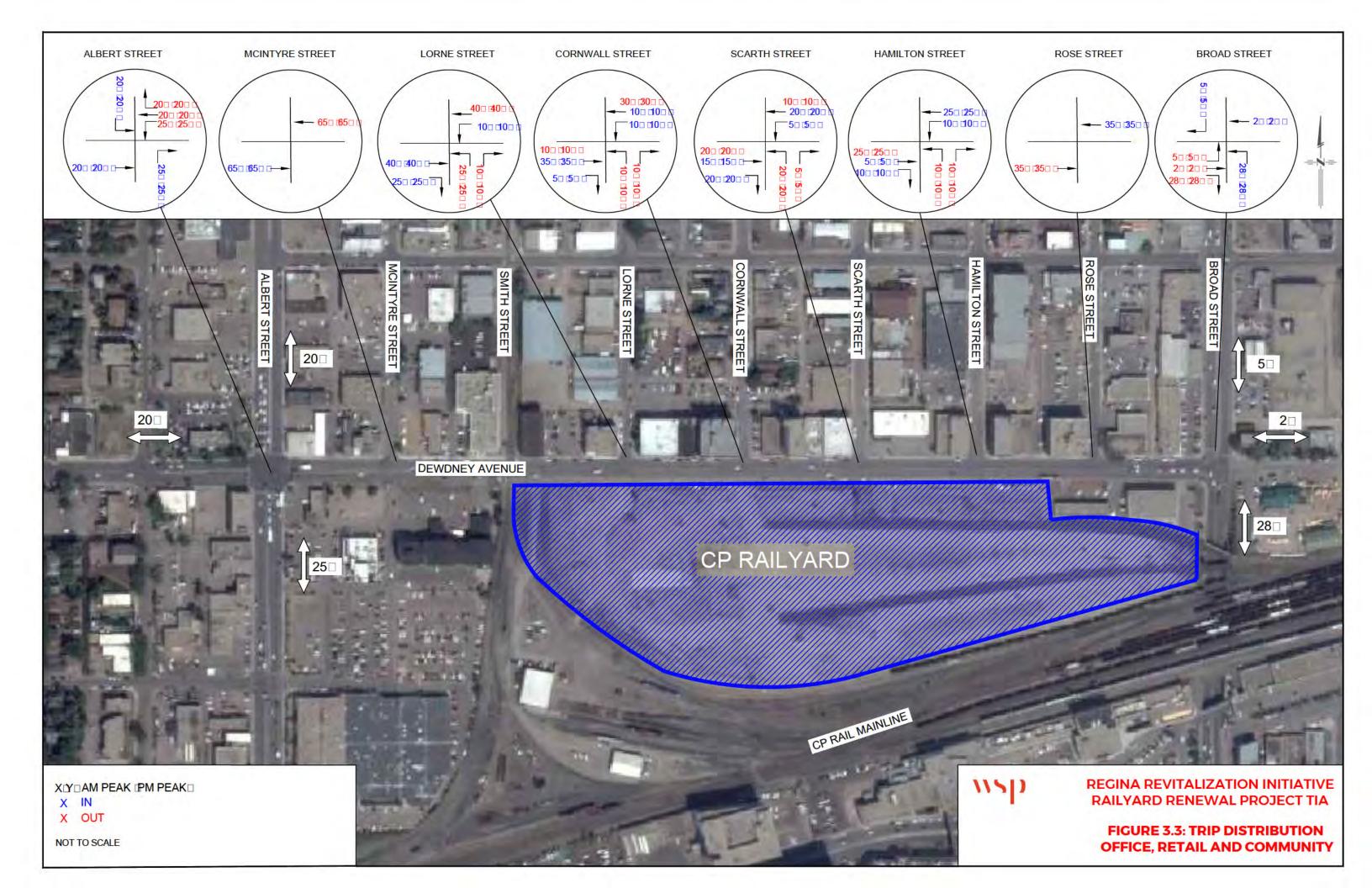
Since the proposed RRP development will include a mix of residential, retail, and office land uses; trip distributions for the proposed development were estimated based on the population and employment distributions within Regina and the road network in the vicinity of the RRP site. Population distribution was estimated based on the current main residential areas in the City, while employment distribution was estimated based on the size and location of major employment centers in Regina. The population and employment distribution estimates are shown in Table 3.10.

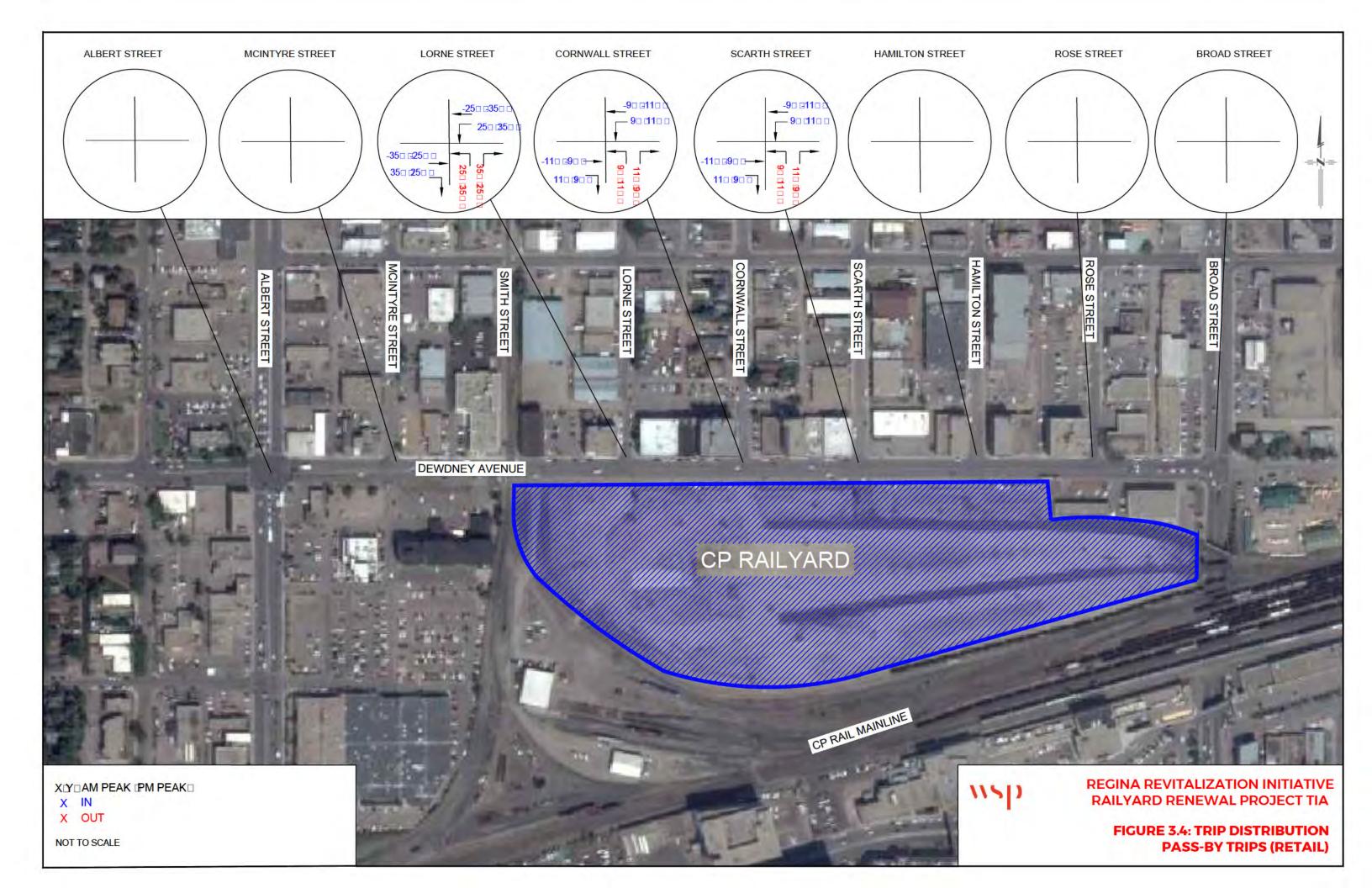
Table 3.10 Population and Employment Distribution

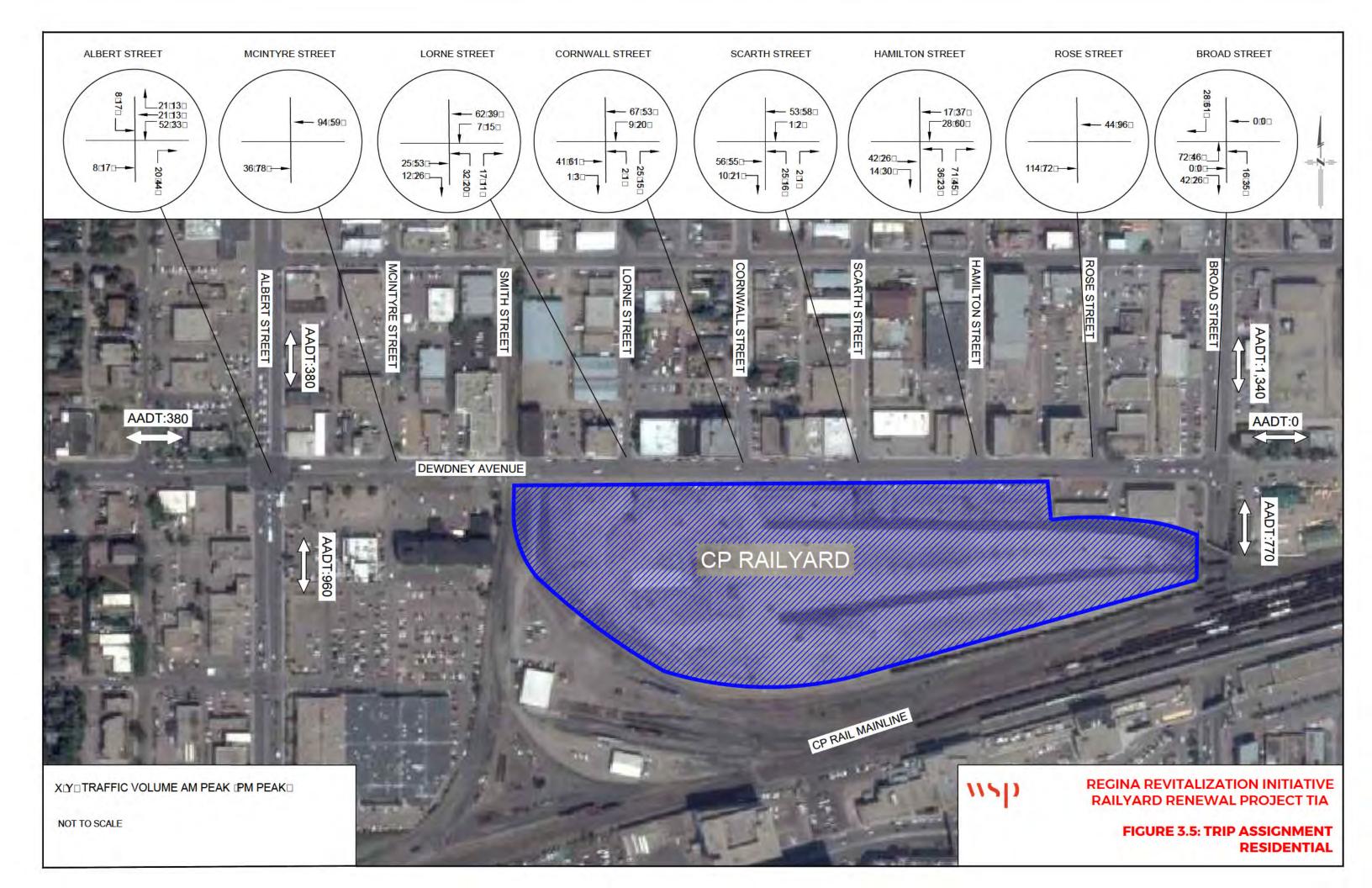
| DIRECTIONS FROM THE SITE | POPULATION DISTRIBUTION | EMPLOYMENT DISTRIBUTION |
|--------------------------|-------------------------|-------------------------|
| North                    | 25%                     | 45%                     |
| West                     | 20%                     | 10%                     |
| South                    | 40%                     | 25%                     |
| East                     | 15%                     | 20%                     |

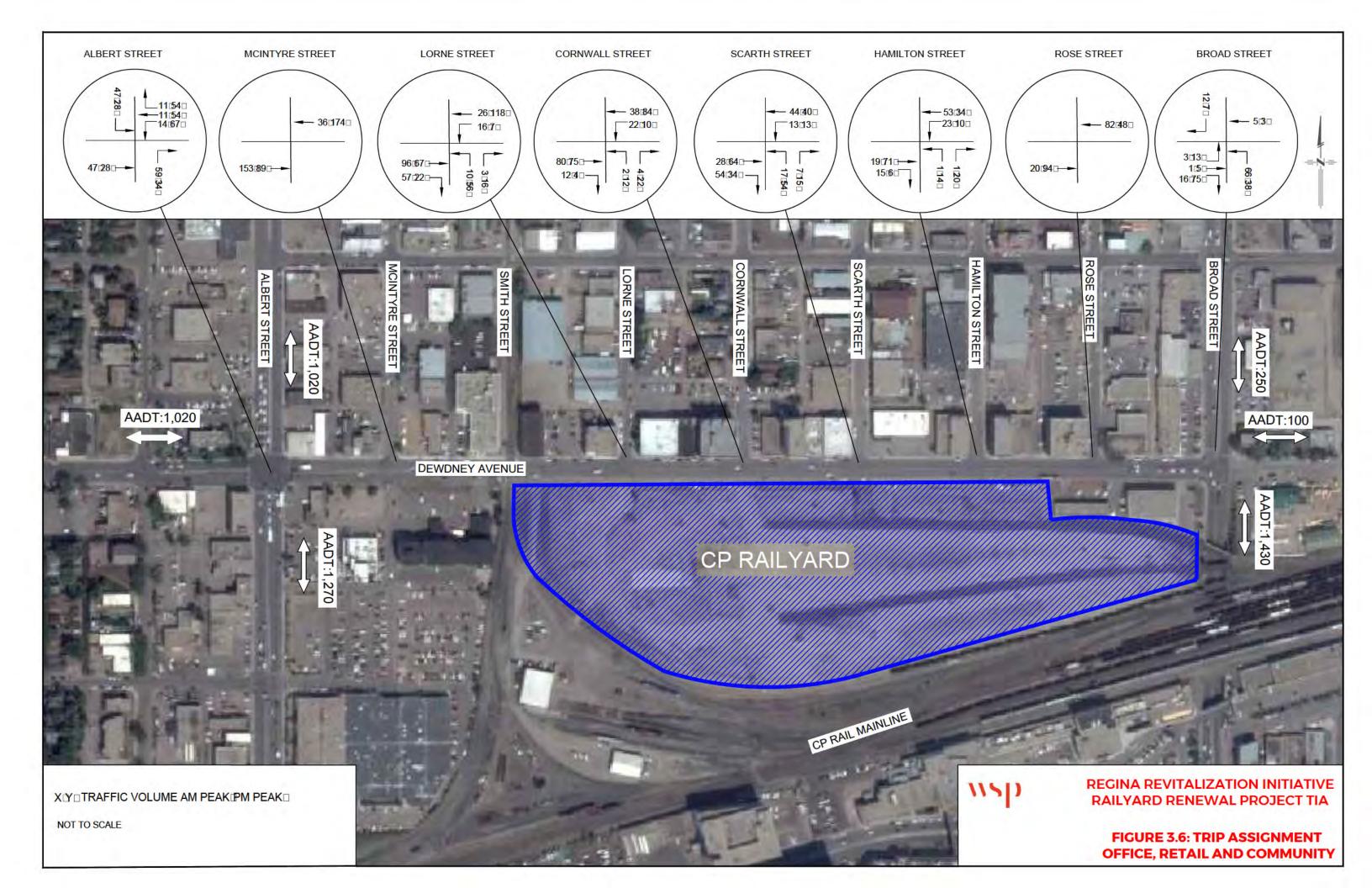

The proposed office and retail development will attract trips from residential areas, so these trips were distributed to the road network using population distribute splits. The trips generated by the proposed residential development were distributed to the road network using employment distribution splits. The trip distribution for pass-by trips generated by the proposed retail development was estimated based on the existing eastbound and westbound traffic volumes on Dewdney Avenue.

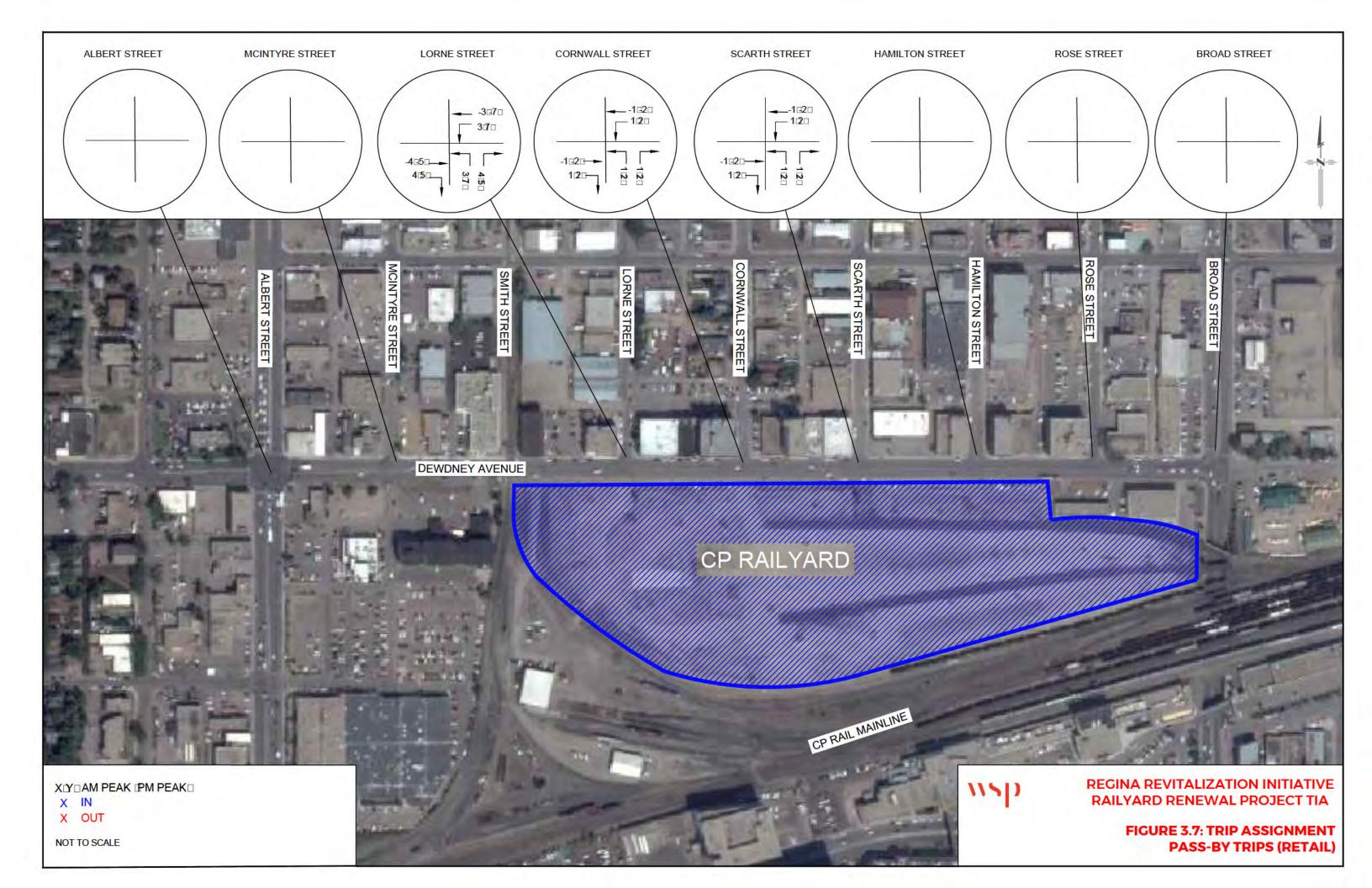

Trip distributions for the proposed residential, retail, and office development are illustrated in Figures 3.2 to 3.4. Figures 3.5 to 3.7 illustrate the estimated trip assignment at the study intersections during both the AM and PM peak hours

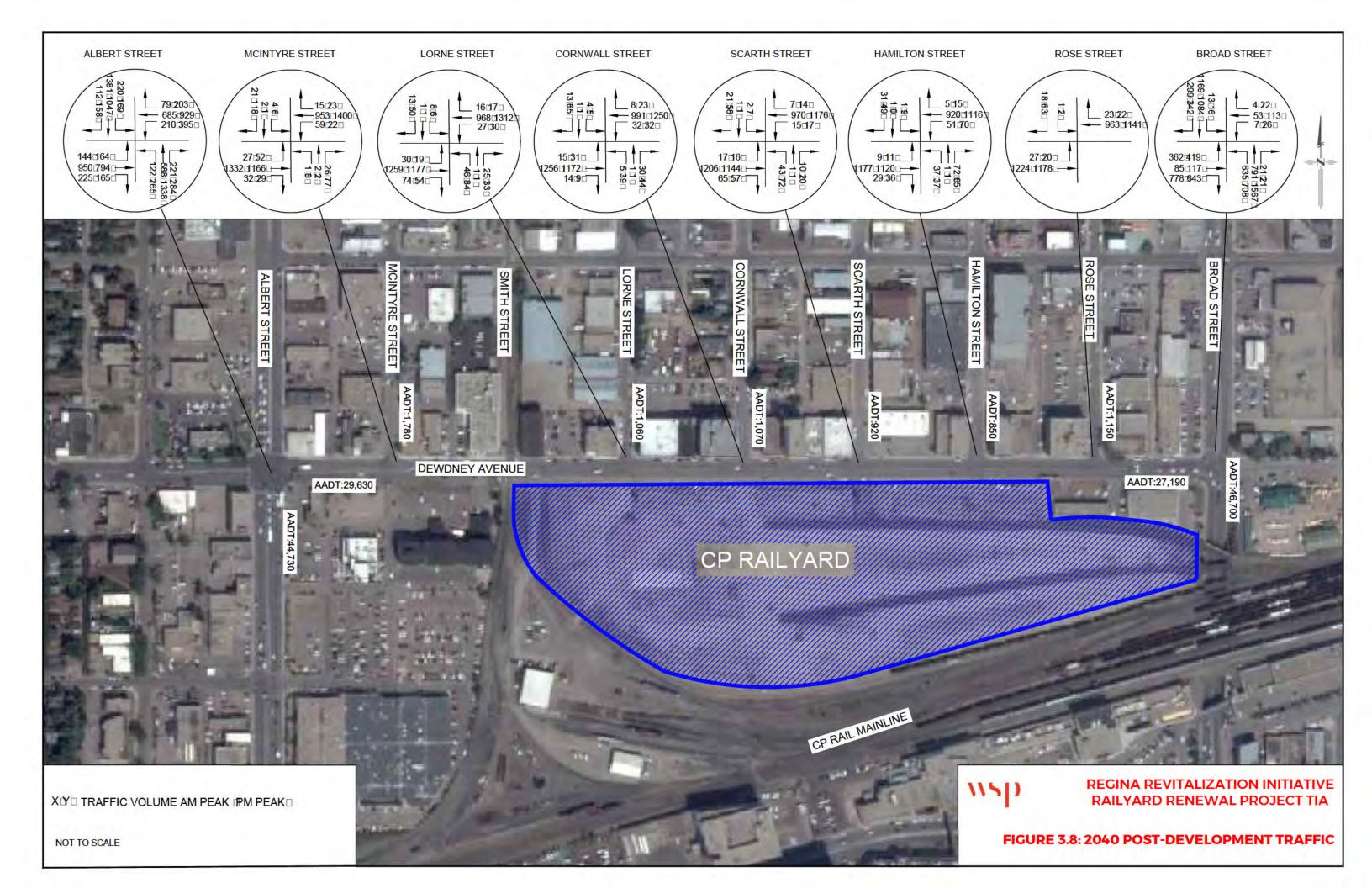

#### 3.4 COMBINED TRAFFIC

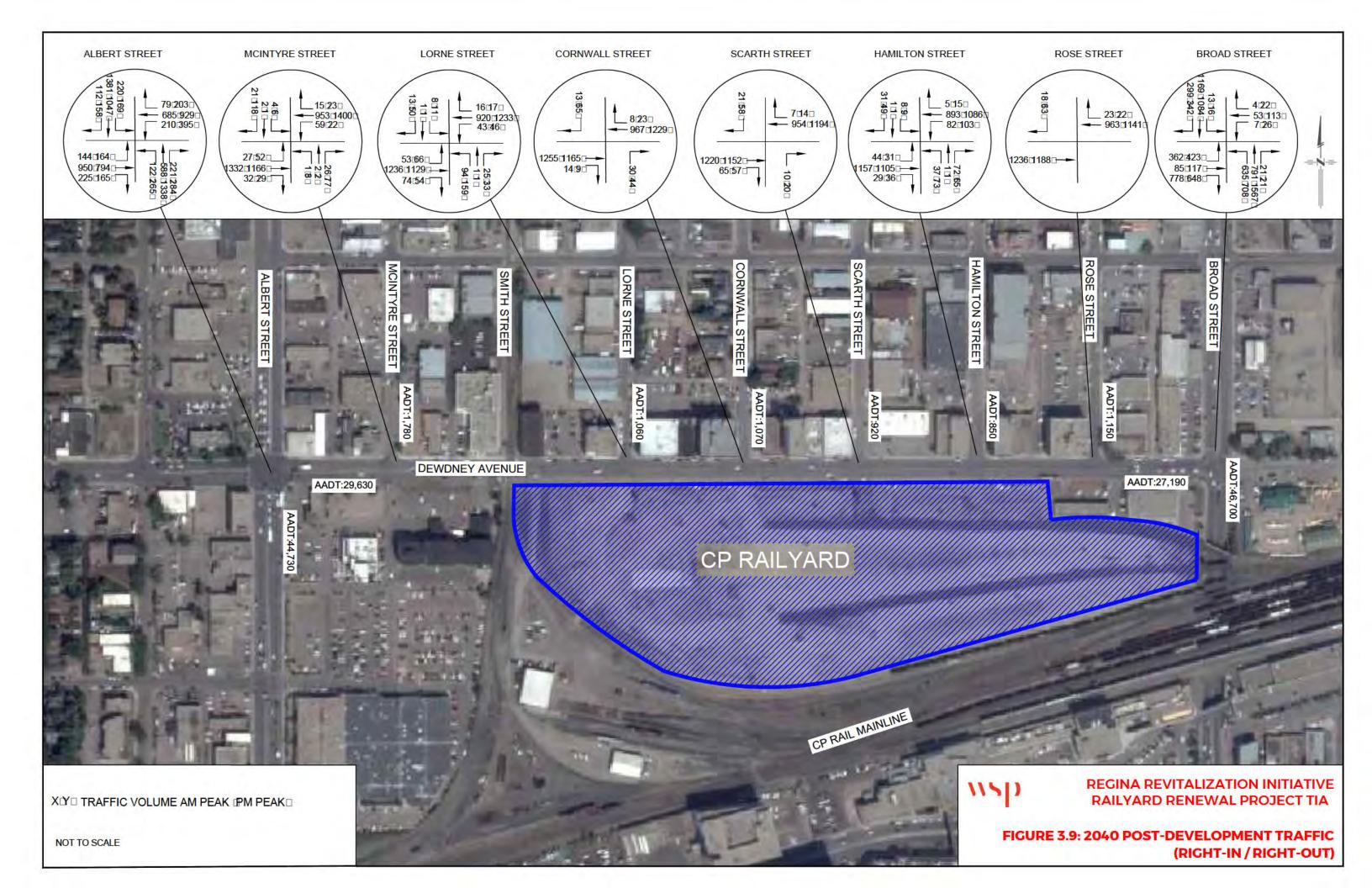

Combined traffic volumes (post-development traffic) include both background traffic and the traffic generated by the proposed development. Combined traffic volumes were calculated by superimposing the trips generated by the proposed development onto the future background traffic volumes. The forecasted 2040 AM and PM peak hour post-development traffic volumes are shown in Figure 3.8.


Figure 3.9 shows the traffic turning movements at the study intersections with the proposed right-in / right-out intersection treatment at the Cornwall Street, Scarth Street, and Rose Street intersections as recommended in Section 5.














# 4 CROSS SECTIONS AND INTERNAL ROADWAYS

#### 4.1 DEWDNEY AVENUE CROSS SECTIONS

The City of Regina seeks to develop a sustainable transportation system to provide reliable, safe and affordable travel choices for all citizens, regardless of age, income, disability, or location. The City's Design Regina – Official Community Plan recommends that a Complete Street framework should be adopted for new road construction as well as the renewal of existing streets where feasible.

A Complete Street is a road that is designed to be safe for drivers; bicyclists; transit vehicles and users; and pedestrians of all ages and abilities.

Complete Streets help to balance the use of cars, bicycles, pedestrians and public transit vehicles on a right-of-way and are designed to function at a slower speed than automobile oriented streets. Complete Streets offer wide ranging benefits. They are cost effective, sustainable and safe.

The Complete Street principles were considered in the process of developing the cross section of the Dewdney Avenue corridor in front of the RRP site. One of the most challenging aspects of designing Complete Streets is the balancing act required in finding the space for all of the desired uses. The proposed mid-block road cross section is illustrated in Figure 4.1 and the road cross section at signalized intersections is shown in Figure 4.2.

The proposed cross sections will accommodate public transit buses, future bike lanes on both sides, wide sidewalks, and onstreet parking during off-peak periods. Four through lanes (two-way) were proposed to carry traffic during the AM and PM peak hours, while two through lanes are deemed to be adequate to accommodate the off-peak traffic volumes. The curb lanes can be use as parking lane during off-peak hours.

Complete Streets can be considered tools for building vibrant and sustainable communities. One issue that can arise when implementing Complete Streets is insufficient integration with other transportation and land development policies. Adding bicycle lanes on one roadway by itself will do little to increase cycling activity; it must be part of an integrated bicycle program that includes a network of trails and bicycle lanes, bicycle parking and changing facilities, and appropriate education and encouragement programs. Similarly, public transit facilities will provide little benefit unless implemented with other efforts to improve public transit service and encourage transit ridership.

#### 4.2 INTERNAL ROADWAY NETWORK

The internal roadway network within the Railyard site is based on a grid system with the extension of existing north-south local streets and walkways (Lorne Street, Cornwall Street, Scarth Street and Hamilton Street) south across Dewdney Avenue into the site. The north-south local streets will be linked by an east-west local street, extending from Lorne Street to Rose Street, to facilitate movement throughout the site for pedestrians, cyclists and drivers. These internal streets will be contained within a 22-meter right-of-way with 11 meters assigned to the street for two vehicle travel lanes and parking on both sides and 5.5-meters on each side for pedestrian amenities. The pedestrian boulevards will accommodate 2.5 meter sidewalks and zones for street trees, furnishings, utility boxes and streetlights. Pedestrian crossings and traffic control (signage and pavement markings) should be designed to enhance pedestrian safety to create safe interfaces between different modes of travel and a comfortable environment for circulation. The internal streets and intersections should be designed to accommodate the movement of emergency vehicles (e.g., fire truck) and garbage trucks.

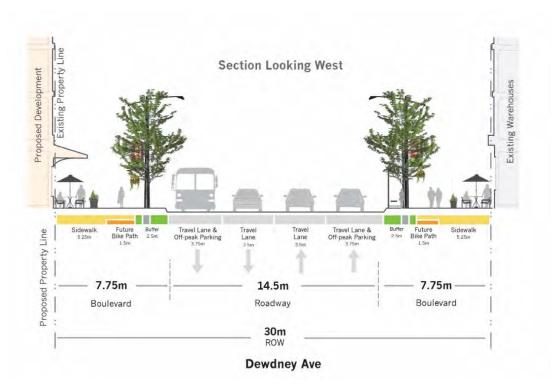
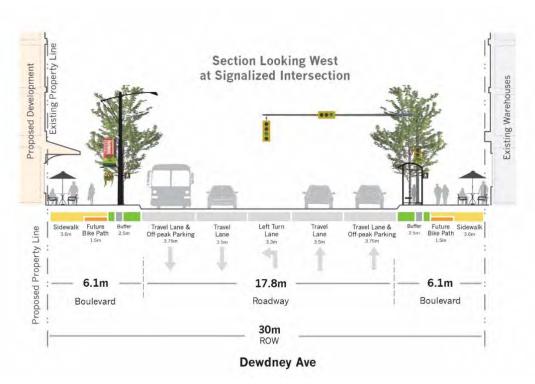




Figure 4.1 Proposed Mid-Block Cross Section



Source: WSP and Urban Strategies Inc.

Figure 4.2 Proposed Cross Section at Signalized Intersection

## 5 INTERSECTION ASSESSMENT

This section presents the intersection assessment results for each study intersection and the proposed intersection control type (i.e., stop or signal control) and required lane configurations to meet the future traffic demand. To evaluate the off-peak traffic operational performance, it was assumed that the off-peak hour volume is 70% of the PM peak hour post-development volumes,

#### 5.1 ALBERT STREET / DEWDNEY AVENUE

The Albert Street / Dewdney Avenue intersection is currently controlled by signals. Table 5-1 summarizes the traffic operational performance at this intersection during the AM and PM peak hours under the 2040 post-development traffic conditions. The off-peak traffic operational performance is shown in Table 5.2.

Table 5.1 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Albert Street / Dewdney Avenue

| TRAFFIC     | AM PEAK HOUR |     |      |                                      | PM PEAK HOUR |     |      |                                      |  |
|-------------|--------------|-----|------|--------------------------------------|--------------|-----|------|--------------------------------------|--|
| MOVEMENTS   | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |
| EBL         | 26.3         | С   | 0.57 | 32.5                                 | 48.1         | D   | 0.78 | 52.5                                 |  |
| EBT,T       | 57.6         | E   | 0.96 | 156.8                                | 62.2         | Е   | 0.94 | 137.6                                |  |
| EBR         | 12.7         | В   | 0.42 | 33.8                                 | 8.8          | A   | 0.34 | 19.7                                 |  |
| WBL         | 70.4         | E   | 0.93 | 81.2                                 | 112.1        | F   | 1.12 | 156.8                                |  |
| WBT,T       | 35.2         | D   | 0.66 | 94.5                                 | 41.5         | D   | 0.80 | 144.8                                |  |
| WBR         | 1.4          | Α   | 0.15 | 2.5                                  | 14.6         | В   | 0.35 | 37.3                                 |  |
| NBL         | 49.8         | D   | 0.77 | 44.4                                 | 100.6        | F   | 1.05 | 111.7                                |  |
| NBT,T,TR    | 31.1         | С   | 0.60 | 67.0                                 | 72.8         | E   | 1.04 | 187.2                                |  |
| SBL         | 40.1         | D   | 0.80 | 61.6                                 | 92.1         | F   | 0.98 | 74.3                                 |  |
| SBT,T,TR    | 47.3         | D   | 0.95 | 154.8                                | 50.7         | D   | 0.91 | 129.8                                |  |
| INT Summary | 42.8         | D   | 0.96 | -                                    | 61.9         | Е   | 1.12 | -                                    |  |

Table 5.2 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Albert Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |  |  |
| EBL         | 30.5          | С   | 0.53 | 27.4                                 |  |  |  |  |
| EBT,T       | 53.2          | D   | 0.81 | 86.5                                 |  |  |  |  |
| EBR         | 4.0           | A   | 0.28 | 8.0                                  |  |  |  |  |
| WBL         | 51.6          | D   | 0.89 | 87.4                                 |  |  |  |  |
| WBT,T       | 35.2          | D   | 0.68 | 96.3                                 |  |  |  |  |
| WBR         | 9.7           | A   | 0.29 | 14.4                                 |  |  |  |  |
| NBL         | 27.1          | С   | 0.64 | 45.3                                 |  |  |  |  |
| NBT,T,TR    | 31.4          | С   | 0.64 | 111.5                                |  |  |  |  |
| SBL         | 29.3          | С   | 0.58 | 31.4                                 |  |  |  |  |
| SBT,T,TR    | 31.1          | С   | 0.51 | 83.7                                 |  |  |  |  |
| INT Summary | 34.4          | С   | 0.89 | -                                    |  |  |  |  |

The above capacity analysis reveals that the existing lane configurations at the Albert Street / Dewdney Avenue intersection are not expected to be capable of accommodating the forecasted 2040 PM peak hour post-development traffic. This intersection is expected to operate at acceptable levels of service in the AM peak hours and off-peak hours.

Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way constraints and the existing nearby developments. Transportation demand management strategies and active transportation programs to reduce future traffic demand should be considered by the City.

The future east extensions of 9<sup>th</sup> Avenue and 10<sup>th</sup> Avenue were proposed in the Railyard Renewal Secondary Plan area, These roadway extensions will provide two more access points on Albert Street for the Railyard site, These two future access points are anticipated to reduce the traffic burden at the Albert Street / Dewdney Avenue intersection, Additional traffic analysis will be required if further developments are proposed and when the two roadway extensions are constructed in the Secondary Plan area.

## 5.2 MCINTYRE STREET / DEWDNEY AVENUE

The McIntyre Street / Dewdney Avenue intersection is currently controlled by stop signs on McIntyre Street, Left turn lanes are provided for the east and westbound traffic. Two eastbound through lanes and two westbound through lanes are anticipated to be maintained during off-peak hours at this intersection. The traffic operational performance under the 2040 post-development traffic conditions for this intersection under the 2040 post-development traffic conditions is summarized in Tables 5.3 and 5.4.

Table 5.3 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - McIntyre Street / Dewdney Avenue

| TRAFFIC     |           |     | PM PEAK HOUR |                                      |           |     |      |                                      |
|-------------|-----------|-----|--------------|--------------------------------------|-----------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS | V/C          | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 10.3      | В   | 0.04         | 1.0                                  | 12.8      | В   | 0.11 | 2.7                                  |
| EBT,T       | 12.4      | В   | 0.12         | 3.0                                  | 10.6      | В   | 0.03 | 0.8                                  |
| EBR         | 100.2     | F   | 0.07         | 1.7                                  | 36.8      | Е   | 0.08 | 2.0                                  |
| WBL         | 9.9       | A   | 0.04         | 0.9                                  | 9.8       | A   | 0.10 | 2.5                                  |
| WBT,T       | 70.0      | F   | 0.10         | 2.4                                  | 36.8      | Е   | 0.06 | 1.4                                  |
| WBR         | 10.7      | В   | 0.04         | 0.8                                  | 10.3      | В   | 0.16 | 4.2                                  |
| INT Summary | 0.9       | A   | 0.10         | -                                    | 1.2       | A   | 0.16 | -                                    |

Table 5.4 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - McIntyre Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |  |  |
| EBL         | 10.6          | В   | 0.06 | 1.4                                  |  |  |  |  |
| WBL         | 9.2           | Α   | 0.02 | 0.4                                  |  |  |  |  |
| NBLT        | 30.9          | D   | 0.04 | 1.0                                  |  |  |  |  |
| NBR         | 10.5          | В   | 0.09 | 2.1                                  |  |  |  |  |
| SBLT        | 31.5          | D   | 0.04 | 0.8                                  |  |  |  |  |
| SBR         | 12.0          | В   | 0.19 | 4.0                                  |  |  |  |  |
| INT Summary | 1.2           | A   | 0.15 | -                                    |  |  |  |  |

Tables 5,3 and 5,4 reveal that all traffic movements at the McIntyre Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS E or better during the AM and PM peak hours except for the northbound and southbound left/through movements which are expected to experience longer delay during the AM peak hours. Considering the traffic volumes of the north and southbound left/through movements will be low, it is deemed that the existing intersection treatment and control type at this intersection will be adequate to accommodate the forecasted future traffic.

#### 5.3 LORNE STREET / DEWDNEY AVENUE

The Lorne Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the west, It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements. On-street parking is recommended to be restricted during peak hours. Thus, two through lanes (one way) will be available on Dewdney Avenue in the AM and PM peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted on the curb lanes. The curb lanes in the vicinity of the intersection will function as right turn lanes. Tables 5,5 and 5,6 summarize the traffic operational performance at this intersection in the AM and PM peak hours and off-peak hours under the 2040 post-development traffic conditions.

Table 5.5 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Lorne Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR | UR                                   |           |     | PM PEAK HOUR |                                      |  |
|-------------|-----------|--------|--------|--------------------------------------|-----------|-----|--------------|--------------------------------------|--|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS | V/C          | 95 <sup>th</sup> Queue<br>Length (m) |  |
| EBL         | 6.2       | Α      | 0.14   | 7.2                                  | 7.8       | A   | 0.24         | 8.7                                  |  |
| EBT,TR      | 16.4      | В      | 0.70   | 145.7                                | 16.1      | В   | 0.70         | 109.0                                |  |
| WBL         | 6.5       | Α      | 0.15   | 6.2                                  | 6.8       | A   | 0.16         | 6.6                                  |  |
| WBT,TR      | 13.1      | В      | 0.54   | 81.8                                 | 19.7      | В   | 0.79         | 141.8                                |  |
| NBLTR       | 24.7      | С      | 0.40   | 27.9                                 | 34.9      | С   | 0.67         | 44.7                                 |  |
| SBLTR       | 15.2      | В      | 0.08   | 6.4                                  | 10.5      | В   | 0.20         | 10.0                                 |  |
| INT Summary | 15.2      | С      | 0.70   | -                                    | 18.5      | В   | 0.79         | -                                    |  |

Table 5.6 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Lorne Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |  |  |
| EBL         | 6.8           | Α   | 0.20 | 7.5                                  |  |  |  |  |
| EBT         | 10.7          | В   | 0.70 | 117.2                                |  |  |  |  |
| EBR         | 2.1           | A   | 0.04 | 3.1                                  |  |  |  |  |
| WBL         | 5.3           | Α   | 0.12 | 5.0                                  |  |  |  |  |
| WBT         | 22.9          | С   | 0.89 | 221.4                                |  |  |  |  |
| WBR         | 1.6           | Α   | 0.01 | 1.3                                  |  |  |  |  |
| NBLTR       | 41.5          | D   | 0.63 | 40.4                                 |  |  |  |  |
| SBLTR       | 14.7          | В   | 0.18 | 9.9                                  |  |  |  |  |
| INT Summary | 17.9          | С   | 0.89 | -                                    |  |  |  |  |

The above capacity analysis reveals that all traffic movements at the Lorne Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and LOS D or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations with signal control at this intersection will be capable of accommodating the forecasted future traffic.

## 5.4 CORNWALL STREET / DEWDNEY AVENUE

The Cornwall Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Cornwall Street with free flow conditions on Dewdney Avenue. To maintain smooth flows on Dewdney Avenue and minimize collision risks, traffic movements from/to Cornwall Street are recommended to be restricted to right-in and right-out. The traffic operational performance at this intersection under the 2040 post-development traffic conditions is summarized in Table 5.7 for AM and PM peak hours and in Table 5.8 for off-peak hours.

Table 5.7 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Cornwall Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR | IR PM PEAR                           |           |     | K HOUR |                                      |
|-------------|-----------|--------|--------|--------------------------------------|-----------|-----|--------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS | V/C    | 95 <sup>th</sup> Queue<br>Length (m) |
| EBT,TR      | 0.0       | Α      | 0.53   | 0.0                                  | 0.0       | Α   | 0.48   | 0.0                                  |
| WBT,TR      | 0.0       | Α      | 0.41   | 0.0                                  | 0.0       | Α   | 0.51   | 0.0                                  |
| NBR         | 15.2      | С      | 0.09   | 1.1                                  | 14.4      | В   | 0.11   | 3.2                                  |
| SBR         | 12.5      | В      | 0.03   | 0.5                                  | 15.7      | С   | 0.17   | 4.8                                  |
| INT Summary | 0.3       | Α      | 0.53   | -                                    | 0.7       | A   | 0.51   | -                                    |

Table 5.8 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Cornwall Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |  |  |
| EBT         | 0.0           | Α   | 0.52 | 0.0                                  |  |  |  |  |
| EBR         | 0.0           | A   | 0.00 | 0.0                                  |  |  |  |  |
| WBT         | 0.0           | Α   | 0.55 | 0.0                                  |  |  |  |  |
| WBR         | 0.0           | Α   | 0.01 | 0.0                                  |  |  |  |  |
| NBR         | 16.7          | С   | 0.10 | 2.4                                  |  |  |  |  |
| SBR         | 18.3          | С   | 0.16 | 4.2                                  |  |  |  |  |
| INT Summary | 0.8           | A   | 0.52 | -                                    |  |  |  |  |

Tables 5,7 and 5,8 reveal that all traffic movements at the Cornwall Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the offpeak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations at this intersection will be capable of accommodating the forecasted future traffic.

### 5.5 SCARTH STREET / DEWDNEY AVENUE

Similar to the Cornwall Street / Dewdney Avenue intersection, the Scarth Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Scarth Street with free flow conditions on Dewdney Avenue, Traffic movements from/to Scarth Street are recommended to be restricted to right-in and right-out. The traffic operational performance at this intersection under the 2040 post-development traffic conditions is summarized in Table 5,9 for AM and PM peak hours and in Table 5,10 for off-peak hours.

Table 5.9 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Scarth Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      | PM PEAK HOUR |     |      |                                      |
|-------------|-----------|--------|--------|--------------------------------------|--------------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBT,TR      | 0.0       | Α      | 0.53   | 0.0                                  | 0.0          | Α   | 0.48 | 0.0                                  |
| WBT,TR      | 0.0       | Α      | 0.41   | 0.0                                  | 0.0          | В   | 0.49 | 0.0                                  |
| NBR         | 14.7      | В      | 0.09   | 1.1                                  | 14.1         | В   | 0.03 | 1.6                                  |
| SBR         | 12.6      | В      | 0.03   | 0.5                                  | 15.1         | С   | 0.09 | 4.0                                  |
| INT Summary | 0.2       | Α      | 0.53   | -                                    | 0.5          | A   | 0.48 | -                                    |

Table 5.10 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Scarth Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |  |  |
| EBT         | 0.0           | Α   | 0.52 | 0.0                                  |  |  |  |  |
| EBR         | 0.0           | A   | 0.03 | 0.0                                  |  |  |  |  |
| WBT         | 0.0           | A   | 0.53 | 0.0                                  |  |  |  |  |
| WBR         | 0.0           | A   | 0.01 | 0.0                                  |  |  |  |  |
| NBR         | 15.9          | С   | 0.04 | 1.0                                  |  |  |  |  |
| SBR         | 17.5          | С   | 0.14 | 4.0                                  |  |  |  |  |
| INT Summary | 0.5           | Α   | 0.53 | -                                    |  |  |  |  |

Tables 5.9 and 5.10 reveal that all traffic movements at the Scarth Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the offpeak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations at this intersection will be capable of accommodating the forecasted future traffic.

## 5.6 HAMILTON STREET / DEWDNEY AVENUE

The Hamilton Street / Dewdney Avenue intersection will be the first intersection accessing to the railyard site from the east. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue. On-street parking is recommended to be restricted during peak hours. Thus, two through lanes (one way) will be available on Dewdney Avenue in the AM and PM peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted on the curb lanes. The curb lanes in the vicinity of the intersection will function as right turn lanes. Tables 5,11 and 5,12 summarize the traffic operational performance at this intersection in the AM and PM peak hours and off-peak hours under the 2040 post-development traffic conditions.

Table 5.11 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Hamilton Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      |           | PM PEA | K HOUR |                                      |
|-------------|-----------|--------|--------|--------------------------------------|-----------|--------|--------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 5.2       | A      | 0.11   | 6.3                                  | 5.5       | A      | 0.09   | 5.0                                  |
| EBT,TR      | 16.1      | В      | 0.69   | 133.4                                | 16.7      | В      | 0.68   | 121.3                                |
| WBL         | 6.9       | Α      | 0.27   | 10.2                                 | 7.6       | A      | 0.32   | 12.3                                 |
| WBT,TR      | 11.2      | В      | 0.49   | 77.5                                 | 12.7      | В      | 0.58   | 113.0                                |
| NBLTR       | 12.0      | В      | 0.32   | 15.0                                 | 13.1      | В      | 0.39   | 17.5                                 |
| SBLTR       | 2.4       | A      | 0.11   | 2.6                                  | 5.0       | A      | 0.18   | 6.3                                  |
| INT Summary | 13.3      | В      | 0.68   | -                                    | 14.0      | В      | 0.68   | -                                    |

Table 5.12 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Hamilton Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |
| EBL         | 6.6           | Α   | 0.08 | 4.4                                  |  |  |
| EBT         | 18.1          | В   | 0.78 | 187.5                                |  |  |
| EBR         | 3.4           | Α   | 0.03 | 3.1                                  |  |  |
| WBL         | 9.2           | Α   | 0.25 | 13.2                                 |  |  |
| WBT         | 17.3          | В   | 0.77 | 182.4                                |  |  |
| WBR         | 1.9           | Α   | 0.01 | 1.2                                  |  |  |
| NBLTR       | 16.1          | В   | 0.30 | 18.0                                 |  |  |
| SBLTR       | 11.6          | В   | 0.14 | 9.2                                  |  |  |
| INT Summary | 16.7          | В   | 0.78 | -                                    |  |  |

The above capacity analysis reveals that all traffic movements at the Hamilton Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations with signal control at this intersection will be capable of accommodating the forecasted future traffic.

## 5.7 ROSE STREET / DEWDNEY AVENUE

The Rose Street / Dewdney Avenue intersection is a three-legged intersection and is recommended to be controlled by a stop sign on Rose Street. Traffic movements from/to Rose Street are recommended to be restricted to right-in and right-out. The traffic operational performance at this intersection under the 2040 post-development traffic conditions is summarized in Table 5,13 for AM and PM peak hours and in Table 5,14 for off-peak hours.

Table 5.13 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Rose Street / Dewdney Avenue

| TRAFFIC     |           | AM PEA | K HOUR |                                      |           | PM PEA | K HOUR |                                      |
|-------------|-----------|--------|--------|--------------------------------------|-----------|--------|--------|--------------------------------------|
| MOVEMENTS   | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS    | V/C    | 95 <sup>th</sup> Queue<br>Length (m) |
| EBT,T       | 0.0       | A      | 0.40   | 0.0                                  | 0.0       | A      | 0.37   | 0.0                                  |
| WBT,TR      | 0.0       | A      | 0.41   | 0.0                                  | 0.0       | A      | 0.47   | 0.0                                  |
| SBR         | 12.7      | В      | 0.04   | 1.0                                  | 14.8      | В      | 0.15   | 4.0                                  |
| INT Summary | 0.1       | A      | 0.40   | -                                    | 0.4       | A      | 0.47   | -                                    |

Table 5.14 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Rose Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |
| EBT         | 0.0           | Α   | 0.53 | 0.0                                  |  |  |
| WBT         | 0.0           | Α   | 0.51 | 0.0                                  |  |  |
| WBR         | 0.0           | A   | 0.01 | 0.0                                  |  |  |
| SBR         | 16.9          | С   | 0.14 | 3.6                                  |  |  |
| INT Summary | 0.4           | A   | 0.53 | -                                    |  |  |

Tables 5.13 and 5.14 reveal that all traffic movements at the Rose Street / Dewdney Avenue are expected to operate at an acceptable LOS B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and operate at LOS C or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations at this intersection will be capable of accommodating the forecasted future traffic.

## 5.8 BROAD STREET / DEWDNEY AVENUE

The Broad Street / Dewdney Avenue intersection is currently controlled by signals. Table 5,15 summarizes the traffic operational performance at this intersection during the AM and PM peak hours under the 2040 post-development traffic conditions. The off-peak traffic operational performance is shown in Table 5,16.

Table 5.15 Capacity Analysis: 2040 Post-Development Traffic (Peak Hour) - Broad Street / Dewdney Avenue

| TRAFFIC     | AM PEAK HOUR |     |      | PM PEAK HOUR                         |           |     |      |                                      |
|-------------|--------------|-----|------|--------------------------------------|-----------|-----|------|--------------------------------------|
| MOVEMENTS   | Delay (s)    | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) | Delay (s) | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |
| EBL         | 54.4         | D   | 0.85 | 156.2                                | > 100     | F   | 1.61 | 196.9                                |
| EBT         | 29.8         | С   | 0.15 | 30.8                                 | 40.2      | D   | 0.31 | 39.2                                 |
| EBR         | 49.5         | D   | 1.01 | 210.6                                | 25.9      | С   | 0.90 | 107.6                                |
| WBL         | 24.9         | С   | 0.02 | 4.5                                  | 27.8      | С   | 0.08 | 10.4                                 |
| WBTR        | 33.3         | С   | 0.15 | 21.7                                 | 42.9      | D   | 0.44 | 42.9                                 |
| NBL         | > 100        | F   | 1.60 | 289.6                                | > 100     | F   | 1.22 | 308.9                                |
| NBT,TR      | 16.2         | В   | 0.46 | 76.1                                 | 19.6      | В   | 0.76 | 204.8                                |
| SBL         | 30.4         | С   | 0.08 | 7.5                                  | 41.4      | D   | 0.22 | 10.1                                 |
| SBT,T       | > 100        | F   | 1.18 | 231.1                                | > 100     | F   | 1.15 | 208.0                                |
| SBR         | 13.2         | В   | 0.54 | 43.3                                 | 13.2      | В   | 0.60 | 45.2                                 |
| INT Summary | 101.1        | F   | 1.60 | -                                    | 84.5      | F   | 1.61 | -                                    |

Table 5.16 Capacity Analysis: 2040 Post-Development Traffic (Off Peak) - Broad Street / Dewdney Avenue

| TRAFFIC     | OFF PEAK HOUR |     |      |                                      |  |  |
|-------------|---------------|-----|------|--------------------------------------|--|--|
| MOVEMENTS   | Delay (s)     | LOS | V/C  | 95 <sup>th</sup> Queue<br>Length (m) |  |  |
| EBL         | > 100         | F   | 1.24 | 93.0                                 |  |  |
| EBT         | 38.9          | D   | 0.25 | 26.7                                 |  |  |
| EBR         | 9.5           | A   | 0.71 | 25.6                                 |  |  |
| WBL         | 28.8          | C   | 0.07 | 7.4                                  |  |  |
| WBTR        | 43.0          | D   | 0.43 | 28.7                                 |  |  |
| NBL         | 24.5          | C   | 0.79 | 185.8                                |  |  |
| NBT,TR      | 11.1          | В   | 0.52 | 119.2                                |  |  |
| SBL         | 32.6          | C   | 0.10 | 7.4                                  |  |  |
| SBT,T       | 47.2          | D   | 0.85 | 134.3                                |  |  |
| SBR         | 6.9           | A   | 0.46 | 20.5                                 |  |  |
| INT Summary | 36.6          | D   | 1.24 | -                                    |  |  |

The above capacity analysis reveals that the existing lane configurations at the Broad Street / Dewdney Avenue intersection are not expected to be capable of accommodating the forecasted 2040 peak hour traffic volumes. The eastbound left turn movement is expected to operate at LOS F in the off-peak hours.

Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way constraints and the railway overpass bridge on Broad Street to the south. Transportation demand management strategies and active transportation programs to reduce future traffic demand should be considered by the City.

## 6 TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) is one of the approaches that Canadian municipalities and regional transportation authorities are using to create sustainable, more efficient and reliable transportation systems. By definition, TDM is a multi-faceted and multi modal approach used to reduce or redistribute transportation demand. The primary purpose of TDM is to reduce the number of vehicles using the road network by influencing individual travel behaviour and providing a wide variety of mobility options to those who wish to travel. TDM is a key tool in transportation planning and operations and represents a cost-effective way to ease congestion, expand transportation choice, and reduce the need to expand capacity.

The City's Transportation Master Plan (2015) depicts TDM policies and actions that the City should adopt and implement. These policies and actions are expected to influence travel behaviour towards more sustainable choices including shifting modes away from single occupant vehicles (SOVs) to active modes, transit, and carpooling; reducing the number of trips they make (e.g. telecommuting), and travelling more efficiently (e.g. travelling outside of peak hours).

The forecasted future traffic volumes are expected to exceed the existing intersection capacity at the two major intersections on Albert Street and Broad Street. The following TDM strategies can be considered to minimize infrastructure needs by reducing the number and length of auto trips, and by shifting vehicle trips away from Dewdney Avenue.

## 6.1 ALTERNATE ROUTES

The existing traffic flow patterns indicate that approximately 75% of the trips on Dewdney Avenue between Albert Street and Broad Street are pass-by trips (origins or destinations are outside of the corridor area).

If alternate routes with suitable traffic operation performance (less congestion, shorter delay, and fewer stops) are available, commuters may use alternative routes to reach their destinations instead of using Dewdney Avenue. Saskatchewan Drive to the south and 7<sup>th</sup> Avenue to the north are potential roadways that commuters may use as alternate routes to Dewdney Avenue. 7<sup>th</sup> Avenue is located approximately 350 m north of and parallel to Dewdney Avenue and is a two-lane collector road in the City's Warehouse District. 7<sup>th</sup> Avenue could possess capacity to accommodate diverted traffic from Dewdney Avenue. If access management strategies (minimize number of accesses along the corridor) is applied and on-street parking is restricted during the AM and PM peak hours, 7<sup>th</sup> Avenue may attract more traffic and result in reduced traffic demand on Dewdney Avenue. Between Albert Street and Broad Street, Saskatchewan Drive is a divided arterial road running through the City's downtown area. Saskatchewan Drive may not be an ideal alternate route to divert the traffic from Dewdney Avenue as it is anticipated to be congested already in the peak hours. However, some low cost methods could be implemented to improve traffic operation performance along the corridor, such as restricting on-street parking during peak hours and optimizing traffic signal timing.

## 6.2 PUBLIC TRANSIT

Public transit presents a realistic alternative to private automobile travel because it provides accessible service for long and short commutes, and is comfortable in inclement weather.

There are currently two bus routes (#4, #5) provided on Dewdney Avenue that serve the RRP site. The City could consider increasing the transit service frequency to meet the future transit patron demand as a result of the Railyard Renewal Project. In addition, the City should provide safe, secure bike parking at major transit stops and stations. Valuing the people who ride public transit with proper provision of shelters and services is essential to increasing ridership.

## 6.3 PEDESTRIAN FACILITIES

Walking is the simplest and most sustainable form of transportation. It carries zero cost, is versatile and is impervious to congestion or delay on the roads. Except in the most extreme temperatures, walking is a viable means of travel for all short trips.

To encourage walking within the City centre, in addition to improving the existing pedestrian facility conditions, more pedestrian facilities such as sidewalks, crosswalks and shared pathways should be developed. Pedestrian accessibility features, such as ramps, audible signals and countdown timers that make walking an easy choice for everyone should also be added. The proposed pedestrian bridge linking the railyard with downtown is anticipated to reduce the automobile traffic demand from the RRP development.

## 6.4 CYCLING

Cycling plays an important role in transportation demand management and can substitute directly for automobile trips. Communities that improve cycling conditions often experience significant increases in bicycle travel and related reductions in vehicle travel.

Providing adequate bicycle facilities, including Bike Lanes, Bicycle Boulevards, Cycle Tracks, Bicycle End-of-Trip Facilities and other infrastructure, will encourage cycling as a daily mode of transportation.

Provision of convenient and secure bicycle parking is an important part of cycling infrastructure. The City may require private parking lots and garages for cars, as well as commercial and residential buildings to provide bicycle parking. Effective bicycle parking requires a properly designed rack in an appropriate location.

It is recommended that the City of Regina create more bicycle-friendly infrastructure throughout the City including the RRP and Downtown areas and integrate it with the City policies, practices and programs. A Pedestrian and Bicycle Master Plan is recommended to be developed to assess the existing pedestrian and bicycle facilities within the City and to create a comprehensive City-wide pedestrian and cycling network, as well as to provide supporting policies and programs to encourage walking and cycling. A dedicated bike lane is recommended to be provided on the pedestrian bridge linking the railyard with downtown.

## 6.5 CARPOOLING

Carpooling is a form of ridesharing and can reduce traffic congestion. For example, if every citizen in Regina carpooled with one other person for their trip to work, the number of autos on the road would be reduced by up to half, there would be substantial reductions in fuel consumption, congestion and delays, and the costs associated with such delays would diminish. While this is not likely to happen, it does illustrate the positive impact that can result from carpooling.

Carpooling is most effective when it is undertaken on a company-wide or office-wide/specific location basis, with formal monitoring and website support to "match" appropriate people. Although there are some start-up costs, it should largely be a self-sustaining system once fully operational. It is recommended that the City develop a website to support carpooling.

## 6.6 PARKING MANAGEMENT

Parking Management is a term for strategies that encourage more efficient use of existing parking facilities, reduce parking demand and shift travel to non-single-occupant-vehicle modes. Managing parking helps to reduce the undesirable impacts of parking demand on local and regional traffic levels and the resulting impacts on community livability and design. At the same time, smart management of parking helps to ensure access to retail businesses, provides access for visitors to regional and neighborhood attractions and supports neighborhood vitality.

The supply of free or inexpensive parking at the final destination is a key decision factor cited for choosing to drive a personal auto rather than taking a bus, bike, walk or carpool. When free or inexpensive parking is offered, it leads to overuse, often by long-term or all-day parkers who occupy valuable spaces at the expense of short-term parkers, limiting access to retail businesses and service industries catering to short-term users.

Cost based parking strategies that link parking rates directly to demand are very effective in reducing total parking demand, shifting travel to other modes, and reducing vehicle kilometer traveled (VKT). To implement this strategy, parking meters may be installed along Dewdney Avenue with variable parking rates that fluctuate with parking demand.

## 7 CONCLUSIONS AND RECOMMENDATIONS

This study has examined the traffic impacts associated with the proposed Railyard Renewal Project which is one of the primary components of the Regina Revitalization Initiative (RRI). The Railyard Renewal Project located at the old CP Intermodal Land site, north of the City's downtown area. To accommodate the forecasted future post-development traffic and develop a Complete Street framework for the Dewdney Avenue corridor, the following recommendations were reached:

## **CONCEPTUAL CROSS SECTIONS ON DEWDNEY AVENUE**

Complete Street principles were applied in the process of developing cross sections for Dewdney Avenue adjacent to the RRP site. One of the challenging aspects of designing Complete Streets is the balancing act required in finding space for all of the desired uses within a limited ROW resource. The proposed concept for the mid-block road cross section is illustrated in Figure E-1 and the road cross section at signalized intersections is shown in Figure E-2.

The conceptual cross sections will accommodate public transit buses, future bike lanes on both sides, wide sidewalks, and onstreet parking during off-peak periods. Four through lanes (two-way) are proposed to carry traffic during the AM and PM peak hours, while two through lanes are deemed to be adequate to accommodate the off-peak traffic volumes. The curb lanes can be used as parking lane during off-peak hours. Dedicated left turn lanes will be provided at the proposed signalized intersections.

## **DEWDNEY AVENUE INTERSECTION ASSESSMENT FINDINGS**

## ALBERT STREET / DEWDNEY AVENUE

- The existing lane configurations at the Albert Street / Dewdney Avenue intersection are not expected to be capable of accommodating the forecasted 2040 PM peak hour post-development traffic. However, this intersection is expected to operate at acceptable levels of service in the AM peak hours and off-peak hours.
- Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way
  constraints and the existing built developments. Transportation demand management strategies and active
  transportation programs should be considered by the City to reduce future traffic demand.
- The proposed two future site access points at the 9<sup>th</sup> Avenue and 10<sup>th</sup> Avenue intersections on Albert Street are anticipated to reduce the traffic burden at the Albert Street / Dewdney Avenue intersection. The proposed pedestrian bridge linking the railyard with downtown is anticipated to reduce the automobile traffic demand from the railyard site.

## MCINTYRE STREET / DEWDNEY AVENUE

- The McIntyre Street / Dewdney Avenue intersection is currently controlled by stop signs on McIntyre Street. Left turn lanes are provided for the eastbound and westbound traffic. Two eastbound through lanes and two westbound through lanes are anticipated to be maintained during both peak and off-peak hours at this intersection.
- All traffic movements at this intersection are expected to operate at an acceptable LOS E or better during the AM and PM peak hours except for the northbound and southbound left/through movements which are expected to experience longer delay during the AM peak hours. Since the traffic volumes of the northbound and southbound left/through movements will be low, it is deemed that the existing intersection treatment and control type at this intersection will be adequate to accommodate the forecasted future traffic.

## LORNE STREET / DEWDNEY AVENUE

— The Lorne Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the west. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements. On-street parking is recommended to be restricted during peak hours. Two through lanes (one way) will be available on Dewdney Avenue in the AM and PM peak hours. One through lane will be provided in the off-peak hours since on-street parking will be permitted in the curb lanes.

All traffic movements at the Lorne Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and will operate at LOS D or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions. The proposed intersection lane configurations with signal control will be capable of accommodating the forecasted future traffic.

## CORNWALL STREET / DEWDNEY AVENUE

- The Cornwall Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Cornwall Street
  with free flow conditions on Dewdney Avenue. To maintain smooth flows on Dewdney Avenue and minimize collision
  risks, traffic movements from/to Cornwall Street are recommended to be restricted to right-in and right-out movements.
- All traffic movements at the Cornwall Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better
  in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with one
  through lane under the 2040 post-development traffic conditions.

## **SCARTH STREET / DEWDNEY AVENUE**

- The Scarth Street / Dewdney Avenue intersection is recommended to be controlled by stop signs on Scarth Street with free flow conditions on Dewdney Avenue. Traffic movements from/to Scarth Street are recommended to be restricted to right-in and right-out movements.
- All traffic movements at the Scarth Street / Dewdney Avenue are expected to operate at an acceptable LOS C or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with one through lane under the 2040 post-development traffic conditions.

## HAMILTON STREET / DEWDNEY AVENUE

- The Hamilton Street / Dewdney Avenue intersection will be the first intersection accessing the RRP site from the east. It is recommended that traffic signals be installed at this intersection and left turn lanes be provided for the east and westbound traffic movements on Dewdney Avenue.
- All traffic movements at the Hamilton Street / Dewdney Avenue intersection are expected to operate at an acceptable LOS
   B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and in the off-peak hours with one through lane under the 2040 post-development traffic conditions.

## ROSE STREET / DEWDNEY AVENUE

- The Rose Street / Dewdney Avenue intersection is a three-legged intersection and is recommended to be controlled by a stop sign on Rose Street. Traffic movements from/to Rose Street are recommended to be restricted to right-in and rightout movements.
- All traffic movements at the Rose Street / Dewdney Avenue are expected to operate at an acceptable LOS B or better in the AM and PM peak hours with two through lanes (one way) on Dewdney Avenue and operate at LOS C or better in the off-peak hours with one through lane under the 2040 post-development traffic conditions.

## **BROAD STREET / DEWDNEY AVENUE**

- The existing lane configurations at the Broad Street / Dewdney Avenue intersection are not expected to be capable of
  accommodating the forecasted 2040 peak hour traffic volumes. The eastbound left turn movement is expected to operate
  at LOS F in the off-peak hours.
- Adding lanes to the intersection to improve traffic operational performance will be difficult due to the right-of-way
  constraints and the railway overpass bridge on Broad Street to the south. Transportation management strategies and
  active transportation programs to reduce future traffic demand should be considered by the City.

## SIGNALIZED INTERSECTION SPACING

The signalized intersection spacing along Dewdney Avenue between Albert Street and Lorne Street, Lorne Street and Hamilton Street, Hamilton Street and Broad Street is approximately 300 m, 300 m, and 200 m respectively. Although the spacing is not ideal signalized intersection spacing (400 m) for signal progression for a speed of 50 km/h, signal coordination for the Lorne Street and Hamilton Street intersections is recommended to progress traffic flow along the Dewdney Avenue corridor and to reduce overall delays.

## TRANSPORTATION DEMAND MANAGEMENT (TDM)

The forecasted future traffic volumes are expected to exceed the existing intersection capacity at the Dewdney Avenue intersections at Albert Street and at Broad Street. The following TDM strategies should be considered to minimize infrastructure needs by reducing the number and length of auto trips, and by shifting vehicle trips away from Dewdney Avenue:

- Alternative Routes: If alternate routes with suitable traffic operation performance (less congestion, shorter delay, and fewer stops) are available, commuters may use alternative routes to reach their destinations instead of using Dewdney Avenue.
- Public Transit: The City may consider increasing the transit service frequency to meet the future transit patron demand as a result of the Railyard Renewal Project.
- Pedestrian and Bicycle Facilities: To encourage walking and cycling within the City centre, in addition to improving the
  existing pedestrian and bicycle facility conditions, more pedestrian and bicycle facilities such as sidewalks, crosswalks,
  shared pathways, and bike lanes should be developed.
- Carpooling: Carpooling is a form of ridesharing and can reduce traffic congestion. It is recommended that the City develop a website to support carpooling.
- Parking Management: Managing parking helps to reduce the undesirable impacts of parking demand on local and regional traffic levels and the resulting impacts on community livability and design. Parking meters may be installed along Dewdney Avenue with variable parking rates that fluctuate with parking demand.

## **INTERNAL ROADWAY NETWORK**

The internal roadway network within the Railyard site is based on a grid system with the extension of existing north-south local streets and walkways (Lorne Street, Cornwall Street, Scarth Street and Hamilton Street) south across Dewdney Avenue into the site. The north-south local streets will be linked by an east-west local street, extending from Lorne Street to Rose Street, to facilitate movement throughout the site for pedestrians, cyclists and drivers. These internal streets will be contained within a 22-meter right-of-way with 11 meters assigned to the street for two vehicle travel lanes and parking on both sides and 5.5-meters on each side for pedestrian amenities. The pedestrian boulevards will accommodate 2.5 meter sidewalks and zones for street trees, furnishings, utility boxes and streetlights. Pedestrian crossings and traffic control (signage and pavement markings) should be designed to enhance pedestrian safety to create safe interfaces between different modes of travel and a comfortable environment for circulation. The internal streets and intersections should be designed to accommodate the movement of emergency vehicles (e.g., fire truck) and garbage trucks.

## **SECONDARY PLAN AREA**

It should be noted that when individual developments in the Secondary Plan area are proposed, a traffic impact study should be carried out for each particular development.

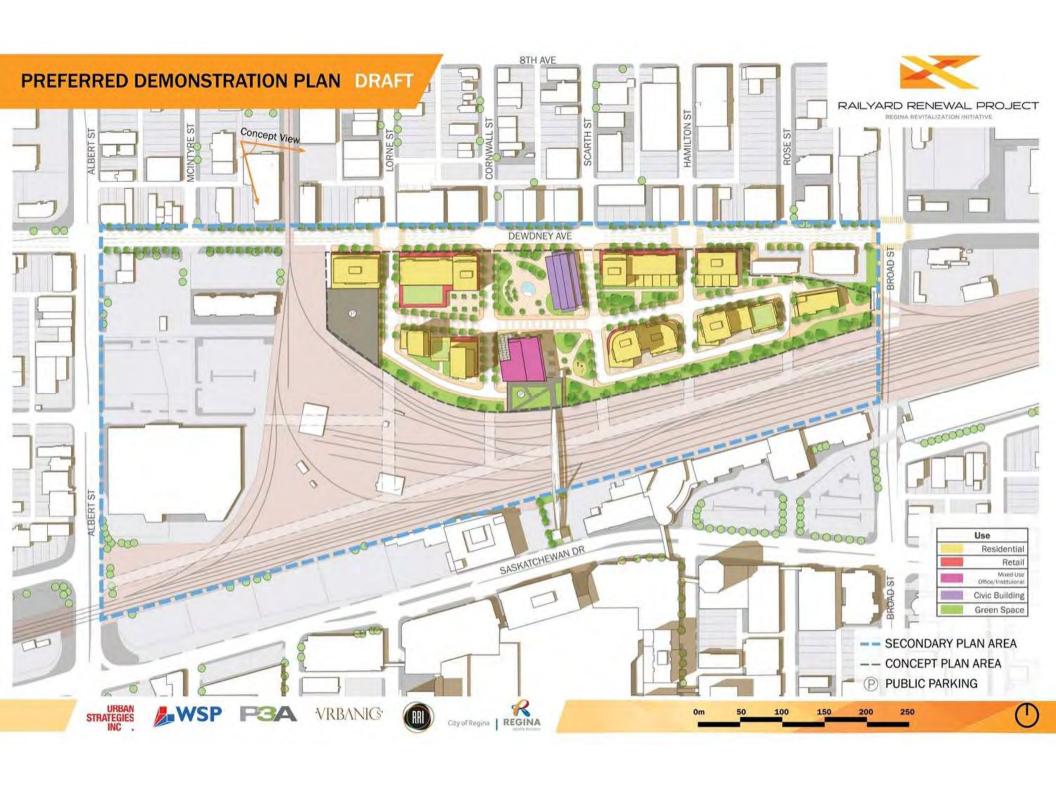
## **BIBLIOGRAPHY**

- Regina Revitalization Initiative Transportation Background Study (2014), City of Regina
- Transportation Master Plan (2015), City of Regina.
- CP Intermodal Lands Development of Pedestrian Connection Locations (2011), City of Regina.
- 2040 EMME Outputs, City of Regina.
- Development Standards Manual (2010), City of Regina.
- City of Regina, <a href="http://www.regina.ca/residents/index.htm">http://www.regina.ca/residents/index.htm</a>, Retrieved November 16, 2015.

## A ABBREVIATION AND UNITS

| ABBREVIATION | DESCRIPTION                                     |  |
|--------------|-------------------------------------------------|--|
| ITE          | Institute of Transportation Engineers           |  |
| AADT         | Average Annual Daily Traffic                    |  |
| ASDT         | Average Summer Daily Traffic                    |  |
| ATR          | Automatic Traffic Recorder                      |  |
| V/C          | Volume to Capacity Ratio                        |  |
| LOS          | Level of Service                                |  |
| LT           | Left Turn                                       |  |
| TIMS         | Transportation Infrastructure Management System |  |
| INT          | Intersection                                    |  |
| EBL          | Eastbound Left                                  |  |
| WBL          | Westbound Left                                  |  |
| NBL          | Northbound Left                                 |  |
| SBL          | Southbound Left                                 |  |
| NBLR         | Northbound Left and Right                       |  |
| EBLTR        | Eastbound Left, Through and Right               |  |
| WBLTR        | Westbound Left, Through and Right               |  |
| HCM          | Highway Capacity Manual                         |  |
| TAC          | Transportation Association of Canada            |  |
| s            | Second                                          |  |
| m            | Meter                                           |  |
| km/h         | Kilometers per hour                             |  |

# B PROJECT INFORMATION


- Dewdney Avenue Photos
- Development Concept Plan
- Preferred Concept Yields By Building



**Dewdney Avenue Looking West** 



**Dewdney Avenue Looking West** 





|                                         | Total Storeys | Use                | Storeys            | GFA (m2)       | Units |
|-----------------------------------------|---------------|--------------------|--------------------|----------------|-------|
| BUILDING #1 (Stick & Rental)            | 6             | Betall             | 5                  | 6,700<br>1,500 | 67    |
|                                         |               | The Colon          |                    | 8,200          | -     |
|                                         |               |                    |                    | 0,200          |       |
| BUILDING #ZA (Concrete & Condo)         | 10            | 0.00               | 8                  | 6,500          | 65    |
|                                         |               | Retail             |                    | 900            |       |
|                                         |               | Office             | 1                  | 900            | _     |
|                                         |               |                    |                    | 8,300          |       |
| BUILDING #26 (Stick & Rental)           | 6             | (and the second    | 4                  | 4,000          | 40    |
|                                         |               | Retail             |                    | 3,000          |       |
|                                         |               | Office             | A                  | 1,500<br>8,500 | -     |
|                                         |               |                    |                    | 16,800         | 105   |
|                                         |               |                    |                    | 10,000         |       |
| BUILDING #3 (Stick)                     | 3             | Retail             | 1                  | 1,000          | n/a   |
|                                         |               | Owner, rich        | 2                  | 3,200          | _     |
|                                         |               |                    |                    | 4,200          |       |
| BUILDING NAA (Concrete & Condo)         | 10            | ( many late        | 8                  | 6,600          | 66    |
| actions and (concrete a conday          | 40            | Retail             |                    | 700            | - 00  |
|                                         |               | Office             | 1                  | 700            |       |
|                                         |               | - Inde             |                    | 8,000          | -     |
| BUILDING #48 (Stick & Condo)            | 6             | _                  | 4                  | 6,300          | 63    |
|                                         |               | Retail             |                    | 900            |       |
|                                         |               | Office             | 1.                 | 900            |       |
|                                         |               |                    |                    | 8,100          | -     |
|                                         |               |                    |                    | 16,100         | 129   |
|                                         |               |                    |                    |                |       |
| BUILDING #5 (Stick & Rental)            | 6             | Retail             | 4                  | 6,600          | 66    |
|                                         |               | Office             |                    | 300            |       |
|                                         |               | Armice             |                    | 8,200          | -     |
|                                         |               |                    |                    | 0,200          |       |
| BUILDING #6A (Concrete & Rental)        | 16            | -                  | 16                 | 9,600          | 96    |
| BUILDING #68 (Concrete & Condo)         | 20            | Section 1          | 19                 | 15,100         | 151   |
|                                         |               | Retail             | 2                  | 600            |       |
|                                         |               |                    |                    | 15,700         |       |
|                                         |               |                    |                    | 25,300         | 247   |
| BUILDING #7 (Concrete)                  | 6             |                    |                    | 4,100          | n/a   |
| BOILDING NY (CENTREE)                   |               | instinational/Comm |                    |                |       |
|                                         |               | Office             | - 8                | 4,000          | -     |
|                                         |               |                    |                    | 8,100          | _     |
| BUILDING #8 (Concrete & Condo)          | 20            | Amademica          | 19                 | 21,600         | 216   |
|                                         |               | Retail             | 4                  | 600            | _     |
|                                         |               |                    |                    | 22,200         |       |
| BUILDING #5A (Concrete & Rental)        | 14            | - Indianalal       | 14                 | 11,200         | 112   |
| BUILDING #98 (Stick & Condo)            | - 6 -         |                    | 6                  | 6,000          | - 60  |
| *************************************** |               |                    |                    | 17,200         | 172   |
|                                         |               |                    |                    |                |       |
| HUILDING #10 (Concrete & Condo)         |               |                    |                    | 6,900          | 69    |
|                                         |               |                    |                    | 6,900          |       |
| TOTAL                                   |               |                    |                    | 133,200        | 1,071 |
| Remil                                   | 10,000        |                    | Condo              | 690            | 64%   |
| Office                                  | 8,800         |                    | Rental             | 381            | 36%   |
| Institutional / Cultural                | 4,100         |                    | Towns (BLDGs 48.5) | 45             | 4%    |
| Community                               | 3,200         |                    | The specific sales |                |       |
| Residential                             | 107,100       |                    | Stick              | 43,200         | 32%   |
| TOTAL GFA (m2)                          | 133,200       |                    | Concrete           | 90,000         | 68%   |

# C TRAFFIC ANALYSIS

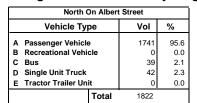
- Traffic Turning Movement Diagrams
- EMME 2040 Output
- Internal Trip Estimates
- City's Response Email

Intersection of: **Dewdney Avenue / Albert Street** City of Regina, SK

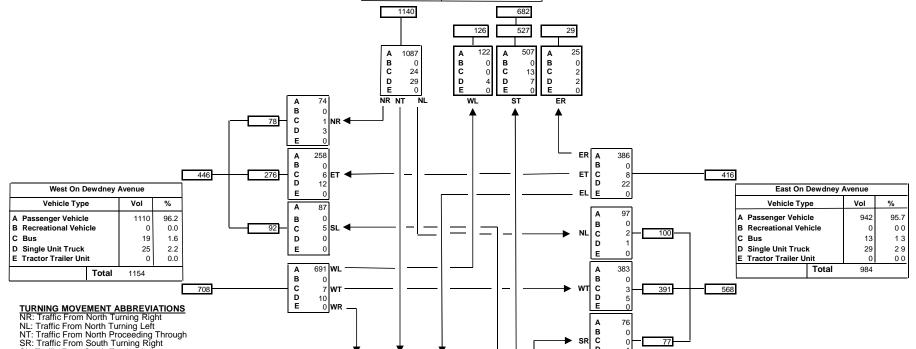
2015 a.m. Peak Hour ESTIMATES

(7:30 a.m. - 8:30 a.m.)

SL: Traffic From South Turning Left


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right

EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

## **Turning Movement Summary Diagram**







D

ST

В

С 18

D

696

670

| South On A            | South On Albert Street |      |      |  |  |  |
|-----------------------|------------------------|------|------|--|--|--|
| Vehicle Type          | Vol                    | %    |      |  |  |  |
| A Passenger Vehicle   | е                      | 1875 | 95.7 |  |  |  |
| B Recreational Vehi   | cle                    | 0    | 0.0  |  |  |  |
| C Bus                 |                        | 43   | 2.2  |  |  |  |
| D Single Unit Truck   |                        | 42   | 2.1  |  |  |  |
| E Tractor Trailer Uni | it                     | 0    | 0.0  |  |  |  |
|                       | Total                  | 1    | 960  |  |  |  |

186

191

В

С

D

962 1264

В

С

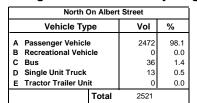
Intersection of: **Dewdney Avenue / Albert Street** City of Regina, SK

2015 p.m. Peak Hour ESTIMATES

(4:30 p.m. - 5:30 p.m.)

SR: Traffic From South Turning Right

WR: Traffic From West Turning Right


WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through

ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right

EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

SL: Traffic From South Turning Left

## **Turning Movement Summary Diagram**

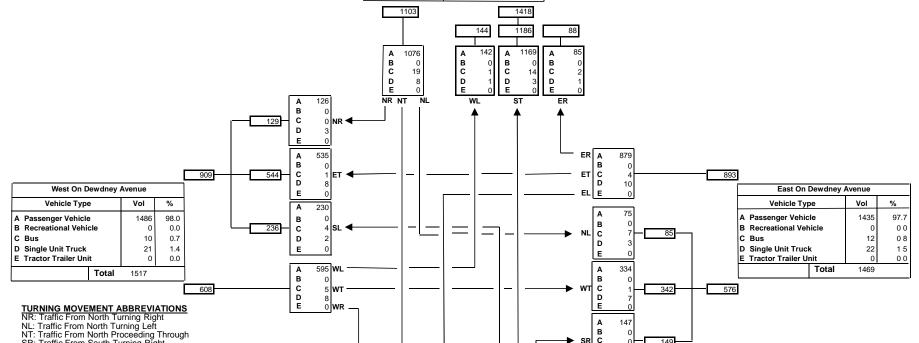




149

D

ST


В

С

D

1571

1546



| South On Albert Street |       |      |      |  |  |
|------------------------|-------|------|------|--|--|
| Vehicle Type           | Vol   | %    |      |  |  |
| A Passenger Vehicle    | е     | 2799 | 98.5 |  |  |
| B Recreational Vehi    | cle   | 0    | 0.0  |  |  |
| C Bus                  |       | 34   | 1.2  |  |  |
| D Single Unit Truck    |       | 10   | 0.4  |  |  |
| E Tractor Trailer Uni  | it    | 0    | 0.0  |  |  |
|                        | Total | 2    | 843  |  |  |

261

В

С

D

В

С

D

889

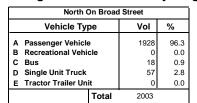
1272

Intersection of: **Dewdney Avenue / Broad Street** City of Regina, SK

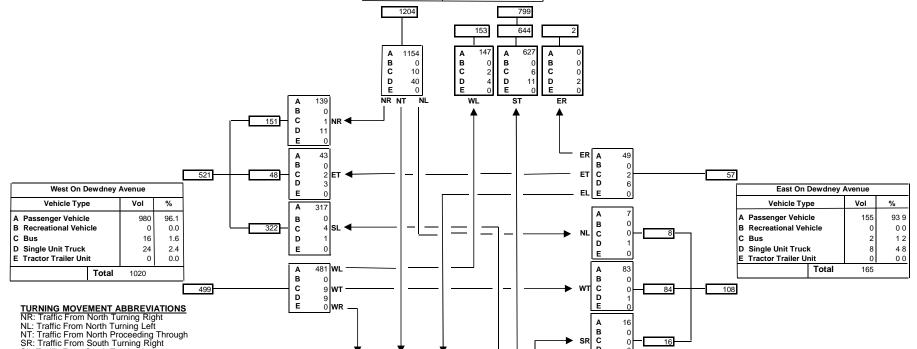
2015 a.m. Peak Hour ESTIMATES

(7:15 a.m. - 8:15 a.m.)

SL: Traffic From South Turning Left


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right

EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

## **Turning Movement Summary Diagram**







D

ST

982

В

С

D 12

960

| South On Broad Street  |       |      |      |  |  |
|------------------------|-------|------|------|--|--|
| Vehicle Type           | Vol   | %    |      |  |  |
| A Passenger Vehicle    | •     | 2225 | 96.9 |  |  |
| B Recreational Vehi    | cle   | 0    | 0.0  |  |  |
| C Bus                  |       | 26   | 1.1  |  |  |
| D Single Unit Truck    |       | 45   | 2.0  |  |  |
| E Tractor Trailer Unit |       | 0    | 0.0  |  |  |
|                        | Total | 2    | 296  |  |  |

251

262

В

С

D

1045 1314

В

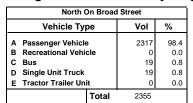
С

Intersection of: **Dewdney Avenue / Broad Street** City of Regina, SK

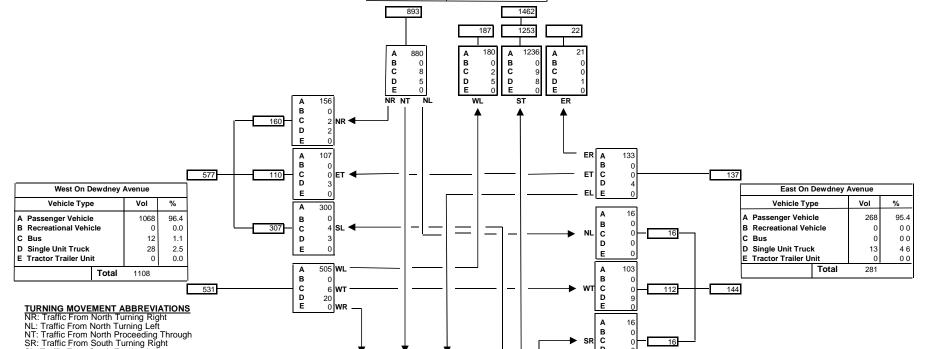
2015 p.m. Peak Hour ESTIMATES

(4:30 p.m. - 5:30 p.m.)

SL: Traffic From South Turning Left


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right

EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

## **Turning Movement Summary Diagram**







D

ST

В

С

D

1576

1552

11

| South On I            | South On Broad Street |      |      |  |  |  |
|-----------------------|-----------------------|------|------|--|--|--|
| Vehicle Type          | Vol                   | %    |      |  |  |  |
| A Passenger Vehicle   | •                     | 2487 | 98.3 |  |  |  |
| B Recreational Vehi   | cle                   | 0    | 0.0  |  |  |  |
| C Bus                 |                       | 23   | 0.9  |  |  |  |
| D Single Unit Truck   |                       | 20   | 0.8  |  |  |  |
| E Tractor Trailer Uni | it                    | 0    | 0.0  |  |  |  |
|                       | Total                 | 2    | 530  |  |  |  |

222

В

С

D

717 954

В

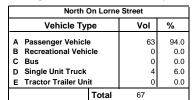
С

Intersection of: **Dewdney Avenue / Lorne Street** City of Regina, SK

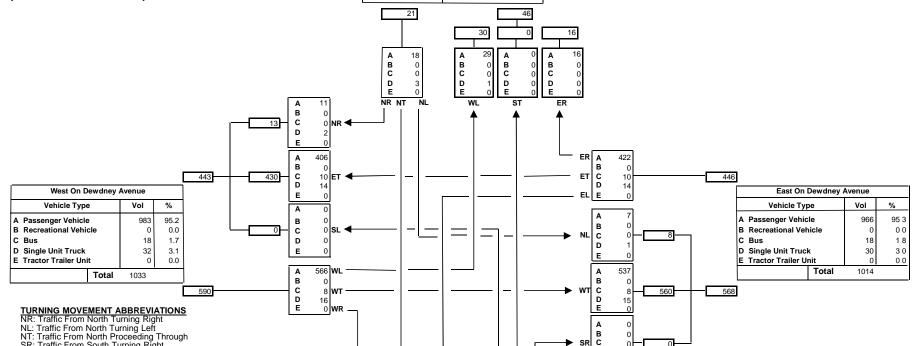
2015 a.m. Peak Hour ESTIMATES

(7:30 a.m. - 8:30 a.m.)

SR: Traffic From South Turning Right


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

SL: Traffic From South Turning Left

## **Turning Movement Summary Diagram**







D

ST

В

С

D

| 0                   |                        |     | U   |  |
|---------------------|------------------------|-----|-----|--|
| So                  | uth On                 |     |     |  |
| Vehicle Type        |                        | Vol | %   |  |
| A Passenger Vehic   | A Passenger Vehicle    |     |     |  |
| B Recreational Veh  | nicle                  | 0   | 0.0 |  |
| C Bus               |                        | 0   | 0.0 |  |
| D Single Unit Truck | k                      | 0   | 0.0 |  |
| E Tractor Trailer U | E Tractor Trailer Unit |     |     |  |
|                     | Total                  |     | 0   |  |

В

С

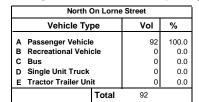
D

В

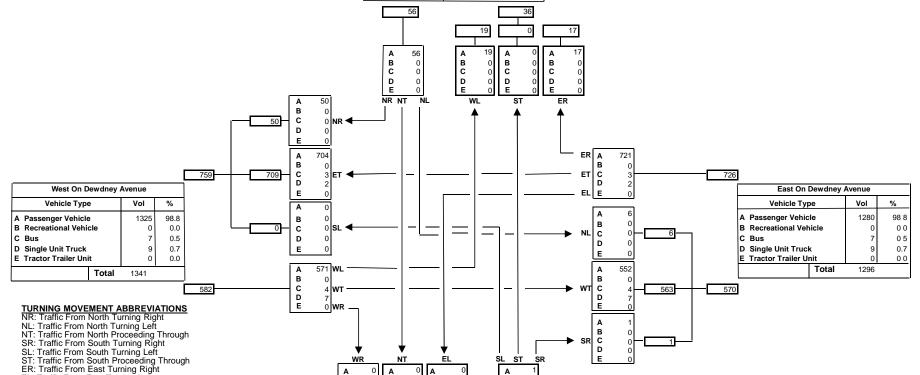
С

Intersection of: **Dewdney Avenue / Lorne Street** City of Regina, SK

2015 p.m. Peak Hour ESTIMATES


EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

WR: Traffic From West Turning Right


WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through

(4:30 p.m. - 5:30 p.m.)

## **Turning Movement Summary Diagram**







| 0                      |          |     | 1     |  |  |
|------------------------|----------|-----|-------|--|--|
| South                  | South On |     |       |  |  |
| Vehicle Type           |          | Vol | %     |  |  |
| A Passenger Vehicle    |          | 1   | 100.0 |  |  |
| B Recreational Vehicle | е        | 0   | 0.0   |  |  |
| C Bus                  |          | 0   | 0.0   |  |  |
| D Single Unit Truck    |          | 0   | 0.0   |  |  |
| E Tractor Trailer Unit |          | 0   | 0.0   |  |  |
| 1                      | Γotal    |     | 1     |  |  |

В

С

D

В

С

D

ST

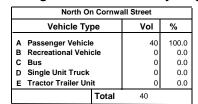
В

С

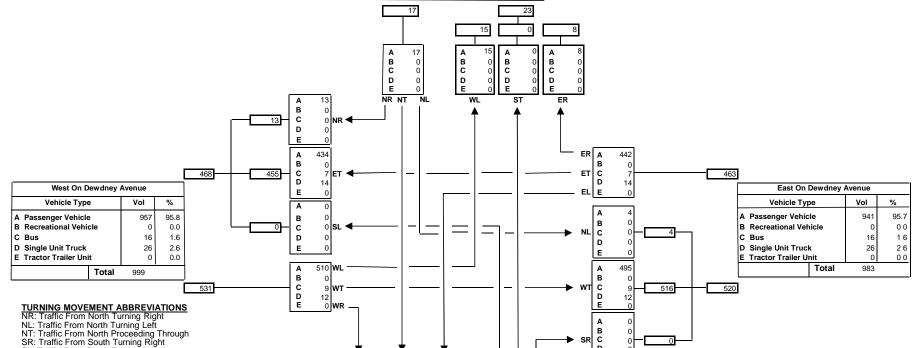
Intersection of: **Dewdney Avenue / Cornwall Street** City of Regina, SK

2015 a.m. Peak Hour ESTIMATES

(7:30 a.m. - 8:30 a.m.)


SL: Traffic From South Turning Left

WR: Traffic From West Turning Right


WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through

ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

## **Turning Movement Summary Diagram**







D

ST

В

С

D

| South On Cornwall Street |     |     |  |  |
|--------------------------|-----|-----|--|--|
| Vehicle Type             | Vol | %   |  |  |
| A Passenger Vehicle      | 0   | 0.0 |  |  |
| B Recreational Vehicle   | 0   | 0.0 |  |  |
| C Bus                    | 0   | 0.0 |  |  |
| D Single Unit Truck      | 0   | 0.0 |  |  |
| E Tractor Trailer Unit   | 0   | 0.0 |  |  |
| Tota                     | l   | 0   |  |  |

В

С

D

В

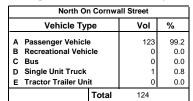
С

Intersection of: **Dewdney Avenue / Cornwall Street** City of Regina, SK

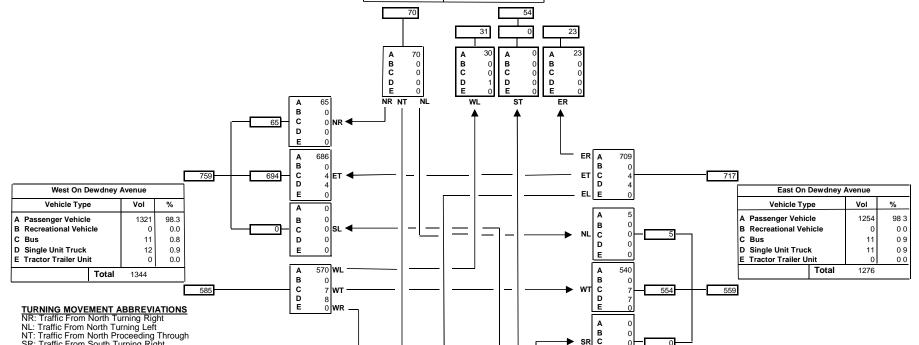
2015 p.m. Peak Hour ESTIMATES

(4:15 p.m. - 5:15 p.m.)

SR: Traffic From South Turning Right


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

SL: Traffic From South Turning Left

## **Turning Movement Summary Diagram**







D

ST

0

В

С

D

| South On Cornwall Street |       |     |     |  |  |
|--------------------------|-------|-----|-----|--|--|
| Vehicle Type Vol %       |       |     |     |  |  |
| A Passenger Vehicle      | 0     | 0.0 |     |  |  |
| B Recreational Vehic     | cle   | 0   | 0.0 |  |  |
| C Bus                    |       | 0   | 0.0 |  |  |
| D Single Unit Truck      |       | 0   | 0.0 |  |  |
| E Tractor Trailer Uni    | t     | 0   | 0.0 |  |  |
|                          | Total |     | 0   |  |  |

В

С

D

В

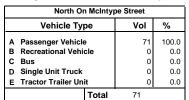
С

D

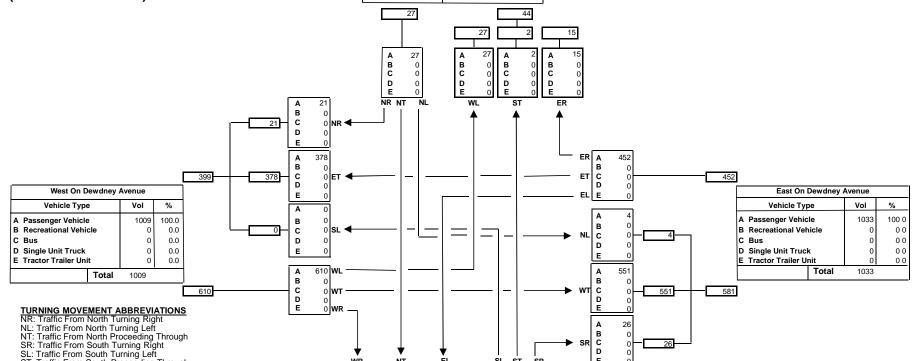
0

Intersection of: **Dewdney Avenue / McIntype Atreet** City of Regina, SK

2015 a.m. Peak Hour ESTIMATES


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

WR: Traffic From West Turning Right


WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through

(7:30 a.m. - 8:30 a.m.)









| South On McIntype Street |     |       |     |  |  |  |  |
|--------------------------|-----|-------|-----|--|--|--|--|
| Vehicle Type             | Vol | %     |     |  |  |  |  |
| A Passenger Vehicle      | 121 | 100.0 |     |  |  |  |  |
| B Recreational Vehicle   | 9   | 0     | 0.0 |  |  |  |  |
| C Bus                    |     | 0     | 0.0 |  |  |  |  |
| D Single Unit Truck      |     | 0     | 0.0 |  |  |  |  |
| E Tractor Trailer Unit   |     | 0     | 0.0 |  |  |  |  |
| Total                    |     |       | 121 |  |  |  |  |

В

С

D

В

С

D

93

D

ST

28

В

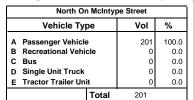
С

Intersection of: **Dewdney Avenue / McIntype Atreet** City of Regina, SK

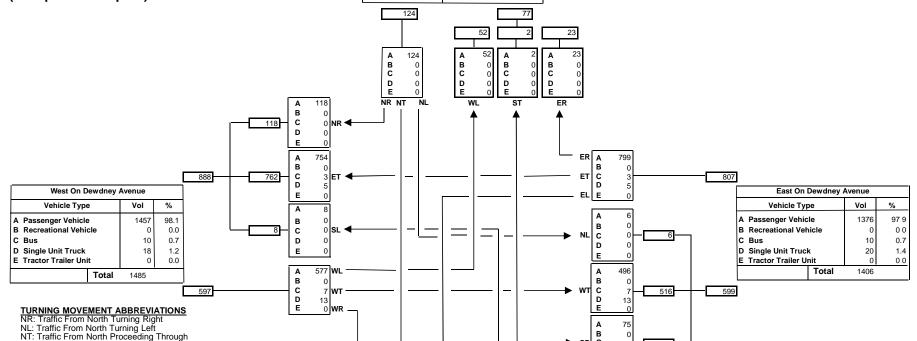
2015 p.m. Peak Hour ESTIMATES

(4:40 p.m. - 5:30 p.m.)

SR: Traffic From South Turning Right


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left
ET: Traffic From East Proceeding Through

SL: Traffic From South Turning Left









c

D

ST

В

С

D

| 51                   |                     |        | 87  |  |
|----------------------|---------------------|--------|-----|--|
| South On M           | cIntype             | Street |     |  |
| Vehicle Type         |                     | Vol    | %   |  |
| A Passenger Vehicl   | A Passenger Vehicle |        |     |  |
| B Recreational Vehi  | cle                 | 0      | 0.0 |  |
| C Bus                |                     | 0      | 0.0 |  |
| D Single Unit Truck  |                     | 2      | 1.4 |  |
| E Tractor Trailer Un | 0                   | 0.0    |     |  |
|                      | Total               | 1      | 138 |  |

В

С

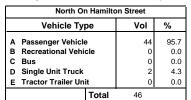
D

В

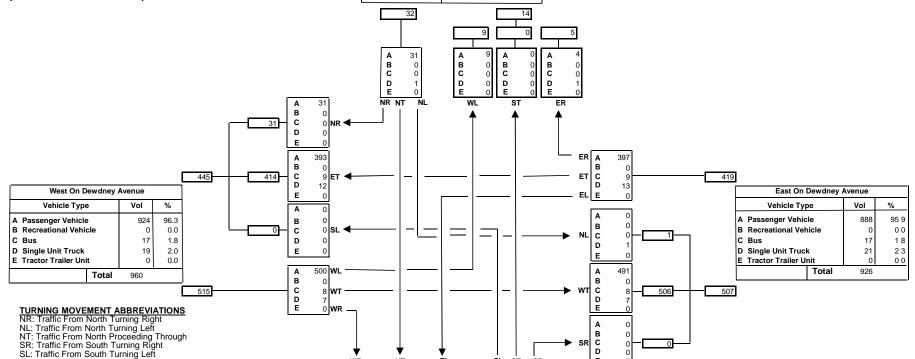
С

Intersection of:
Dewdney Avenue / Hamilton Street
City of Regina, SK

2015 a.m. Peak Hour ESTIMATES


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left ET: Traffic From East Proceeding Through

WR: Traffic From West Turning Right


WL: Traffic From West Turning Left
WT: Traffic From West Proceeding Through

(7:15 a.m. - 8:15 a.m.)

## **Turning Movement Summary Diagram**







| ű                     |       |     | <u> </u> |
|-----------------------|-------|-----|----------|
| Sout                  | th On |     |          |
| Vehicle Type          |       | Vol | %        |
| A Passenger Vehicle   |       | 0   | 0.0      |
| B Recreational Vehic  | cle   | 0   | 0.0      |
| C Bus                 |       | 0   | 0.0      |
| D Single Unit Truck   |       | 0   | 0.0      |
| E Tractor Trailer Uni | it    | 0   | 0.0      |
|                       | Total |     | 0        |

В

С

D

В

С

D

ST

В

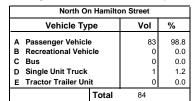
С

Intersection of:
Dewdney Avenue / Hamilton Street
City of Regina, SK

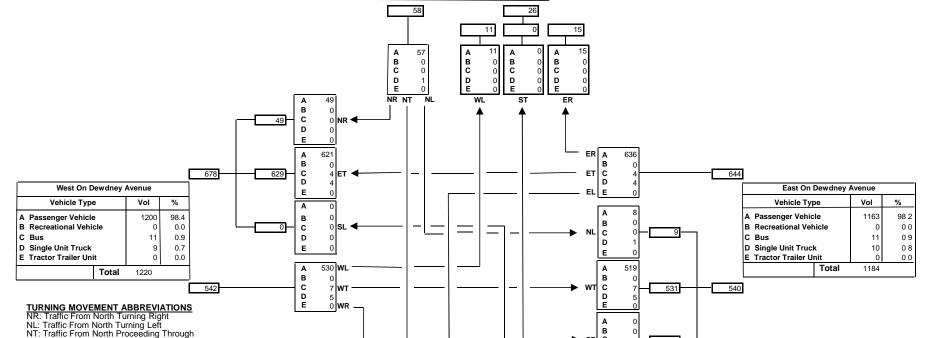
2015 p.m. Peak Hour ESTIMATES

(4:15 p.m. - 5:15 p.m.)

SR: Traffic From South Turning Right


WR: Traffic From West Turning Right

WL: Traffic From West Turning Left
WT: Traffic From West Proceeding Through


ST: Traffic From South Proceeding Through ER: Traffic From East Turning Right EL: Traffic From East Turning Left ET: Traffic From East Proceeding Through

SL: Traffic From South Turning Left

## **Turning Movement Summary Diagram**







c

D

ST

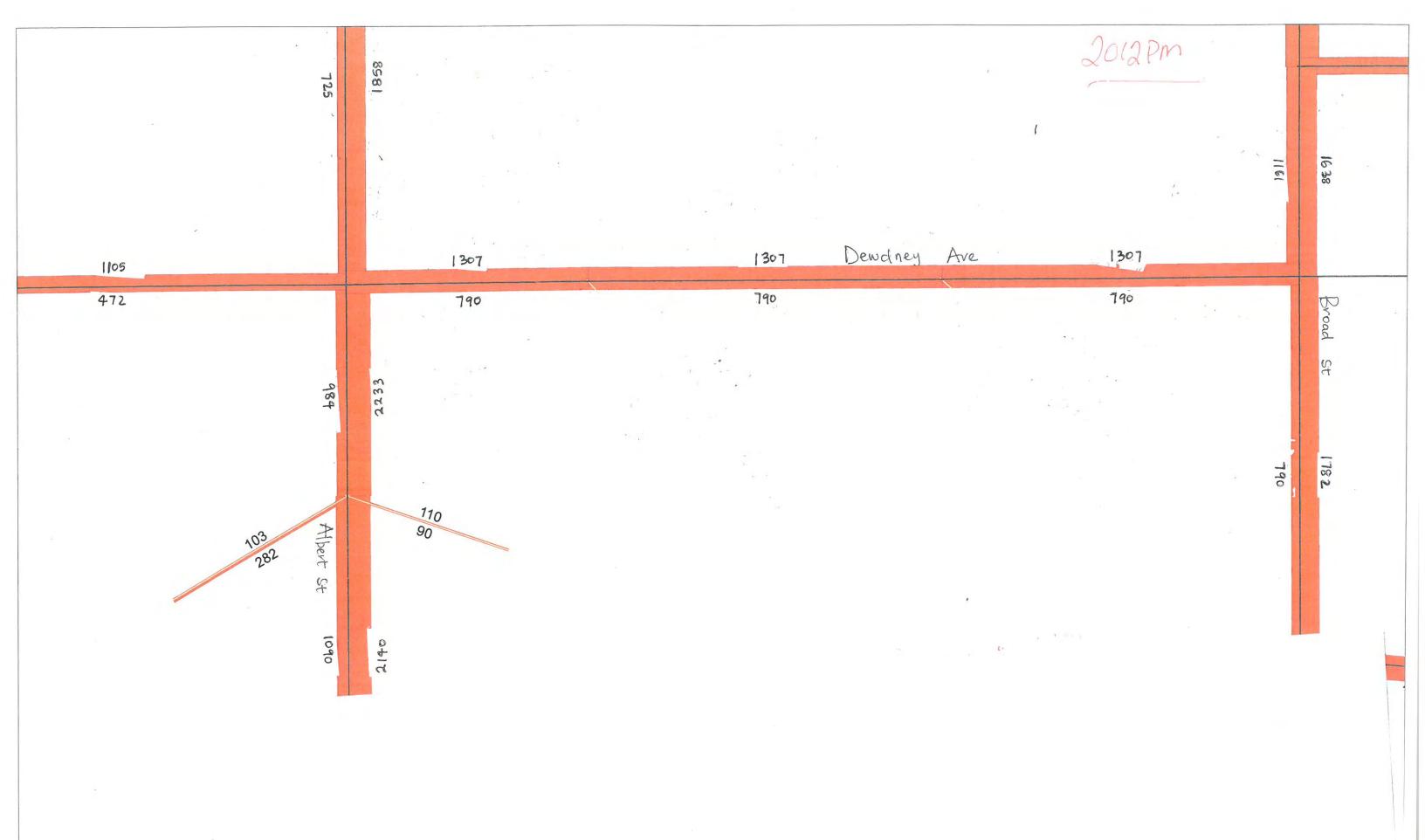
В

С

D

| 0                    |                        |   | 0   |  |  |
|----------------------|------------------------|---|-----|--|--|
| Sou                  | th On                  |   |     |  |  |
| Vehicle Type         | Vehicle Type           |   |     |  |  |
| A Passenger Vehicl   | A Passenger Vehicle    |   |     |  |  |
| B Recreational Vehi  | cle                    | 0 | 0.0 |  |  |
| C Bus                |                        | 0 | 0.0 |  |  |
| D Single Unit Truck  |                        | 0 | 0.0 |  |  |
| E Tractor Trailer Un | E Tractor Trailer Unit |   |     |  |  |
|                      | Total                  |   | 0   |  |  |

В


С

D

В

С

| 1464                 | 1686 Dewdney Ave | 2040 PM | 1974          |
|----------------------|------------------|---------|---------------|
| 1179 Albert St. 1251 | 181<br>188       | 1171    | Broad St 2228 |



|                       | NCHRP 684 Internal Trip Capture Estimation Tool |   |               |                 |  |  |  |
|-----------------------|-------------------------------------------------|---|---------------|-----------------|--|--|--|
| Project Name:         | Regina Railyard Renewal Project                 |   | Organization: | WSP Canada Inc. |  |  |  |
| Project Location:     | City of Regina                                  |   | Performed By: | James Sun       |  |  |  |
| Scenario Description: |                                                 | Ī | Date:         | 25/07/2016      |  |  |  |
| Analysis Year:        |                                                 | Ī | Checked By:   |                 |  |  |  |
| Analysis Period:      | AM Street Peak Hour                             |   | Date:         |                 |  |  |  |

|                                  | Developme | ent Data (For Info | rmation Only) |       | stimates (Single-Use Site Estimate)  Es imated Vehicle-Trips <sup>3</sup> |         |  |
|----------------------------------|-----------|--------------------|---------------|-------|---------------------------------------------------------------------------|---------|--|
| Land Use                         | ITE LUCs1 | Quan ity           | Units         | Total | Entering                                                                  | Exiting |  |
| Office                           |           |                    |               | 243   | 214                                                                       | 29      |  |
| Retail                           |           |                    |               | 145   | 90                                                                        | 55      |  |
| Restaurant                       |           |                    |               | 0     |                                                                           |         |  |
| Cinema/Entertainment             |           |                    |               | 0     |                                                                           |         |  |
| Residential                      |           |                    |               | 369   | 102                                                                       | 267     |  |
| Hotel                            |           |                    |               | 0     |                                                                           |         |  |
| All Other Land Uses <sup>2</sup> |           |                    |               | 0     |                                                                           |         |  |
|                                  |           |                    |               | 757   | 406                                                                       | 351     |  |

| Table 2-A: Mode Split and Vehicle Occupancy Estimates |            |                |                 |   |            |               |                 |
|-------------------------------------------------------|------------|----------------|-----------------|---|------------|---------------|-----------------|
| Land Use                                              |            | Entering Trips |                 |   |            | Exiting Trips |                 |
| Land Ose                                              | Veh. Occ.⁴ | % Transit      | % Non-Motorized | Ī | Veh. Occ.4 | % Transit     | % Non-Motorized |
| Office                                                | 1.00       | 20%            |                 |   | 1 00       | 20%           |                 |
| Retail                                                | 1.00       | 20%            |                 |   | 1 00       | 20%           |                 |
| Restaurant                                            |            |                |                 |   |            |               |                 |
| Cinema/Entertainment                                  |            |                |                 |   |            |               |                 |
| Residential                                           | 1.00       | 20%            |                 |   | 1 00       | 20%           |                 |
| Hotel                                                 |            |                |                 |   |            |               |                 |
| All Other Land Uses <sup>2</sup>                      |            |                |                 |   |            |               |                 |

| Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance) |        |        |            |                      |             |       |
|---------------------------------------------------------------------------|--------|--------|------------|----------------------|-------------|-------|
| Origin (France)                                                           |        |        |            | Destination (To)     |             |       |
| Origin (From)                                                             | Office | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |
| Office                                                                    |        |        |            |                      |             |       |
| Retail                                                                    |        |        |            |                      |             |       |
| Restaurant                                                                |        |        |            |                      |             |       |
| Cinema/Entertainment                                                      |        |        |            |                      |             |       |
| Residential                                                               |        |        |            |                      |             |       |
| Hotel                                                                     |        |        |            |                      |             |       |

| Table 4-A: Internal Person-Trip Origin-Destination Matrix* |        |        |            |                      |             |       |  |
|------------------------------------------------------------|--------|--------|------------|----------------------|-------------|-------|--|
| Origin (From)                                              |        |        |            | Destination (To)     |             |       |  |
| Oligili (Fiolii)                                           | Office | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |
| Office                                                     |        | 8      | 0          | 0                    | 0           | 0     |  |
| Retail                                                     | 9      |        | 0          | 0                    | 2           | 0     |  |
| Restaurant                                                 | 0      | 0      |            | 0                    | 0           | 0     |  |
| Cinema/Entertainment                                       | 0      | 0      | 0          |                      | 0           | 0     |  |
| Residential                                                | 5      | 3      | 0          | 0                    |             | 0     |  |
| Hotel                                                      | 0      | 0      | 0          | 0                    | 0           |       |  |

| Table 5-A: Computations Summary           |       |          |         |  |  |  |  |
|-------------------------------------------|-------|----------|---------|--|--|--|--|
|                                           | Total | Entering | Exiting |  |  |  |  |
| All Person-Trips                          | 757   | 406      | 351     |  |  |  |  |
| Internal Capture Percentage               | 7% 7% |          | 8%      |  |  |  |  |
|                                           |       |          |         |  |  |  |  |
| External Vehicle-Trips <sup>5</sup>       | 562   | 303      | 259     |  |  |  |  |
| External Transit-Trips <sup>6</sup>       | 141   | 76       | 65      |  |  |  |  |
| External Non-Motorized Trips <sup>6</sup> | 0     | 0        | 0       |  |  |  |  |

| Table 6-A: Internal Trip Capture Percentages by Land Use |     |     |  |  |  |  |  |
|----------------------------------------------------------|-----|-----|--|--|--|--|--|
| Land Use Entering Trips Exiting Trips                    |     |     |  |  |  |  |  |
| Office                                                   | 7%  | 28% |  |  |  |  |  |
| Retail                                                   | 12% | 20% |  |  |  |  |  |
| Restaurant                                               | N/A | N/A |  |  |  |  |  |
| Cinema/Entertainment                                     | N/A | N/A |  |  |  |  |  |
| Residential                                              | 2%  | 3%  |  |  |  |  |  |
| Hotel                                                    | N/A | N/A |  |  |  |  |  |

<sup>1</sup>Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Ins itute of Transportation Engineers.

<sup>6</sup>Person-Trips

\*Indicates computation hat has been rounded to the nearest whole number.

Es imation Tool Developed by the Texas A&M Transportation Ins itute - Version 2013.1

<sup>&</sup>lt;sup>2</sup>Total es imate for all other land uses at mixed-use development site is not subject to internal trip capture computa ions in this estimator.

<sup>&</sup>lt;sup>3</sup>Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

<sup>&</sup>lt;sup>4</sup>Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

<sup>&</sup>lt;sup>5</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

| NCHRP 684 Internal Trip Capture Estimation Tool |                                 |  |               |                 |  |  |  |
|-------------------------------------------------|---------------------------------|--|---------------|-----------------|--|--|--|
| Project Name:                                   | Regina Railyard Renewal Project |  | Organization: | WSP Canada Inc. |  |  |  |
| Project Location:                               | City of Regina                  |  | Performed By: | James Sun       |  |  |  |
| Scenario Description:                           |                                 |  | Date:         | 25/07/2016      |  |  |  |
| Analysis Year:                                  |                                 |  | Checked By:   |                 |  |  |  |
| Analysis Period:                                | PM Street Peak Hour             |  | Date:         |                 |  |  |  |

|                                  |                       | ent Data (For In |       | eneration Estimates (Single-Use Site Estimate)  Only) Estimated Vehicle-Trips <sup>3</sup> |          |         |  |
|----------------------------------|-----------------------|------------------|-------|--------------------------------------------------------------------------------------------|----------|---------|--|
| Land Use                         | ITE LUCs <sup>1</sup> | Quantity         | Units | Total                                                                                      | Entering | Exiting |  |
| Office                           | 112 2000              |                  |       | 233                                                                                        | 40       | 193     |  |
| Retail                           |                       |                  |       | 401                                                                                        | 171      | 230     |  |
| Restaurant                       |                       |                  |       | 0                                                                                          |          |         |  |
| Cinema/Entertainment             |                       |                  |       | 0                                                                                          |          |         |  |
| Residential                      |                       |                  |       | 451                                                                                        | 269      | 182     |  |
| Hotel                            |                       |                  |       | 0                                                                                          |          |         |  |
| All Other Land Uses <sup>2</sup> |                       |                  |       | 0                                                                                          |          |         |  |
|                                  |                       |                  |       | 1,085                                                                                      | 480      | 605     |  |

| Table 2-P: Mode Split and Vehicle Occupancy Estimates |            |             |                 |  |               |           |                 |
|-------------------------------------------------------|------------|-------------|-----------------|--|---------------|-----------|-----------------|
|                                                       |            | Entering Tr | ips             |  | Exiting Trips |           |                 |
| Land Use                                              | Veh. Occ.4 | % Transit   | % Non-Motorized |  | Veh. Occ.⁴    | % Transit | % Non-Motorized |
| Office                                                | 1.00       | 20%         |                 |  | 1.00          | 20%       |                 |
| Retail                                                | 1.00       | 20%         |                 |  | 1.00          | 20%       |                 |
| Restaurant                                            |            |             |                 |  |               |           |                 |
| Cinema/Entertainment                                  |            |             |                 |  |               |           |                 |
| Residential                                           | 1.00       | 20%         |                 |  | 1.00          | 20%       |                 |
| Hotel                                                 |            |             |                 |  |               |           |                 |
| All Other Land Uses <sup>2</sup>                      |            |             |                 |  |               |           |                 |

| Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance) |        |        |            |                      |             |       |
|---------------------------------------------------------------------------|--------|--------|------------|----------------------|-------------|-------|
| Origin (From)                                                             |        |        |            | Des ination (To)     |             |       |
| Origin (From)                                                             | Office | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |
| Office                                                                    |        | 420    |            |                      | 1120        |       |
| Retail                                                                    |        |        |            |                      | 1420        |       |
| Restaurant                                                                |        |        |            |                      |             |       |
| Cinema/Entertainment                                                      |        |        |            |                      |             |       |
| Residential                                                               |        | 1420   |            |                      |             |       |
| Hotel                                                                     |        |        |            |                      |             |       |

| Table 4-P: Internal Person-Trip Origin-Destination Matrix* |        |                  |            |                      |             |       |  |  |  |
|------------------------------------------------------------|--------|------------------|------------|----------------------|-------------|-------|--|--|--|
| Origin (From)                                              |        | Des ination (To) |            |                      |             |       |  |  |  |
| Origin (From)                                              | Office | Retail           | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |
| Office                                                     |        | 13               | 0          | 0                    | 3           | 0     |  |  |  |
| Retail                                                     | 5      |                  | 0          | 0                    | 48          | 0     |  |  |  |
| Restaurant                                                 | 0      | 0                |            | 0                    | 0           | 0     |  |  |  |
| Cinema/Entertainment                                       | 0      | 0                | 0          |                      | 0           | 0     |  |  |  |
| Residential                                                | 7      | 11               | 0          | 0                    |             | 0     |  |  |  |
| Hotel                                                      | 0      | 0                | 0          | 0                    | 0           |       |  |  |  |

| Table 5-P: Computations Summary           |       |     |     |  |  |  |  |
|-------------------------------------------|-------|-----|-----|--|--|--|--|
| Total Entering Exiting                    |       |     |     |  |  |  |  |
| All Person-Trips                          | 1,085 | 480 | 605 |  |  |  |  |
| Internal Capture Percentage               | 16%   | 18% | 14% |  |  |  |  |
|                                           |       |     |     |  |  |  |  |
| External Vehicle-Trips <sup>5</sup>       | 729   | 314 | 415 |  |  |  |  |
| External Transit-Trips <sup>6</sup>       | 182   | 79  | 103 |  |  |  |  |
| External Non-Motorized Trips <sup>6</sup> | 0     | 0   | 0   |  |  |  |  |

| Table 6-P: Internal Trip Capture Percentages by Land Use |                |               |  |  |  |  |
|----------------------------------------------------------|----------------|---------------|--|--|--|--|
| Land Use                                                 | Entering Trips | Exiting Trips |  |  |  |  |
| Office                                                   | 30%            | 8%            |  |  |  |  |
| Retail                                                   | 14%            | 23%           |  |  |  |  |
| Restaurant                                               | N/A            | N/A           |  |  |  |  |
| Cinema/Entertainment                                     | N/A            | N/A           |  |  |  |  |
| Residential                                              | 19%            | 10%           |  |  |  |  |
| Hotel                                                    | N/A            | N/A           |  |  |  |  |

<sup>1</sup>Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

<sup>2</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in his estimator.

<sup>3</sup>Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

<sup>4</sup>Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be <sup>5</sup>Vehicle-trips computed using he mode split and vehicle occupancy values provided in Table 2-P.

<sup>6</sup>Person-Trips

\*Indicates computation that has been rounded to he nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

## Sun, James

From: Scott Thomas <STHOMAS@regina.ca>

**Sent:** August-03-16 1:12 PM

To: Sun, James

Cc: Scott Thomas; Michael Price

Subject: RE: Regina Revitalization: Railyard Renewal - TIA requirements

## Hi Sun:

Thanks for contacting the City in regards to the TIA for the CPR lands. Your TIA will need to consider the following:

## The TIA should include:

- For purposes of this project, please prepare the analysis for the 2040 PM peak. I believe that the City already provided background traffic forecasts.
- Traffic forecasts (generation, distribution & assignment). Please use the latest ITE traffic generation manual. You are required to provide justification for rates used that differ from ITE rates. Please verify the generation, distribution and assignment (including pass by, diverted link and synergy) with City Staff prior to proceeding to the analysis stage. City comments on the proposed land uses in your previous email are below in bold red.
- Operational Analysis LOS for all movements and the intersection as a whole, 95% Queues & V/C ratios –> Max acceptable V/C = 1.0 & max acceptable LOS for an intersection is LOS E Please provide a copy of the Synchro model before proceeding to the write-up
- Please identify the recommended intersection geometry, intersection control, roadway classifications & xsections to maintain the maximum acceptable V/C & LOS
- Discuss and illustrate the provision of alternative modes, including:
  - Proposed transit routes & transit hubs
  - o Proposed bikeways
  - o Pedestrian accommodation plans including pedestrian protection
  - o Alternative modes should be compatible with the OCP & TMP
- Prepare a noise study for any residential areas backing onto the CPR
- Provide a construction phasing plan

Synchro parameters that the City requires are as follows:

- SAT flow rate of 1800 vphpl
- PHF based on actual counts
- A minimum green time of 10 seconds is used for through movements and 7 seconds for left turns
- The amber time on a level terrain is based on the approach speed and be as follows:
  - $\circ \le 50$ km/h = 3.5 seconds
  - $\circ$  60km/h = 4.0 seconds
  - $\circ$  70km/h = 4.5 seconds
  - $\circ$  80km/h = 5.0 seconds

- Red time varies depending on the intersection width and posted speed, but for analysis purposes, you can assume:
  - o Minimum all red time = 1.0 seconds
- Pedestrian walk time is preferred to be 10 seconds but can be reduced to 7 seconds under time constrained situations
- Pedestrian walk speeds ranging between 0.9m/s (locations designed for audible signals) to 1.2m/s at wide intersections with few seniors be used.
- Main Street to be coordinated.
- Side street and left turns to be actuated with presence detectors (i.e. recall mode set to none).
- Synchro model to be submitted to the City of Regina for review prior to finalizing your report.

Please let me know if you have any further questions or comments.

## Regards

## Scott Thomas, M.A.Sc., P.Eng., PTOE

Senior Transportation Engineer Infrastructure Planning Branch City Planning & Development Division City of Regina (p) (306) 777-7567 (f) (306) 546-6023



From: Sun, James [mailto:James.Sun@wspgroup.com]

**Sent:** Tuesday, July 26, 2016 9:41 AM **To:** Scott Thomas <STHOMAS@regina.ca>

Subject: FW: Regina Revitalization: Railyard Renewal

## Hi Scott,

Would you please also let me know if the City requires any specific parameters set up in the Synchro model? Since the project timeline is tight, I appreciate if you could reply to me at your earliest convenience.

## Thanks



James Sun, MSc., P.Eng. Transportation Engineer

## WSP Canada Inc.

Suite 1200, 10909 Jasper Avenue Edmonton, Alberta T5J 3L9 T 587-489-0161 C 780-233-0757

### www.wspgroup.com

Please consider the environment before printing this email.

From: Sun, James

**Sent:** July-21-16 10:10 AM

To: Scott Thomas (<a href="mailto:STHOMAS@regina.ca">STHOMAS@regina.ca</a>)

Cc: Fong, Janis; Halliday, Jeffrey

Subject: RE: Regina Revitalization: Railyard Renewal

Hi Scott,

We are preparing the TIA for the Railyard Renewal Project. I would like to use the following corresponding ITE land uses for the proposed development trip generation:

- Buildings (3 to 10 floors) ITE Land Use: 223, Mid-Rise Apartment acceptable
- Buildings (more than 10 floors) ITE Land Use: 222, High-Rise Apartment acceptable
- Retail ITE Land Use: 826, Specialty Retail Center Need to see a scan of the pages from ITE Trip Gen Manual as the City does not have this land use in our manual. Also why specialty retail? What is the impact if this becomes just 'retail'? or a grocery store? Or a factory outlet?
- Office ITE Land Use: 710, General Office acceptable
- Community ITE Land Use: 495, Recreational Community Center Need to see a description of what is proposed for the site before we can determine if the ITE land use is acceptable
- Cultural development No corresponding ITE land use. Most of the traffic generated by the Cultural development are anticipated to be internal trips on weekends when there are events occurring. The Cultural development trips would be negligible in the TIA. Need to see a description of what is proposed for the site before we can determine if the proposed land use is acceptable. Also, how large is the proposed site
- Internal trips Be calculated based on ITE method. Need to see proposed distribution and assignments before we can approve or deny
- Trip reduction rate due to public transit 20%? Please advise. There are only three buses per hour per direction on Dewdney Avenue. The City busses are very small (hold 38 people). At most, there might be room for 6 or 7 people per bus per hour destined to this site ...

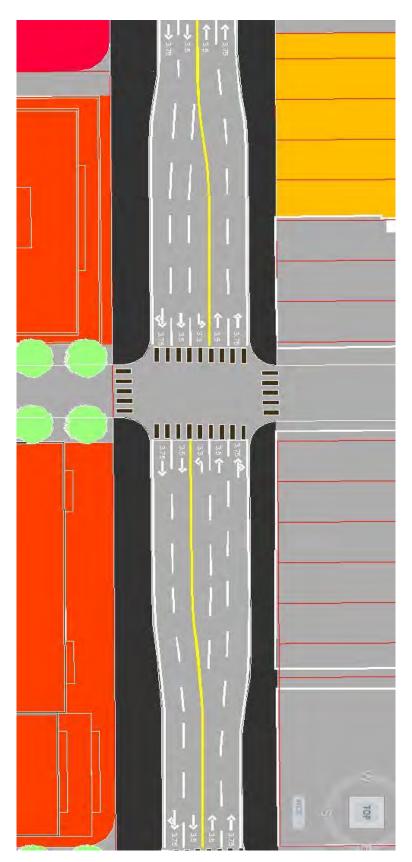
Would you please let me know your comments on the above? It would be greatly appreciated if you could reply to me at your earliest convenience.

### **Thanks**

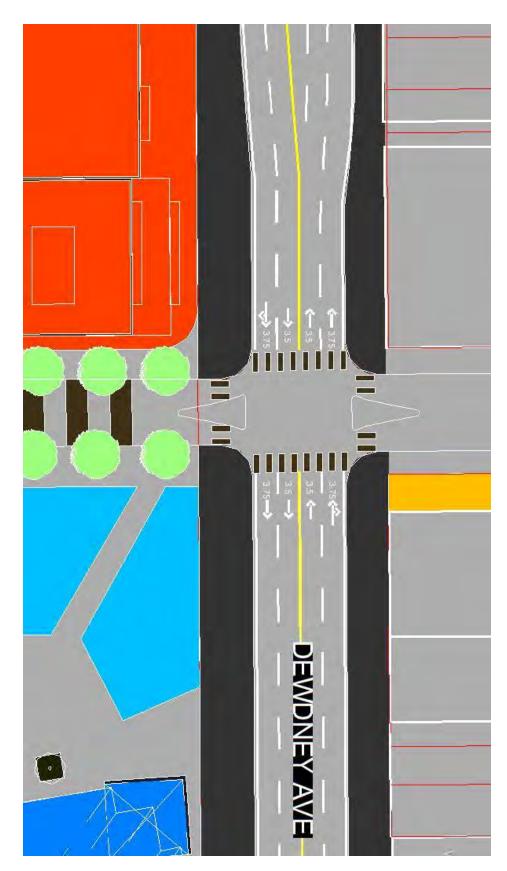


James Sun, MSc., P.Eng. Transportation Engineer

### WSP Canada Inc.


300, 9925 – 109 Street Edmonton, Alberta T5K 2J8 T 780-466-6555 ext. 4106052 F 780-463-0177 C 780-233-0757 www.wspgroup.com

DISCLAIMER: The information transmitted is intended only for the addressee and may contain confidential, proprietary and/or privileged material. Any unauthorized review, distribution or other use of or the taking of


# **APPENDIX**

# D INTERSECTION ANALYSIS

**Proposed Intersection Treatment** 



**Proposed Signalized Intersection Treatment** 



**Proposed Unsignalized Intersection Treatment** 

# **APPENDIX**

# E CAPACITY ANALYSIS

Synchro Outputs

|                         | ۶     | <b>→</b>   | •     | •     | +          | •     | •     | †               | <b>/</b> | <b>/</b> | <b>+</b> | ✓    |
|-------------------------|-------|------------|-------|-------|------------|-------|-------|-----------------|----------|----------|----------|------|
| Lane Group              | EBL   | EBT        | EBR   | WBL   | WBT        | WBR   | NBL   | NBT             | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ     | <b>†</b> † | 7     | ሻ     | <b>†</b> † | 7     | ሻ     | ተተ <sub>ጉ</sub> |          | ሻ        | ተተኈ      |      |
| Traffic Volume (vph)    | 126   | 521        | 191   | 111   | 366        | 29    | 109   | 527             | 117      | 124      | 1173     | 94   |
| Future Volume (vph)     | 126   | 521        | 191   | 111   | 366        | 29    | 109   | 527             | 117      | 124      | 1173     | 94   |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800  | 1800  | 1800       | 1800  | 1800  | 1800            | 1800     | 1800     | 1800     | 1800 |
| Storage Length (m)      | 30.0  |            | 50.0  | 30.0  |            | 30.0  | 90.0  |                 | 0.0      | 75.0     |          | 0.0  |
| Storage Lanes           | 1     |            | 1     | 1     |            | 1     | 1     |                 | 0        | 1        |          | 0    |
| Taper Length (m)        | 20.0  |            |       | 25.0  |            |       | 35.0  |                 |          | 40.0     |          |      |
| Lane Util. Factor       | 1.00  | 0.95       | 1.00  | 1.00  | 0.95       | 1.00  | 1.00  | 0.91            | 0.91     | 1.00     | 0.91     | 0.91 |
| Ped Bike Factor         | 0.99  |            | 0.98  | 1.00  |            | 0.97  | 1.00  | 1.00            |          | 1.00     | 1.00     |      |
| Frt                     | 0.00  |            | 0.850 |       |            | 0.850 |       | 0.973           |          |          | 0.989    |      |
| Flt Protected           | 0.950 |            | 0.000 | 0.950 |            | 0.000 | 0.950 | 0.010           |          | 0.950    | 0.000    |      |
| Satd. Flow (prot)       | 1679  | 3357       | 1502  | 1679  | 3357       | 1502  | 1679  | 4672            | 0        | 1679     | 4757     | 0    |
| Flt Permitted           | 0.389 | 0001       | 1002  | 0.242 | 0001       | 1002  | 0.102 | 1012            | •        | 0.284    | 1701     | J    |
| Satd. Flow (perm)       | 682   | 3357       | 1473  | 426   | 3357       | 1460  | 180   | 4672            | 0        | 500      | 4757     | 0    |
| Right Turn on Red       | 002   | 0001       | Yes   | 720   | 0001       | Yes   | 100   | 7012            | Yes      | 300      | 4101     | Yes  |
| Satd. Flow (RTOR)       |       |            | 215   |       |            | 104   |       | 54              | 163      |          | 15       | 163  |
| Link Speed (k/h)        |       | 50         | 213   |       | 50         | 104   |       | 50              |          |          | 50       |      |
| Link Distance (m)       |       | 458.3      |       |       | 110.3      |       |       | 220.1           |          |          | 211.9    |      |
|                         |       | 33.0       |       |       | 7.9        |       |       | 15.8            |          |          | 15.3     |      |
| Travel Time (s)         | 17    | 33.0       | 0     | 0     | 7.9        | 17    | 06    | 15.0            | 10       | 12       | 15.3     | 0.0  |
| Confl. Peds. (#/hr)     | 17    | 0.05       | 8     | 8     | 0.05       |       | 26    | 0.05            | 13       | 13       | 0.05     | 26   |
| Peak Hour Factor        | 0.85  | 0.85       | 0.85  | 0.85  | 0.85       | 0.85  | 0.85  | 0.85            | 0.85     | 0.85     | 0.85     | 0.85 |
| Adj. Flow (vph)         | 148   | 613        | 225   | 131   | 431        | 34    | 128   | 620             | 138      | 146      | 1380     | 111  |
| Shared Lane Traffic (%) | 4.40  | 040        | 005   | 404   | 404        | 0.4   | 400   | 750             | •        | 4.40     | 4.404    | •    |
| Lane Group Flow (vph)   | 148   | 613        | 225   | 131   | 431        | 34    | 128   | 758             | 0        | 146      | 1491     | 0    |
| Turn Type               | pm+pt | NA         | Perm  | pm+pt | NA         | Perm  | pm+pt | NA              |          | pm+pt    | NA       |      |
| Protected Phases        | 7     | 4          |       | 3     | 8          | _     | 5     | 2               |          | 1        | 6        |      |
| Permitted Phases        | 4     |            | 4     | 8     |            | 8     | 2     |                 |          | 6        |          |      |
| Detector Phase          | 7     | 4          | 4     | 3     | 8          | 8     | 5     | 2               |          | 1        | 6        |      |
| Switch Phase            |       |            |       |       |            |       |       |                 |          |          |          |      |
| Minimum Initial (s)     | 7.0   | 10.0       | 10.0  | 7.0   | 10.0       | 10.0  | 7.0   | 15.0            |          | 7.0      | 15.0     |      |
| Minimum Split (s)       | 11.0  | 36.5       | 36.5  | 11.0  | 36.5       | 36.5  | 11.0  | 33.5            |          | 11.0     | 33.5     |      |
| Total Split (s)         | 11.0  | 36.6       | 36.6  | 11.0  | 36.6       | 36.6  | 11.0  | 38.4            |          | 14.0     | 41.4     |      |
| Total Split (%)         | 11.0% | 36.6%      | 36.6% | 11.0% | 36.6%      | 36.6% | 11.0% | 38.4%           |          | 14.0%    | 41.4%    |      |
| Maximum Green (s)       | 7.0   | 32.1       | 32.1  | 7.0   | 32.1       | 32.1  | 7.0   | 33.9            |          | 10.0     | 36.9     |      |
| Yellow Time (s)         | 3.0   | 3.5        | 3.5   | 3.0   | 3.5        | 3.5   | 3.0   | 3.5             |          | 3.0      | 3.5      |      |
| All-Red Time (s)        | 1.0   | 1.0        | 1.0   | 1.0   | 1.0        | 1.0   | 1.0   | 1.0             |          | 1.0      | 1.0      |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |          | 0.0      | 0.0      |      |
| Total Lost Time (s)     | 4.0   | 4.5        | 4.5   | 4.0   | 4.5        | 4.5   | 4.0   | 4.5             |          | 4.0      | 4.5      |      |
| Lead/Lag                | Lead  | Lag        | Lag   | Lead  | Lag        | Lag   | Lead  | Lag             |          | Lead     | Lag      |      |
| Lead-Lag Optimize?      | Yes   | Yes        | Yes   | Yes   | Yes        | Yes   | Yes   | Yes             |          | Yes      | Yes      |      |
| Vehicle Extension (s)   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0             |          | 4.0      | 4.0      |      |
| Recall Mode             | None  | None       | None  | None  | None       | None  | None  | C-Max           |          | None     | C-Max    |      |
| Walk Time (s)           |       | 10.0       | 10.0  |       | 10.0       | 10.0  |       | 10.0            |          |          | 10.0     |      |
| Flash Dont Walk (s)     |       | 22.0       | 22.0  |       | 22.0       | 22.0  |       | 19.0            |          |          | 19.0     |      |
| Pedestrian Calls (#/hr) |       | 15         | 15    |       | 15         | 15    |       | 8               |          |          | 15       |      |
| Act Effct Green (s)     | 34.5  | 27.0       | 27.0  | 34.5  | 27.0       | 27.0  | 48.3  | 39.2            |          | 50.7     | 40.4     |      |
| Actuated g/C Ratio      | 0.34  | 0.27       | 0.27  | 0.34  | 0.27       | 0.27  | 0.48  | 0.39            |          | 0.51     | 0.40     |      |
| v/c Ratio               | 0.49  | 0.68       | 0.41  | 0.56  | 0.48       | 0.07  | 0.60  | 0.41            |          | 0.40     | 0.77     |      |
| Control Delay           | 25.9  | 36.1       | 6.5   | 29.4  | 31.7       | 0.07  | 30.1  | 22.1            |          | 16.4     | 29.7     |      |
| Outiful Delay           | 20.3  | JU. I      | 0.5   | 23.4  | 31.1       | 0.5   | JU. I | ۷۷.۱            |          | 10.4     | ∠J.I     |      |

## 1: Albert Street & Dewdney Avenue

|                        | ۶    | -     | •    | •    | <b>←</b> | •    | 4     | <b>†</b> | /   | -    | <b>↓</b> | 4   |
|------------------------|------|-------|------|------|----------|------|-------|----------|-----|------|----------|-----|
| Lane Group             | EBL  | EBT   | EBR  | WBL  | WBT      | WBR  | NBL   | NBT      | NBR | SBL  | SBT      | SBR |
| Queue Delay            | 0.0  | 0.0   | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      |     | 0.0  | 0.0      |     |
| Total Delay            | 25.9 | 36.1  | 6.5  | 29.4 | 31.7     | 0.3  | 30.1  | 22.1     |     | 16.4 | 29.7     |     |
| LOS                    | С    | D     | Α    | С    | С        | Α    | С     | С        |     | В    | С        |     |
| Approach Delay         |      | 27.8  |      |      | 29.4     |      |       | 23.2     |     |      | 28.5     |     |
| Approach LOS           |      | С     |      |      | С        |      |       | С        |     |      | С        |     |
| Queue Length 50th (m)  | 18.8 | 55.4  | 1.4  | 16.5 | 36.5     | 0.0  | 12.0  | 36.3     |     | 13.8 | 93.4     |     |
| Queue Length 95th (m)  | 28.1 | 64.0  | 14.3 | 25.2 | 44.4     | 0.0  | #33.5 | 46.7     |     | 25.0 | 104.5    |     |
| Internal Link Dist (m) |      | 434.3 |      |      | 86.3     |      |       | 196.1    |     |      | 187.9    |     |
| Turn Bay Length (m)    | 30.0 |       | 50.0 | 30.0 |          | 30.0 | 90.0  |          |     | 75.0 |          |     |
| Base Capacity (vph)    | 305  | 1077  | 618  | 234  | 1077     | 539  | 215   | 1863     |     | 378  | 1931     |     |
| Starvation Cap Reductn | 0    | 0     | 0    | 0    | 0        | 0    | 0     | 0        |     | 0    | 0        |     |
| Spillback Cap Reductn  | 0    | 0     | 0    | 0    | 0        | 0    | 0     | 0        |     | 0    | 0        |     |
| Storage Cap Reductn    | 0    | 0     | 0    | 0    | 0        | 0    | 0     | 0        |     | 0    | 0        |     |
| Reduced v/c Ratio      | 0.49 | 0.57  | 0.36 | 0.56 | 0.40     | 0.06 | 0.60  | 0.41     |     | 0.39 | 0.77     |     |

### Intersection Summary

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77 Intersection Signal Delay: 27.3 Intersection Capacity Utilization 71.8%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                                   | ۶     | <b>→</b> | •       | •     | +     | •    | •     | <b>†</b>   | <b>/</b> | <b>/</b> | <b>+</b> | -√      |
|-----------------------------------|-------|----------|---------|-------|-------|------|-------|------------|----------|----------|----------|---------|
| Lane Group                        | EBL   | EBT      | EBR     | WBL   | WBT   | WBR  | NBL   | NBT        | NBR      | SBL      | SBT      | SBR     |
| Lane Configurations               | ሻ     | <b></b>  | 7       | ሻ     | f)    |      | ሻ     | <b>↑</b> ↑ |          | ሻ        | <b>^</b> | 7       |
| Traffic Volume (vph)              | 160   | 84       | 407     | 7     | 48    | 4    | 322   | 700        | 21       | 13       | 1064     | 151     |
| Future Volume (vph)               | 160   | 84       | 407     | 7     | 48    | 4    | 322   | 700        | 21       | 13       | 1064     | 151     |
| Ideal Flow (vphpl)                | 1800  | 1800     | 1800    | 1800  | 1800  | 1800 | 1800  | 1800       | 1800     | 1800     | 1800     | 1800    |
| Storage Length (m)                | 40.0  |          | 0.0     | 10.0  |       | 0.0  | 35.0  |            | 60.0     | 45.0     |          | 0.0     |
| Storage Lanes                     | 1     |          | 1       | 1     |       | 0    | 1     |            | 0        | 1        |          | 1       |
| Taper Length (m)                  | 23.0  |          |         | 10.0  |       | -    | 25.0  |            |          | 35.0     |          |         |
| Lane Util. Factor                 | 1.00  | 1.00     | 1.00    | 1.00  | 1.00  | 1.00 | 1.00  | 0.95       | 0.95     | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor                   | 0.99  |          | ,,,,,   |       | 1.00  |      |       |            |          |          |          | 0.96    |
| Frt                               |       |          | 0.850   |       | 0.988 |      |       | 0.996      |          |          |          | 0.850   |
| Flt Protected                     | 0.950 |          |         | 0.950 |       |      | 0.950 |            |          | 0.950    |          |         |
| Satd. Flow (prot)                 | 1679  | 1767     | 1502    | 1647  | 1709  | 0    | 1679  | 3344       | 0        | 1679     | 3357     | 1502    |
| Flt Permitted                     | 0.567 |          |         | 0.693 |       |      | 0.077 | •••        | •        | 0.333    |          |         |
| Satd. Flow (perm)                 | 993   | 1767     | 1502    | 1201  | 1709  | 0    | 136   | 3344       | 0        | 588      | 3357     | 1437    |
| Right Turn on Red                 | 000   | 1101     | Yes     | 1201  | 1700  | Yes  | 100   | 0011       | Yes      | 000      | 0001     | Yes     |
| Satd. Flow (RTOR)                 |       |          | 416     |       | 4     | 100  |       | 4          | 100      |          |          | 141     |
| Link Speed (k/h)                  |       | 50       | 110     |       | 50    |      |       | 50         |          |          | 50       |         |
| Link Distance (m)                 |       | 105.7    |         |       | 332.1 |      |       | 329.7      |          |          | 294.1    |         |
| Travel Time (s)                   |       | 7.6      |         |       | 23.9  |      |       | 23.7       |          |          | 21.2     |         |
| Confl. Peds. (#/hr)               | 9     | 7.0      |         |       | 20.0  | 9    | 23    | 20.1       |          |          | 21.2     | 23      |
| Peak Hour Factor                  | 0.85  | 0.85     | 0.85    | 0.85  | 0.85  | 0.85 | 0.85  | 0.85       | 0.85     | 0.85     | 0.85     | 0.85    |
| Heavy Vehicles (%)                | 3%    | 3%       | 3%      | 5%    | 5%    | 5%   | 3%    | 3%         | 3%       | 3%       | 3%       | 3%      |
| Adj. Flow (vph)                   | 188   | 99       | 479     | 8     | 56    | 5    | 379   | 824        | 25       | 15       | 1252     | 178     |
| Shared Lane Traffic (%)           | 100   | 33       | 413     | Ü     | 30    | J    | 313   | 024        | 20       | 10       | 1202     | 170     |
| Lane Group Flow (vph)             | 188   | 99       | 479     | 8     | 61    | 0    | 379   | 849        | 0        | 15       | 1252     | 178     |
| Turn Type                         | pm+pt | NA       | Perm    | pm+pt | NA    | U    | pm+pt | NA         | U        | Perm     | NA       | Perm    |
| Protected Phases                  | 7     | 4        | i Giiii | 3     | 8     |      | 5     | 2          |          | I GIIII  | 6        | I GIIII |
| Permitted Phases                  | 4     | 7        | 4       | 8     | 0     |      | 2     |            |          | 6        | U        | 6       |
| Detector Phase                    | 7     | 4        | 4       | 3     | 8     |      | 5     | 2          |          | 6        | 6        | 6       |
| Switch Phase                      | 1     | 7        | 7       | 3     | 0     |      | J     |            |          | U        | U        | U       |
| Minimum Initial (s)               | 7.0   | 10.0     | 10.0    | 7.0   | 10.0  |      | 7.0   | 15.0       |          | 15.0     | 15.0     | 15.0    |
| Minimum Split (s)                 | 11.0  | 14.5     | 14.5    | 11.0  | 36.5  |      | 11.0  | 19.5       |          | 30.5     | 30.5     | 30.5    |
| Total Split (s)                   | 11.0  | 36.5     | 36.5    | 11.0  | 36.5  |      | 24.0  | 72.5       |          | 48.5     | 48.5     | 48.5    |
| Total Split (%)                   | 9.2%  | 30.4%    | 30.4%   | 9.2%  | 30.4% |      | 20.0% | 60.4%      |          | 40.4%    | 40.4%    | 40.4%   |
|                                   | 7.0   | 32.0     | 32.0    | 7.0   | 32.0  |      | 20.0% | 68.0       |          | 44.0     | 44.0     | 44.0    |
| Maximum Green (s) Yellow Time (s) | 3.0   | 3.5      | 3.5     | 3.0   | 3.5   |      | 3.0   | 3.5        |          | 3.5      | 3.5      | 3.5     |
| All-Red Time (s)                  | 1.0   | 1.0      | 1.0     | 1.0   | 1.0   |      | 1.0   | 1.0        |          | 1.0      | 1.0      |         |
| , ,                               | 0.0   |          | 0.0     |       | 0.0   |      | 0.0   | 0.0        |          | 0.0      |          | 1.0     |
| Lost Time Adjust (s)              |       | 0.0      |         | 0.0   |       |      |       |            |          |          | 0.0      | 0.0     |
| Total Lost Time (s)               | 4.0   | 4.5      | 4.5     | 4.0   | 4.5   |      | 4.0   | 4.5        |          | 4.5      | 4.5      | 4.5     |
| Lead/Lag                          | Lead  | Lag      | Lag     | Lead  | Lag   |      | Lead  |            |          | Lag      | Lag      | Lag     |
| Lead-Lag Optimize?                | Yes   | Yes      | Yes     | Yes   | Yes   |      | Yes   | 4.0        |          | Yes      | Yes      | Yes     |
| Vehicle Extension (s)             | 4.0   | 4.0      | 4.0     | 4.0   | 4.0   |      | 4.0   | 4.0        |          | 4.0      | 4.0      | 4.0     |
| Recall Mode                       | None  | None     | None    | None  | None  |      | None  | C-Max      |          | C-Max    | C-Max    | C-Max   |
| Walk Time (s)                     |       |          |         |       | 10.0  |      |       |            |          | 10.0     | 10.0     | 10.0    |
| Flash Dont Walk (s)               |       |          |         |       | 22.0  |      |       |            |          | 16.0     | 16.0     | 16.0    |
| Pedestrian Calls (#/hr)           | 00.0  | 04.4     | 04.4    | 00.0  | 9     |      | 07.0  | 07.4       |          | 15       | 15       | 15      |
| Act Effct Green (s)               | 23.3  | 21.4     | 21.4    | 20.2  | 14.8  |      | 87.9  | 87.4       |          | 51.3     | 51.3     | 51.3    |
| Actuated g/C Ratio                | 0.19  | 0.18     | 0.18    | 0.17  | 0.12  |      | 0.73  | 0.73       |          | 0.43     | 0.43     | 0.43    |
| v/c Ratio                         | 0.80  | 0.31     | 0.79    | 0.04  | 0.28  |      | 0.74  | 0.35       |          | 0.06     | 0.87     | 0.26    |

## 8: Broad Street & Dewdney Avenue

|                        | ۶    | <b>→</b> | •    | •    | ←     | •   | 4      | <b>†</b> | ~   | -    | ļ      | 4    |
|------------------------|------|----------|------|------|-------|-----|--------|----------|-----|------|--------|------|
| Lane Group             | EBL  | EBT      | EBR  | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL  | SBT    | SBR  |
| Control Delay          | 66.2 | 43.3     | 16.9 | 32.0 | 45.1  |     | 39.2   | 7.9      |     | 23.6 | 40.2   | 7.5  |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0  | 0.0    | 0.0  |
| Total Delay            | 66.2 | 43.3     | 16.9 | 32.0 | 45.1  |     | 39.2   | 7.9      |     | 23.6 | 40.2   | 7.5  |
| LOS                    | Е    | D        | В    | С    | D     |     | D      | Α        |     | С    | D      | Α    |
| Approach Delay         |      | 32.4     |      |      | 43.6  |     |        | 17.6     |     |      | 36.0   |      |
| Approach LOS           |      | С        |      |      | D     |     |        | В        |     |      | D      |      |
| Queue Length 50th (m)  | 41.2 | 20.6     | 12.9 | 1.6  | 12.9  |     | 62.2   | 30.5     |     | 2.0  | 137.2  | 5.0  |
| Queue Length 95th (m)  | 46.9 | 30.7     | 36.2 | 4.3  | 19.8  |     | #136.0 | 67.0     |     | 6.9  | #185.5 | 18.0 |
| Internal Link Dist (m) |      | 81.7     |      |      | 308.1 |     |        | 305.7    |     |      | 270.1  |      |
| Turn Bay Length (m)    | 40.0 |          |      | 10.0 |       |     | 35.0   |          |     | 45.0 |        |      |
| Base Capacity (vph)    | 236  | 471      | 705  | 228  | 458   |     | 512    | 2435     |     | 250  | 1433   | 694  |
| Starvation Cap Reductn | 0    | 0        | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Storage Cap Reductn    | 0    | 0        | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Reduced v/c Ratio      | 0.80 | 0.21     | 0.68 | 0.04 | 0.13  |     | 0.74   | 0.35     |     | 0.06 | 0.87   | 0.26 |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow, Master Intersection

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 28.9 Intersection LOS: C
Intersection Capacity Utilization 76.7% ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

| lutous action                 |        |      |      |         |      |       |        |       |      |        |      |      |
|-------------------------------|--------|------|------|---------|------|-------|--------|-------|------|--------|------|------|
| Intersection Int Delay, s/veh | 1.3    |      |      |         |      |       |        |       |      |        |      |      |
| Movement                      | EBL    | EBT  | EBR  | WBL     | WBT  | WBR   | NBI    | . NBT | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations           | ሻ      | ħβ   |      | *       | ħβ   |       |        | 4     |      |        | 4    |      |
| Traffic Vol, veh/h            | 27     | 703  | 32   | 59      | 484  | 15    | •      |       | 26   | 4      | 2    | 21   |
| Future Vol, veh/h             | 27     | 703  | 32   | 59      | 484  | 15    | ,      |       | 26   | 4      | 2    | 21   |
| Conflicting Peds, #/hr        | 0      | 0    | 0    | 0       | 0    | 0     | (      |       | 0    | 0      | 0    | 0    |
| Sign Control                  | Free   | Free | Free | Free    | Free | Free  | Stop   |       | Stop | Stop   | Stop | Stop |
| RT Channelized                | -      | _    | None | _       | _    | None  |        |       | None | -      | _    | None |
| Storage Length                | 200    | -    | -    | 250     | -    | -     |        |       | -    | -      | -    | -    |
| Veh in Median Storage, #      |        | 0    | _    | -       | 0    | _     |        | . 0   | _    | -      | 0    | _    |
| Grade, %                      | _      | 0    | _    | _       | 0    | _     |        | - 0   | _    | -      | 0    | _    |
| Peak Hour Factor              | 81     | 81   | 81   | 81      | 81   | 81    | 8′     |       | 81   | 81     | 81   | 81   |
| Heavy Vehicles, %             | 3      | 3    | 3    | 3       | 3    | 3     | 3      |       | 3    | 3      | 3    | 3    |
| Mymt Flow                     | 33     | 868  | 40   | 73      | 598  | 19    | ,      |       | 32   | 5      | 2    | 26   |
| WWW.CTIOW                     | 00     | 000  | 10   | 70      | 000  | 10    |        | _     | 02   | Ū      | _    | 20   |
| Major/Minor                   | Major1 |      |      | Major2  |      |       | Minor1 |       |      | Minor2 |      |      |
| Conflicting Flow All          | 616    | 0    | 0    | 907     | 0    | 0     | 1400   | 1716  | 454  | 1254   | 1726 | 308  |
| Stage 1                       | -      | _    | -    | -       | -    | -     | 954    |       | _    | 752    | 752  | -    |
| Stage 2                       | _      | -    | _    | _       | -    | -     | 446    |       | _    | 502    | 974  | -    |
| Critical Hdwy                 | 4.16   | _    | -    | 4.16    | -    | -     | 7.56   |       | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1           | -      | -    | _    | -       | -    | -     | 6.56   |       | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2           | -      | _    | _    | _       | _    | _     | 6.56   |       | _    | 6.56   | 5.56 | _    |
| Follow-up Hdwy                | 2.23   | _    | _    | 2.23    | _    | _     | 3.53   |       | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver            | 953    | _    | _    | 740     | _    | _     | 99     |       | 550  | 127    | 87   | 685  |
| Stage 1                       | -      | _    | _    | -       | _    | _     | 276    |       | -    | 366    | 414  | -    |
| Stage 2                       | -      | _    | _    | _       | _    | _     | 559    |       | _    | 517    | 326  | -    |
| Platoon blocked, %            |        | _    | _    |         | _    | _     | 000    |       |      | 011    | 020  |      |
| Mov Cap-1 Maneuver            | 953    | _    | _    | 740     | _    | -     | 84     | . 77  | 550  | 105    | 76   | 685  |
| Mov Cap-2 Maneuver            | -      | _    | _    |         | _    | _     | 84     |       | -    | 105    | 76   | -    |
| Stage 1                       | -      | _    | _    | _       | _    | _     | 266    |       | _    | 353    | 373  | _    |
| Stage 2                       | _      | _    | _    | _       |      | _     | 482    |       | _    | 466    | 315  | _    |
| Oldgo 2                       |        |      |      |         |      |       | 102    | . 000 |      | 100    | 010  |      |
| Approach                      | EB     |      |      | WB      |      |       | NE     | }     |      | SB     |      |      |
| HCM Control Delay, s          | 0.3    |      |      | 1.1     |      |       | 16.8   | }     |      | 19.4   |      |      |
| HCM LOS                       | 0.0    |      |      |         |      |       | (      |       |      | C      |      |      |
| Minor Lane/Major Mvmt         | NBLn1  | EBL  | EBT  | EBR WBL | WBT  | WBR : | SBLn1  |       |      |        |      |      |
| Capacity (veh/h)              | 341    | 953  | _    | - 740   | -    | -     | 284    |       |      |        |      |      |
| HCM Lane V/C Ratio            | 0.105  |      | _    | - 0.098 | _    |       | 0.117  |       |      |        |      |      |
| HCM Control Delay (s)         | 16.8   | 8.9  | _    | - 10.4  | _    | _     |        |       |      |        |      |      |
| HCM Lane LOS                  | C      | Α    | _    | - B     | _    | _     | C      |       |      |        |      |      |
| HCM 95th %tile Q(veh)         | 0.3    | 0.1  | _    | - 0.3   | -    | _     | 0.4    |       |      |        |      |      |

| Literatura                    |        |            |      |         |       |      |       |       |      |      |        |      |      |
|-------------------------------|--------|------------|------|---------|-------|------|-------|-------|------|------|--------|------|------|
| Intersection Int Delay, s/veh | 0.8    |            |      |         |       |      |       |       |      |      |        |      |      |
|                               |        | - CDT      | EDD  | W/DI    | MOT   | WDD  |       | NIDI  | NDT  | NDD  | ODI    | ODT  | 000  |
| Movement                      | EBL    | EBT        | EBR  | WBI     |       | WBR  |       | NBL   | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations           | 20     | <b>€1}</b> | 4    |         | €Î₽   | 40   |       | 4     | 4    |      | 0      | - ♣  | 40   |
| Traffic Vol, veh/h            | 30     | 702        | 1    |         | 544   | 16   |       | 1     | 1    | 1    | 8      | 1    | 13   |
| Future Vol, veh/h             | 30     | 702        | 1    | •       |       | 16   |       | 1     | 1    | 1    | 8      | 1    | 13   |
| Conflicting Peds, #/hr        | 0      | 0          | 0    |         | 0     | 0    |       | 0     | 0    | 0    | 0      | 0    | 0    |
| Sign Control                  | Free   | Free       | Free | Free    |       | Free |       | Stop  | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized                | -      | -          | None |         |       | None |       | -     | -    | None | -      | -    | None |
| Storage Length                | -      | -          | -    |         |       | -    |       | -     | -    | -    | -      | -    | -    |
| Veh in Median Storage, #      | -      | 0          | -    |         | - 0   | -    |       | -     | 0    | -    | -      | 0    | -    |
| Grade, %                      | -      | 0          | -    |         | - 0   | -    |       | -     | 0    | -    | -      | 0    | -    |
| Peak Hour Factor              | 81     | 81         | 81   | 8       |       | 81   |       | 81    | 81   | 81   | 81     | 81   | 81   |
| Heavy Vehicles, %             | 3      | 3          | 3    |         | 3     | 3    |       | 3     | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                     | 37     | 867        | 1    | •       | 1 672 | 20   |       | 1     | 1    | 1    | 10     | 1    | 16   |
|                               |        |            |      |         |       |      |       |       |      |      |        |      |      |
| Major/Minor                   | Major1 |            |      | Major   |       |      |       | inor1 |      |      | Minor2 |      |      |
| Conflicting Flow All          | 691    | 0          | 0    | 868     | 3 0   | 0    |       | 1280  | 1635 | 434  | 1192   | 1626 | 346  |
| Stage 1                       | -      | -          | -    |         |       | -    |       | 941   | 941  | -    | 684    | 684  | -    |
| Stage 2                       | -      | -          | -    |         |       | -    |       | 339   | 694  | -    | 508    | 942  | -    |
| Critical Hdwy                 | 4.16   | -          | -    | 4.16    | ) -   | -    |       | 7.56  | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1           | -      | -          | -    |         |       | -    |       | 6.56  | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2           | -      | -          | -    |         |       | -    |       | 6.56  | 5.56 | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy                | 2.23   | -          | -    | 2.23    | } -   | -    |       | 3.53  | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver            | 893    | -          | -    | 76      | 5 -   | -    |       | 122   | 99   | 567  | 142    | 100  | 647  |
| Stage 1                       | -      | -          | -    |         |       | -    |       | 281   | 338  | -    | 402    | 445  | -    |
| Stage 2                       | -      | -          | -    |         |       | -    |       | 646   | 440  | -    | 513    | 337  | -    |
| Platoon blocked, %            |        | -          | -    |         | -     | -    |       |       |      |      |        |      |      |
| Mov Cap-1 Maneuver            | 893    | -          | -    | 76      | 5 -   | -    |       | 110   | 91   | 567  | 131    | 92   | 647  |
| Mov Cap-2 Maneuver            | -      | -          | -    |         |       | -    |       | 110   | 91   | -    | 131    | 92   | -    |
| Stage 1                       | -      | -          | -    |         |       | -    |       | 259   | 311  | -    | 370    | 444  | -    |
| Stage 2                       | -      | -          | -    |         |       | -    |       | 627   | 439  | -    | 469    | 310  | -    |
|                               |        |            |      |         |       |      |       |       |      |      |        |      |      |
| Approach                      | EB     |            |      | WE      | 3     |      |       | NB    |      |      | SB     |      |      |
| HCM Control Delay, s          | 0.7    |            |      | (       | )     |      |       | 32    |      |      | 22     |      |      |
| HCM LOS                       |        |            |      |         |       |      |       | D     |      |      | С      |      |      |
|                               |        |            |      |         |       |      |       |       |      |      |        |      |      |
| Minor Lane/Major Mvmt         | NBLn1  | EBL        | EBT  | EBR WBI | _ WBT | WBR  | SBLn1 |       |      |      |        |      |      |
| Capacity (veh/h)              | 137    | 893        | -    | - 76    |       | -    | 239   |       |      |      |        |      |      |
| HCM Lane V/C Ratio            |        | 0.041      | -    | - 0.002 |       | -    | 0.114 |       |      |      |        |      |      |
| HCM Control Delay (s)         | 32     | 9.2        | 0.3  | - 9.7   |       | -    | 22    |       |      |      |        |      |      |
| HCM Lane LOS                  | D      | A          | A    | - /     |       | _    | C     |       |      |      |        |      |      |
| HCM 95th %tile Q(veh)         | 0.1    | 0.1        | -    | - (     |       |      | 0.4   |       |      |      |        |      |      |

# 4: Cornwall Street & Dewdney Avenue

| Intersection             |            |       |      |         |      |       |       |        |          |       |        |               |      |
|--------------------------|------------|-------|------|---------|------|-------|-------|--------|----------|-------|--------|---------------|------|
| Int Delay, s/veh         | 0.4        |       |      |         |      |       |       |        |          |       |        |               |      |
| Movement                 | EBL        | EBT   | EBR  | WBL     | WBT  | WBR   | N     | BL     | NBT      | NBR   | SBL    | SBT           | SBR  |
| Lane Configurations      | LDL        | 47    | LDIX | WDL     | 4P   | WDIX  | IN    | DL     |          | INDIX | JDL    |               | JUIN |
| Traffic Vol, veh/h       | 15         | 696   | 0    | 0       | 548  | 8     |       | 0      | <b>4</b> | 0     | 4      | <b>↔</b><br>0 | 13   |
| Future Vol, veh/h        | 15         | 696   | 0    | 0       | 548  | 8     |       | 0      | 0        | 0     | 4      | 0             | 13   |
| Conflicting Peds, #/hr   | 0          | 0     | 0    | 0       | 0    | 0     |       | 0      | 0        | 0     | 0      | 0             | 0    |
| Sign Control             | Free       | Free  | Free | Free    | Free | Free  | St    |        | Stop     | Stop  | Stop   | Stop          | Stop |
| RT Channelized           | -          | -     | None | -       | -    | None  | 0.    | -<br>- | -        | None  | -<br>- | -<br>-        | None |
| Storage Length           | _          | _     | -    | _       | _    | -     |       | _      | _        | -     | _      | _             | -    |
| Veh in Median Storage, # | ! <u>-</u> | 0     | _    | -       | 0    | -     |       | _      | 0        | -     | -      | 0             | _    |
| Grade, %                 | _          | 0     | _    | -       | 0    | _     |       | _      | 0        | _     | -      | 0             | _    |
| Peak Hour Factor         | 81         | 81    | 81   | 81      | 81   | 81    |       | 81     | 81       | 81    | 81     | 81            | 81   |
| Heavy Vehicles, %        | 3          | 3     | 3    | 3       | 3    | 3     |       | 3      | 3        | 3     | 3      | 3             | 3    |
| Mvmt Flow                | 19         | 859   | 0    | 0       | 677  | 10    |       | 0      | 0        | 0     | 5      | 0             | 16   |
|                          |            |       |      |         |      |       |       |        |          | -     |        |               |      |
| Major/Minor              | Major1     |       |      | Major2  |      |       | Mino  | or1    |          |       | Minor2 |               |      |
| Conflicting Flow All     | 686        | 0     | 0    | 859     | 0    | 0     |       |        | 1582     | 430   | 1148   | 1577          | 343  |
| Stage 1                  | -          | -     | -    | -       | -    | -     |       | 96     | 896      | -     | 681    | 681           | -    |
| Stage 2                  | _          | _     | _    | _       | _    | _     |       | 38     | 686      | _     | 467    | 896           | _    |
| Critical Hdwy            | 4.16       | -     | _    | 4.16    | -    | -     |       | 56     | 6.56     | 6.96  | 7.56   | 6.56          | 6.96 |
| Critical Hdwy Stg 1      | -          | _     | _    | -       | _    | _     |       | 56     | 5.56     | -     | 6.56   | 5.56          | -    |
| Critical Hdwy Stg 2      | -          | -     | -    | -       | -    | -     |       | 56     | 5.56     | _     | 6.56   | 5.56          | _    |
| Follow-up Hdwy           | 2.23       | _     | -    | 2.23    | -    | -     |       | 53     | 4.03     | 3.33  | 3.53   | 4.03          | 3.33 |
| Pot Cap-1 Maneuver       | 897        | -     | -    | 772     | -    | -     |       | 32     | 107      | 571   | 153    | 107           | 650  |
| Stage 1                  | -          | -     | -    | -       | -    | -     | 2     | 99     | 355      | -     | 404    | 446           | -    |
| Stage 2                  | -          | -     | -    | -       | -    | -     | 6     | 47     | 444      | -     | 543    | 355           | -    |
| Platoon blocked, %       |            | -     | -    |         | -    | -     |       |        |          |       |        |               |      |
| Mov Cap-1 Maneuver       | 897        | -     | -    | 772     | -    | -     | 1     | 25     | 103      | 571   | 148    | 103           | 650  |
| Mov Cap-2 Maneuver       | -          | -     | -    | -       | -    | -     | 1     | 25     | 103      | -     | 148    | 103           | -    |
| Stage 1                  | -          | -     | -    | -       | -    | -     | 2     | 87     | 340      | -     | 387    | 446           | -    |
| Stage 2                  | -          | -     | -    | -       | -    | -     | 6     | 31     | 444      | -     | 521    | 340           | -    |
|                          |            |       |      |         |      |       |       |        |          |       |        |               |      |
| Approach                 | EB         |       |      | WB      |      |       | ı     | ΝB     |          |       | SB     |               |      |
| HCM Control Delay, s     | 0.4        |       |      | 0       |      |       |       | 0      |          |       | 15.6   |               |      |
| HCM LOS                  |            |       |      | •       |      |       |       | Ä      |          |       | C      |               |      |
|                          |            |       |      |         |      |       |       |        |          |       |        |               |      |
| Minor Lane/Major Mvmt    | NBLn1      | EBL   | EBT  | EBR WBL | WBT  | WBR S | SBLn1 |        |          |       |        |               |      |
| Capacity (veh/h)         | -          | 897   | -    | - 772   | -    | -     | 361   |        |          |       |        |               |      |
| HCM Lane V/C Ratio       | -          | 0.021 | -    |         | -    | -     | 0.058 |        |          |       |        |               |      |
| HCM Control Delay (s)    | 0          | 9.1   | 0.2  | - 0     | -    | -     | 15.6  |        |          |       |        |               |      |
| HCM Lane LOS             | Α          | Α     | Α    | - A     | -    | -     | С     |        |          |       |        |               |      |
| HCM 95th %tile Q(veh)    | -          | 0.1   | -    | - 0     | -    | -     | 0.2   |        |          |       |        |               |      |
| , ,                      |            |       |      |         |      |       |       |        |          |       |        |               |      |

| Intersection             |        |      |     |          |            |      |        |      |  |
|--------------------------|--------|------|-----|----------|------------|------|--------|------|--|
| Int Delay, s/veh         | 0.4    |      |     |          |            |      |        |      |  |
| Movement                 | EBL    | EBT  |     |          | WBT        | WBR  | SBL    | SBR  |  |
| Lane Configurations      |        | 414  |     |          | <b>↑</b> ↑ |      | ¥      |      |  |
| Traffic Vol, veh/h       | 17     | 683  |     |          | 535        |      | 2      | 21   |  |
| Future Vol, veh/h        | 17     | 683  |     |          | 535        | 7    | 2      | 21   |  |
| Conflicting Peds, #/hr   | 0      | 0    |     |          | 0          | 0    | 0      | 0    |  |
| Sign Control             | Free   | Free |     |          | Free       | Free | Stop   | Stop |  |
| RT Channelized           | -      |      |     |          | -          |      | -      | None |  |
| Storage Length           | -      | -    |     |          | _          | -    | 0      | -    |  |
| Veh in Median Storage, # | -      | 0    |     |          | 0          | -    | 0      | _    |  |
| Grade, %                 | -      | 0    |     |          | 0          | -    | 0      | _    |  |
| Peak Hour Factor         | 81     | 81   |     |          | 81         | 81   | 81     | 81   |  |
| Heavy Vehicles, %        | 3      | 3    |     |          | 3          | 3    | 3      | 3    |  |
| Mvmt Flow                | 21     | 843  |     |          | 660        | 9    | 2      | 26   |  |
|                          |        | 3.0  |     |          | - 000      |      |        | 20   |  |
| Major/Minor              | Major1 |      |     |          | Major2     |      | Minor2 |      |  |
| Conflicting Flow All     | 669    | 0    |     |          | -          | 0    | 1129   | 335  |  |
| Stage 1                  | -      | -    |     |          | _          | -    | 665    | -    |  |
| Stage 2                  | _      | _    |     |          | _          | _    | 464    | _    |  |
| Critical Hdwy            | 4.16   | _    |     |          | _          | _    | 6.86   | 6.96 |  |
| Critical Hdwy Stg 1      | 7.10   | _    |     |          | _          | _    | 5.86   | 0.50 |  |
| Critical Hdwy Stg 2      |        |      |     |          |            |      | 5.86   |      |  |
| Follow-up Hdwy           | 2.23   | -    |     |          | -          | -    | 3.53   | 3.33 |  |
| Pot Cap-1 Maneuver       | 910    | _    |     |          | -          | _    | 196    | 658  |  |
| Stage 1                  | -      | -    |     |          | -          | -    | 470    | 030  |  |
| Stage 2                  | -      | -    |     |          | -          | -    | 596    | -    |  |
| Platoon blocked, %       | -      | _    |     |          | _          | •    | 530    | -    |  |
| Mov Cap-1 Maneuver       | 910    | -    |     |          | -          | -    | 188    | 658  |  |
| Mov Cap-1 Maneuver       | 310    | _    |     |          | _          | •    | 188    | 030  |  |
| Stage 1                  | -      | -    |     |          | -          | -    | 470    | -    |  |
| Stage 2                  | -      | _    |     |          | _          | _    | 570    | -    |  |
| Olaye Z                  | -      | -    |     |          | -          | _    | 370    | -    |  |
| Approach                 | EB     |      |     |          | WB         |      | SB     |      |  |
| HCM Control Delay, s     | 0.4    |      |     |          | 0          |      | 12     |      |  |
| HCM LOS                  | 0.1    |      |     |          | Ū          |      | .2     |      |  |
|                          |        |      |     |          |            |      |        |      |  |
| Minor Lane/Major Mvmt    | EBL    | EBT  | WBT | WBR SBLr | 11         |      |        |      |  |
| Capacity (veh/h)         | 910    | -    | _   | - 54     | l1         |      |        |      |  |
| HCM Lane V/C Ratio       | 0.023  | -    | -   | - 0.05   |            |      |        |      |  |
| HCM Control Delay (s)    | 9      | 0.2  | -   |          | 12         |      |        |      |  |
| HCM Lane LOS             | A      | A    | -   |          | В          |      |        |      |  |
| HCM 95th %tile Q(veh)    | 0.1    | -    | -   |          | .2         |      |        |      |  |
|                          |        |      |     |          |            |      |        |      |  |

| Intersection             |          |      |     |       |          |    |      |        |      |  |
|--------------------------|----------|------|-----|-------|----------|----|------|--------|------|--|
| Int Delay, s/veh         | 0.4      |      |     |       |          |    |      |        |      |  |
| Movement                 | EBL      | EBT  |     |       | WE       | ВТ | WBR  | SBL    | SBR  |  |
| Lane Configurations      |          | 414  |     |       | <b>↑</b> | L. |      | ¥/     |      |  |
| Traffic Vol, veh/h       | 9        | 676  |     |       | 5        |    | 5    | 1      | 31   |  |
| Future Vol, veh/h        | 9        | 676  |     |       | 5′       |    | 5    | 1      | 31   |  |
| Conflicting Peds, #/hr   | 0        | 0    |     |       |          | 0  | 0    | 0      | 0    |  |
| Sign Control             | Free     | Free |     |       | Fre      |    | Free | Stop   | Stop |  |
| RT Channelized           | -        | None |     |       |          | -  | None | -      | None |  |
| Storage Length           | _        | -    |     |       |          |    | -    | 0      | -    |  |
| Veh in Median Storage, # | <u>.</u> | 0    |     |       |          | 0  | _    | 0      | _    |  |
| Grade, %                 | _        | 0    |     |       |          | 0  | _    | 0      | -    |  |
| Peak Hour Factor         | 81       | 81   |     |       | 8        | 31 | 81   | 81     | 81   |  |
| Heavy Vehicles, %        | 3        | 3    |     |       | •        | 3  | 3    | 3      | 3    |  |
| Mvmt Flow                | 11       | 835  |     |       | 63       |    | 6    | 1      | 38   |  |
|                          | - 11     | 500  |     |       | 00       |    | 0    |        | 30   |  |
| Mai/Mi                   | M-!4     |      |     |       | M-!-     | ٠. |      | M: 0   |      |  |
| Major/Minor              | Major1   |      |     |       | Majo     | Z  |      | Minor2 | 0.40 |  |
| Conflicting Flow All     | 637      | 0    |     |       |          | -  | 0    | 1074   | 319  |  |
| Stage 1                  | -        | -    |     |       |          | -  | -    | 634    | -    |  |
| Stage 2                  | -        | -    |     |       |          | -  | -    | 440    | -    |  |
| Critical Hdwy            | 4.16     | -    |     |       |          | -  | -    | 6.86   | 6.96 |  |
| Critical Hdwy Stg 1      | -        | -    |     |       |          | -  | -    | 5.86   | -    |  |
| Critical Hdwy Stg 2      | -        | -    |     |       |          | -  | -    | 5.86   | -    |  |
| Follow-up Hdwy           | 2.23     | -    |     |       |          | -  | -    | 3.53   | 3.33 |  |
| Pot Cap-1 Maneuver       | 936      | -    |     |       |          | -  | -    | 213    | 674  |  |
| Stage 1                  | -        | -    |     |       |          | -  | -    | 488    | -    |  |
| Stage 2                  | -        | -    |     |       |          | -  | -    | 613    | -    |  |
| Platoon blocked, %       |          | -    |     |       |          | -  | -    |        |      |  |
| Mov Cap-1 Maneuver       | 936      | -    |     |       |          | -  | -    | 208    | 674  |  |
| Mov Cap-2 Maneuver       | -        | -    |     |       |          | -  | -    | 208    | -    |  |
| Stage 1                  | -        | -    |     |       |          | -  | -    | 488    | -    |  |
| Stage 2                  | -        | -    |     |       |          | -  | -    | 600    | -    |  |
|                          |          |      |     |       |          |    |      |        |      |  |
| Approach                 | EB       |      |     |       | W        | Β  |      | SB     |      |  |
| HCM Control Delay, s     | 0.2      |      |     |       |          | 0  |      | 11.1   |      |  |
| HCM LOS                  | 0.2      |      |     |       |          |    |      | В      |      |  |
|                          |          |      |     |       |          |    |      |        |      |  |
| NAL I /NA - ' - NA - '   | ED:      | CDT  | WET | WDDO  | DI 4     |    |      |        |      |  |
| Minor Lane/Major Mvmt    | EBL      | EBT  | WBT | WBR S |          |    |      |        |      |  |
| Capacity (veh/h)         | 936      | -    | -   | -     | 630      |    |      |        |      |  |
| HCM Lane V/C Ratio       | 0.012    | -    | -   |       | 0.063    |    |      |        |      |  |
| HCM Control Delay (s)    | 8.9      | 0.1  | -   |       | 11.1     |    |      |        |      |  |
| HCM Lane LOS             | A        | Α    | -   | -     | В        |    |      |        |      |  |
| HCM 95th %tile Q(veh)    | 0        | -    | -   | -     | 0.2      |    |      |        |      |  |

| Intersection             |        |      |     |       |       |       |      |        |        |  |
|--------------------------|--------|------|-----|-------|-------|-------|------|--------|--------|--|
| Int Delay, s/veh         | 0.5    |      |     |       |       |       |      |        |        |  |
| Movement                 | EBL    | EBT  |     |       | ١     | WBT   | WBR  | SBL    | SBR    |  |
| Lane Configurations      |        | 41   |     |       |       | ħβ    |      | ¥      |        |  |
| Traffic Vol, veh/h       | 27     | 650  |     |       |       | 498   | 23   | 1      | 18     |  |
| Future Vol, veh/h        | 27     | 650  |     |       |       | 498   | 23   | 1      | 18     |  |
| Conflicting Peds, #/hr   | 0      | 0    |     |       |       | 0     | 0    | 0      | 0      |  |
| Sign Control             | Free   | Free |     |       |       | Free  | Free | Stop   |        |  |
| RT Channelized           | -      | None |     |       |       | -     | None | -      | None   |  |
| Storage Length           | -      | _    |     |       |       | -     | _    | 0      | -      |  |
| Veh in Median Storage, # | -      | 0    |     |       |       | 0     | -    | 0      | -      |  |
| Grade, %                 | -      | 0    |     |       |       | 0     | _    | 0      | -      |  |
| Peak Hour Factor         | 81     | 81   |     |       |       | 81    | 81   | 81     | 81     |  |
| Heavy Vehicles, %        | 3      | 3    |     |       |       | 3     | 3    | 3      | 3      |  |
| Mvmt Flow                | 33     | 802  |     |       |       | 615   | 28   | 1      | 22     |  |
|                          |        |      |     |       |       | •     |      |        |        |  |
| Major/Minor              | Major1 |      |     |       | Ma    | ajor2 |      | Minor2 |        |  |
|                          | 643    | 0    |     |       | IVIC  | ajoiz | 0    | 1097   | 322    |  |
| Conflicting Flow All     | 043    | U    |     |       |       | -     |      | 629    | 322    |  |
| Stage 1                  | -      | -    |     |       |       | -     | -    | 468    | -      |  |
| Stage 2                  | 4.16   | _    |     |       |       | -     | -    |        | - 6.06 |  |
| Critical Hdwy            | 4.10   | -    |     |       |       | -     | -    | 6.86   | 6.96   |  |
| Critical Hdwy Stg 1      | -      | -    |     |       |       | -     | -    | 5.86   | -      |  |
| Critical Hdwy Stg 2      | - 0.00 | -    |     |       |       | -     | -    | 5.86   | - 2.22 |  |
| Follow-up Hdwy           | 2.23   | -    |     |       |       | -     | -    | 3.53   | 3.33   |  |
| Pot Cap-1 Maneuver       | 931    | -    |     |       |       | -     | -    | 206    | 671    |  |
| Stage 1                  | -      | -    |     |       |       | -     | -    | 491    | -      |  |
| Stage 2                  | -      | -    |     |       |       | -     | -    | 594    | -      |  |
| Platoon blocked, %       | 004    | -    |     |       |       | -     | -    | 400    | 074    |  |
| Mov Cap-1 Maneuver       | 931    | -    |     |       |       | -     | -    | 193    | 671    |  |
| Mov Cap-2 Maneuver       | -      | -    |     |       |       | -     | -    | 193    | -      |  |
| Stage 1                  | -      | -    |     |       |       | -     | -    | 491    | -      |  |
| Stage 2                  | -      | -    |     |       |       | -     | -    | 556    | -      |  |
|                          |        |      |     |       |       |       |      |        |        |  |
| Approach                 | EB     |      |     |       |       | WB    |      | SB     |        |  |
| HCM Control Delay, s     | 0.6    |      |     |       |       | 0     |      | 11.3   |        |  |
| HCM LOS                  |        |      |     |       |       |       |      | В      |        |  |
|                          |        |      |     |       |       |       |      |        |        |  |
| Minor Lane/Major Mvmt    | EBL    | EBT  | WBT | WBR S | BLn1  |       |      |        |        |  |
| Capacity (veh/h)         | 931    | -    | _   | -     | 594   |       |      |        |        |  |
| HCM Lane V/C Ratio       | 0.036  | -    | -   | - (   | 0.039 |       |      |        |        |  |
| HCM Control Delay (s)    | 9      | 0.3  | -   | -     | 11.3  |       |      |        |        |  |
| HCM Lane LOS             | Α      | Α    | -   | -     | В     |       |      |        |        |  |
| HCM 95th %tile Q(veh)    | 0.1    | -    | -   | -     | 0.1   |       |      |        |        |  |
| ` '                      |        |      |     |       |       |       |      |        |        |  |

|                                   | ۶     | <b>→</b>   | •       | •     | <b>←</b> | •       | 1           | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ               | 4    |
|-----------------------------------|-------|------------|---------|-------|----------|---------|-------------|----------|-------------|----------|-----------------|------|
| Lane Group                        | EBL   | EBT        | EBR     | WBL   | WBT      | WBR     | NBL         | NBT      | NBR         | SBL      | SBT             | SBR  |
| Lane Configurations               | ሻ     | <b>†</b> † | 7       | ሻ     | <b>^</b> | 7       | ሻ           | ተተኈ      |             | ሻ        | <del>ተ</del> ተኈ |      |
| Traffic Volume (vph)              | 144   | 436        | 140     | 261   | 557      | 96      | 236         | 1199     | 170         | 93       | 889             | 133  |
| Future Volume (vph)               | 144   | 436        | 140     | 261   | 557      | 96      | 236         | 1199     | 170         | 93       | 889             | 133  |
| Ideal Flow (vphpl)                | 1800  | 1800       | 1800    | 1800  | 1800     | 1800    | 1800        | 1800     | 1800        | 1800     | 1800            | 1800 |
| Storage Length (m)                | 30.0  |            | 50.0    | 30.0  |          | 30.0    | 90.0        |          | 0.0         | 75.0     |                 | 0.0  |
| Storage Lanes                     | 1     |            | 1       | 1     |          | 1       | 1           |          | 0           | 1        |                 | 0    |
| Taper Length (m)                  | 20.0  |            |         | 25.0  |          |         | 35.0        |          |             | 40.0     |                 | -    |
| Lane Util. Factor                 | 1.00  | 0.95       | 1.00    | 1.00  | 0.95     | 1.00    | 1.00        | 0.91     | 0.91        | 1.00     | 0.91            | 0.91 |
| Ped Bike Factor                   | 0.99  |            | 0.98    | 0.99  |          | 0.97    | 1.00        | 1.00     |             | 1.00     | 0.99            |      |
| Frt                               |       |            | 0.850   |       |          | 0.850   |             | 0.981    |             |          | 0.980           |      |
| Flt Protected                     | 0.950 |            |         | 0.950 |          |         | 0.950       |          |             | 0.950    |                 |      |
| Satd. Flow (prot)                 | 1695  | 3390       | 1517    | 1695  | 3390     | 1517    | 1695        | 4758     | 0           | 1695     | 4744            | 0    |
| Flt Permitted                     | 0.423 |            |         | 0.430 |          |         | 0.134       |          | •           | 0.100    |                 | J    |
| Satd. Flow (perm)                 | 750   | 3390       | 1480    | 763   | 3390     | 1479    | 238         | 4758     | 0           | 178      | 4744            | 0    |
| Right Turn on Red                 | 700   | 0000       | Yes     | 100   | 0000     | Yes     | 200         | 1700     | Yes         | 110      | .,              | Yes  |
| Satd. Flow (RTOR)                 |       |            | 152     |       |          | 139     |             | 25       | 100         |          | 25              | 100  |
| Link Speed (k/h)                  |       | 50         | 102     |       | 50       | 100     |             | 50       |             |          | 50              |      |
| Link Distance (m)                 |       | 458.3      |         |       | 110.3    |         |             | 220.1    |             |          | 211.9           |      |
| Travel Time (s)                   |       | 33.0       |         |       | 7.9      |         |             | 15.8     |             |          | 15.3            |      |
| Confl. Peds. (#/hr)               | 13    | 55.0       | 12      | 12    | 1.5      | 13      | 32          | 10.0     | 20          | 20       | 10.0            | 32   |
| Peak Hour Factor                  | 0.92  | 0.92       | 0.92    | 0.92  | 0.92     | 0.92    | 0.92        | 0.92     | 0.92        | 0.92     | 0.92            | 0.92 |
| Heavy Vehicles (%)                | 2%    | 2%         | 2%      | 2%    | 2%       | 2%      | 2%          | 2%       | 2%          | 2%       | 2%              | 2%   |
| Adj. Flow (vph)                   | 157   | 474        | 152     | 284   | 605      | 104     | 257         | 1303     | 185         | 101      | 966             | 145  |
| Shared Lane Traffic (%)           | 101   | 7/7        | 102     | 204   | 000      | 104     | 201         | 1303     | 100         | 101      | 300             | 140  |
| Lane Group Flow (vph)             | 157   | 474        | 152     | 284   | 605      | 104     | 257         | 1488     | 0           | 101      | 1111            | 0    |
| Turn Type                         | pm+pt | NA         | Perm    | pm+pt | NA       | Perm    | pm+pt       | NA       | U           | pm+pt    | NA              | U    |
| Protected Phases                  | 7     | 4          | i Giiii | 3     | 8        | i Giiii | 5           | 2        |             | 1        | 6               |      |
| Permitted Phases                  | 4     | 7          | 4       | 8     | Ü        | 8       | 2           |          |             | 6        | U               |      |
| Detector Phase                    | 7     | 4          | 4       | 3     | 8        | 8       | 5           | 2        |             | 1        | 6               |      |
| Switch Phase                      | 1     | 7          |         | 3     | Ü        | Ü       | 3           |          |             | '        | U               |      |
| Minimum Initial (s)               | 7.0   | 10.0       | 10.0    | 7.0   | 10.0     | 10.0    | 7.0         | 15.0     |             | 8.0      | 15.0            |      |
| Minimum Split (s)                 | 11.0  | 36.5       | 36.5    | 11.0  | 36.5     | 36.5    | 11.0        | 33.5     |             | 12.0     | 33.5            |      |
| Total Split (s)                   | 14.0  | 36.5       | 36.5    | 20.0  | 42.5     | 42.5    | 19.0        | 41.5     |             | 12.0     | 34.5            |      |
| Total Split (%)                   | 12.7% | 33.2%      | 33.2%   | 18.2% | 38.6%    | 38.6%   | 17.3%       | 37.7%    |             | 10.9%    | 31.4%           |      |
|                                   | 10.0  | 32.0       | 32.0    | 16.0  | 38.0     | 38.0    | 17.5%       | 37.7 %   |             | 8.0      | 30.0            |      |
| Maximum Green (s) Yellow Time (s) | 3.0   | 3.5        | 3.5     | 3.0   | 3.5      | 3.5     | 3.0         | 3.5      |             | 3.0      | 3.5             |      |
| ( )                               | 1.0   | 1.0        | 1.0     | 1.0   | 1.0      | 1.0     | 1.0         | 1.0      |             | 1.0      | 1.0             |      |
| All-Red Time (s)                  | 0.0   |            |         |       | 0.0      | 0.0     |             | 0.0      |             | 0.0      |                 |      |
| Lost Time Adjust (s)              |       | 0.0        | 0.0     | 0.0   |          |         | 0.0         |          |             |          | 0.0             |      |
| Total Lost Time (s)               | 4.0   | 4.5        | 4.5     | 4.0   | 4.5      | 4.5     | 4.0         | 4.5      |             | 4.0      | 4.5             |      |
| Lead/Lag                          | Lag   | Lag        | Lag     | Lead  | Lead     | Lead    | Lead        | Lag      |             | Lead     | Lag             |      |
| Lead-Lag Optimize?                | Yes   | Yes        | Yes     | Yes   | Yes      | Yes     | Yes         | Yes      |             | Yes      | Yes             |      |
| Vehicle Extension (s)             | 2.0   | 2.0        | 2.0     | 2.0   | 2.0      | 2.0     | 2.0         | 2.0      |             | 2.0      | 2.0             |      |
| Recall Mode                       | None  | None       | None    | None  | None     | None    | None        | C-Max    |             | None     | C-Max           |      |
| Walk Time (s)                     |       | 10.0       | 10.0    |       | 10.0     | 10.0    |             | 10.0     |             |          | 10.0            |      |
| Flash Dont Walk (s)               |       | 22.0       | 22.0    |       | 22.0     | 22.0    |             | 19.0     |             |          | 19.0            |      |
| Pedestrian Calls (#/hr)           | 00.0  | 10         | 10      | 05.0  | 10       | 10      | <b>50</b> 5 | 10       |             | 40.0     | 20              |      |
| Act Effct Green (s)               | 22.2  | 21.7       | 21.7    | 25.8  | 25.3     | 25.3    | 59.5        | 47.2     |             | 48.9     | 40.3            |      |
| Actuated g/C Ratio                | 0.20  | 0.20       | 0.20    | 0.23  | 0.23     | 0.23    | 0.54        | 0.43     |             | 0.44     | 0.37            |      |
| v/c Ratio                         | 0.61  | 0.71       | 0.37    | 0.90  | 0.77     | 0.23    | 0.78        | 0.72     |             | 0.53     | 0.63            |      |

### 1: Albert Street & Dewdney Avenue

|                        | ᄼ    | <b>→</b> | •    | •     | ←    | •    | •     | <b>†</b> | /   | -     | <b>↓</b> | 4   |
|------------------------|------|----------|------|-------|------|------|-------|----------|-----|-------|----------|-----|
| Lane Group             | EBL  | EBT      | EBR  | WBL   | WBT  | WBR  | NBL   | NBT      | NBR | SBL   | SBT      | SBR |
| Control Delay          | 52.1 | 46.7     | 7.7  | 70.2  | 46.5 | 3.4  | 37.5  | 29.3     |     | 29.5  | 31.8     |     |
| Queue Delay            | 0.0  | 0.0      | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0      |     | 0.0   | 0.0      |     |
| Total Delay            | 52.1 | 46.7     | 7.7  | 70.2  | 46.5 | 3.4  | 37.5  | 29.3     |     | 29.5  | 31.8     |     |
| LOS                    | D    | D        | Α    | Ε     | D    | Α    | D     | С        |     | С     | С        |     |
| Approach Delay         |      | 40.2     |      |       | 48.8 |      |       | 30.5     |     |       | 31.6     |     |
| Approach LOS           |      | D        |      |       | D    |      |       | С        |     |       | С        |     |
| Queue Length 50th (m)  | 30.3 | 51.0     | 0.0  | 56.5  | 64.5 | 0.0  | 29.7  | 91.6     |     | 9.8   | 70.7     |     |
| Queue Length 95th (m)  | 43.9 | 59.6     | 14.4 | #89.4 | 77.3 | 6.4  | #79.1 | #139.3   |     | #27.4 | 98.4     |     |
| Internal Link Dist (m) |      | 434.3    |      |       | 86.3 |      |       | 196.1    |     |       | 187.9    |     |
| Turn Bay Length (m)    | 30.0 |          | 50.0 | 30.0  |      | 30.0 | 90.0  |          |     | 75.0  |          |     |
| Base Capacity (vph)    | 257  | 986      | 538  | 314   | 1171 | 601  | 346   | 2054     |     | 191   | 1752     |     |
| Starvation Cap Reductn | 0    | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0     | 0        |     |
| Spillback Cap Reductn  | 0    | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0     | 0        |     |
| Storage Cap Reductn    | 0    | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0     | 0        |     |
| Reduced v/c Ratio      | 0.61 | 0.48     | 0.28 | 0.90  | 0.52 | 0.17 | 0.74  | 0.72     |     | 0.53  | 0.63     |     |

Intersection Summary

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 36.2 Intersection LOS: D
Intersection Capacity Utilization 84.7% ICU Level of Service E

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                         | ۶     | <b>→</b> | •     | •     | +     | •    | •     | †          | <i>&gt;</i> | <b>/</b> | <b></b>  | -√    |
|-------------------------|-------|----------|-------|-------|-------|------|-------|------------|-------------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ     | <b></b>  | 7     | ሻ     | 1>    |      | ሻ     | <b>↑</b> ↑ |             | ች        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 208   | 112      | 313   | 26    | 110   | 22   | 370   | 1386       | 21          | 16       | 987      | 160   |
| Future Volume (vph)     | 208   | 112      | 313   | 26    | 110   | 22   | 370   | 1386       | 21          | 16       | 987      | 160   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800  | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)      | 40.0  | , , , ,  | 0.0   | 10.0  |       | 0.0  | 35.0  |            | 60.0        | 45.0     |          | 0.0   |
| Storage Lanes           | 1     |          | 1     | 1     |       | 0    | 1     |            | 0           | 1        |          | 1     |
| Taper Length (m)        | 23.0  |          |       | 10.0  |       | -    | 25.0  |            |             | 35.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |       |       | 1.00  |      |       |            |             |          |          | 0.92  |
| Frt                     |       |          | 0.850 |       | 0.975 |      |       | 0.998      |             |          |          | 0.850 |
| Flt Protected           | 0.950 |          |       | 0.950 |       |      | 0.950 |            |             | 0.950    |          |       |
| Satd. Flow (prot)       | 1695  | 1784     | 1517  | 1695  | 1713  | 0    | 1695  | 3383       | 0           | 1695     | 3390     | 1517  |
| Flt Permitted           | 0.462 |          |       | 0.679 |       |      | 0.095 |            |             | 0.168    |          |       |
| Satd. Flow (perm)       | 822   | 1784     | 1517  | 1212  | 1713  | 0    | 170   | 3383       | 0           | 300      | 3390     | 1402  |
| Right Turn on Red       |       |          | Yes   |       |       | Yes  |       |            | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)       |       |          | 340   |       | 9     |      |       | 2          |             |          |          | 163   |
| Link Speed (k/h)        |       | 50       |       |       | 50    |      |       | 50         |             |          | 50       |       |
| Link Distance (m)       |       | 105.7    |       |       | 332.1 |      |       | 329.7      |             |          | 294.1    |       |
| Travel Time (s)         |       | 7.6      |       |       | 23.9  |      |       | 23.7       |             |          | 21.2     |       |
| Confl. Peds. (#/hr)     | 4     |          |       |       |       | 4    | 51    |            |             |          |          | 51    |
| Peak Hour Factor        | 0.92  | 0.92     | 0.92  | 0.92  | 0.92  | 0.92 | 0.92  | 0.92       | 0.92        | 0.92     | 0.92     | 0.92  |
| Heavy Vehicles (%)      | 2%    | 2%       | 2%    | 2%    | 3%    | 5%   | 2%    | 2%         | 2%          | 2%       | 2%       | 2%    |
| Adj. Flow (vph)         | 226   | 122      | 340   | 28    | 120   | 24   | 402   | 1507       | 23          | 17       | 1073     | 174   |
| Shared Lane Traffic (%) |       |          |       |       |       |      |       |            |             |          |          |       |
| Lane Group Flow (vph)   | 226   | 122      | 340   | 28    | 144   | 0    | 402   | 1530       | 0           | 17       | 1073     | 174   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA    |      | pm+pt | NA         |             | Perm     | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8     |      | 5     | 2          |             |          | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |       |      | 2     |            |             | 6        |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8     |      | 5     | 2          |             | 6        | 6        | 6     |
| Switch Phase            |       |          |       |       |       |      |       |            |             |          |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0  |      | 7.0   | 15.0       |             | 15.0     | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5  |      | 11.0  | 19.5       |             | 30.5     | 30.5     | 30.5  |
| Total Split (s)         | 11.0  | 36.5     | 36.5  | 11.0  | 36.5  |      | 23.0  | 62.5       |             | 39.5     | 39.5     | 39.5  |
| Total Split (%)         | 10.0% | 33.2%    | 33.2% | 10.0% | 33.2% |      | 20.9% | 56.8%      |             | 35.9%    | 35.9%    | 35.9% |
| Maximum Green (s)       | 7.0   | 32.0     | 32.0  | 7.0   | 32.0  |      | 19.0  | 58.0       |             | 35.0     | 35.0     | 35.0  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5   |      | 3.0   | 3.5        |             | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0   |      | 1.0   | 1.0        |             | 1.0      | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5   |      | 4.0   | 4.5        |             | 4.5      | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag   |      | Lead  |            |             | Lag      | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes   |      | Yes   |            |             | Yes      | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0        |             | 2.0      | 2.0      | 2.0   |
| Recall Mode             | None  | None     | None  | None  | None  |      | None  | C-Max      |             | C-Max    | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0  |      |       |            |             | 10.0     | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0  |      |       |            |             | 16.0     | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 4     |      |       |            |             | 25       | 25       | 25    |
| Act Effct Green (s)     | 25.4  | 20.7     | 20.7  | 23.8  | 16.3  |      | 74.2  | 73.7       |             | 39.9     | 39.9     | 39.9  |
| Actuated g/C Ratio      | 0.23  | 0.19     | 0.19  | 0.22  | 0.15  |      | 0.67  | 0.67       |             | 0.36     | 0.36     | 0.36  |
| v/c Ratio               | 0.92  | 0.36     | 0.61  | 0.10  | 0.55  |      | 0.76  | 0.67       |             | 0.16     | 0.87     | 0.28  |

## 8: Broad Street & Dewdney Avenue

|                        | •     | -    | •    | •    | ←     | •   | 4      | <b>†</b> | ~   | -    | ļ      | 1    |
|------------------------|-------|------|------|------|-------|-----|--------|----------|-----|------|--------|------|
| Lane Group             | EBL   | EBT  | EBR  | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL  | SBT    | SBR  |
| Control Delay          | 78.7  | 41.8 | 8.7  | 28.4 | 47.0  |     | 37.0   | 14.6     |     | 30.0 | 42.5   | 6.3  |
| Queue Delay            | 0.0   | 0.0  | 0.0  | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0  | 0.0    | 0.0  |
| Total Delay            | 78.7  | 41.8 | 8.7  | 28.4 | 47.0  |     | 37.0   | 14.6     |     | 30.0 | 42.5   | 6.3  |
| LOS                    | Е     | D    | Α    | С    | D     |     | D      | В        |     | С    | D      | Α    |
| Approach Delay         |       | 37.6 |      |      | 44.0  |     |        | 19.2     |     |      | 37.3   |      |
| Approach LOS           |       | D    |      |      | D     |     |        | В        |     |      | D      |      |
| Queue Length 50th (m)  | ~47.8 | 25.2 | 0.0  | 4.8  | 28.2  |     | 59.5   | 84.0     |     | 2.4  | 108.0  | 1.5  |
| Queue Length 95th (m)  | 52.4  | 34.8 | 20.8 | 9.3  | 38.9  |     | #146.3 | 176.2    |     | 8.8  | #165.8 | 16.6 |
| Internal Link Dist (m) |       | 81.7 |      |      | 308.1 |     |        | 305.7    |     |      | 270.1  |      |
| Turn Bay Length (m)    | 40.0  |      |      | 10.0 |       |     | 35.0   |          |     | 45.0 |        |      |
| Base Capacity (vph)    | 245   | 518  | 682  | 292  | 504   |     | 528    | 2267     |     | 108  | 1228   | 612  |
| Starvation Cap Reductn | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Spillback Cap Reductn  | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Storage Cap Reductn    | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0      | 0    |
| Reduced v/c Ratio      | 0.92  | 0.24 | 0.50 | 0.10 | 0.29  |     | 0.76   | 0.67     |     | 0.16 | 0.87   | 0.28 |

### Intersection Summary

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

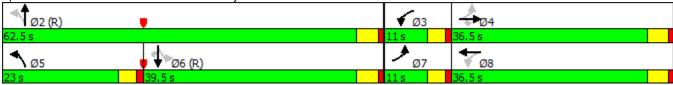
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 29.0 Intersection LOS: C
Intersection Capacity Utilization 91.0% ICU Level of Service F


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| luda un antinu                |          |          |      |                                        |          |       |       |       |      |        |      |        |
|-------------------------------|----------|----------|------|----------------------------------------|----------|-------|-------|-------|------|--------|------|--------|
| Intersection Int Delay, s/veh | 2.6      |          |      |                                        |          |       |       |       |      |        |      |        |
| Movement                      | EBL      | EBT      | EBR  | WBL                                    | WBT      | WBR   | NB    | L NBT | NBR  | SBL    | SBT  | SBR    |
| Lane Configurations           | <u> </u> | <b>†</b> | LDIX | ************************************** | <b>†</b> | WEIT  | 110   | 4     | HOIL | 002    | 4    | OBIT   |
| Traffic Vol, veh/h            | 52       | 618      | 29   | 22                                     | 788      | 23    |       | 8 2   | 77   | 6      | 1    | 118    |
| Future Vol, veh/h             | 52       | 618      | 29   | 22                                     | 788      | 23    |       | 8 2   | 77   | 6      | 1    | 118    |
| Conflicting Peds, #/hr        | 0        | 0        | 0    | 0                                      | 0        | 0     |       | 0 0   | 0    | 0      | 0    | 0      |
| Sign Control                  | Free     | Free     | Free | Free                                   | Free     | Free  | Sto   |       | Stop | Stop   | Stop | Stop   |
| RT Channelized                | -        | -        | None | -                                      | -        | None  | Olo   | <br>- | None | -<br>- | Olop | None   |
| Storage Length                | 200      | _        | -    | 250                                    | _        | -     |       |       | NONE | _      | _    | INOITE |
| Veh in Median Storage, #      | 200      | 0        | -    | 230                                    | 0        | -     |       | - 0   | _    | -      | 0    | -      |
| Grade, %                      | -        | 0        | -    | -                                      | 0        | -     |       | - 0   | _    | -      | 0    | -      |
| Peak Hour Factor              | 92       | 92       | 92   | 92                                     | 92       | 92    | 9     |       | 92   | 92     | 92   | 92     |
|                               | 3        | 3        | 3    | 3                                      | 3        | 3     |       | 3 3   | 3    | 3      | 3    | 3      |
| Heavy Vehicles, % Mvmt Flow   | 57       | 672      | 32   | 24                                     | 857      | 25    |       | o o   | 84   | 7      | 1    | 128    |
| MVIIIT FIOW                   | 5/       | 0/2      | 32   | 24                                     | 007      | 25    |       | 9 2   | 04   | 1      | ļ    | 120    |
| Major/Minor                   | Major1   |          |      | Major2                                 |          |       | Minor | 1     |      | Minor2 |      |        |
| Conflicting Flow All          | 882      | 0        | 0    | 703                                    | 0        | 0     | 127   |       | 352  | 1367   | 1733 | 441    |
| -                             |          |          |      |                                        |          |       | 80    |       |      | 917    | 917  | 441    |
| Stage 1                       | -        | -        | -    | -                                      | -        | -     | 47    |       | -    |        | 816  | -      |
| Stage 2                       | - 4.40   | -        | -    | - 4.40                                 | -        | -     |       |       | -    | 450    |      | 0.00   |
| Critical Hdwy                 | 4.16     | -        | -    | 4.16                                   | -        | -     | 7.5   |       | 6.96 | 7.56   | 6.56 | 6.96   |
| Critical Hdwy Stg 1           | -        | -        | -    | -                                      | -        | -     | 6.5   |       | -    | 6.56   | 5.56 | -      |
| Critical Hdwy Stg 2           | -        | -        | -    | -                                      | -        | -     | 6.5   |       | -    | 6.56   | 5.56 | -      |
| Follow-up Hdwy                | 2.23     | -        | -    | 2.23                                   | -        | -     | 3.5   |       | 3.33 | 3.53   | 4.03 | 3.33   |
| Pot Cap-1 Maneuver            | 756      | -        | -    | 884                                    | -        | -     | 12    |       | 641  | 105    | 86   | 561    |
| Stage 1                       | -        | -        | -    | -                                      | -        | -     | 34    |       | -    | 291    | 347  | -      |
| Stage 2                       | -        | -        | -    | -                                      | -        | -     | 53    | 5 342 | -    | 556    | 386  | -      |
| Platoon blocked, %            |          | -        | -    |                                        | -        | -     |       |       |      |        |      |        |
| Mov Cap-1 Maneuver            | 756      | -        | -    | 884                                    | -        | -     | 8     |       | 641  | 82     | 77   | 561    |
| Mov Cap-2 Maneuver            | -        | -        | -    | -                                      | -        | -     | 8     |       | -    | 82     | 77   | -      |
| Stage 1                       | -        | -        | -    | -                                      | -        | -     | 31    | 6 363 | -    | 269    | 338  | -      |
| Stage 2                       | -        | -        | -    | -                                      | -        | -     | 40    | 0 333 | -    | 444    | 357  | -      |
|                               |          |          |      |                                        |          |       |       |       |      |        |      |        |
| Approach                      | EB       |          |      | WB                                     |          |       | N     |       |      | SB     |      |        |
| HCM Control Delay, s          | 0.8      |          |      | 0.2                                    |          |       | 18.   | 3     |      | 17.5   |      |        |
| HCM LOS                       |          |          |      |                                        |          |       |       | 2     |      | С      |      |        |
|                               | NE:      | EDI      | EDT  | EDD 14/5:                              | MOT      | MED   | 2DI 4 |       |      |        |      |        |
| Minor Lane/Major Mvmt         | NBLn1    | EBL      | EBT  | EBR WBL                                | WBT      | WBR S |       |       |      |        |      |        |
| Capacity (veh/h)              | 364      | 756      | -    | - 884                                  | -        | -     | 422   |       |      |        |      |        |
| HCM Lane V/C Ratio            |          | 0.075    | -    | - 0.027                                | -        |       | 0.322 |       |      |        |      |        |
| HCM Control Delay (s)         | 18.3     | 10.1     | -    | - 9.2                                  | -        | -     |       |       |      |        |      |        |
| HCM Lane LOS                  | С        | В        | -    | - A                                    | -        | -     | С     |       |      |        |      |        |
| HCM 95th %tile Q(veh)         | 1        | 0.2      | -    | - 0.1                                  | -        | -     | 1.4   |       |      |        |      |        |

| latana a ation                |        |      |      |         |      |       |       |        |                 |      |        |           |          |
|-------------------------------|--------|------|------|---------|------|-------|-------|--------|-----------------|------|--------|-----------|----------|
| Intersection Int Delay, s/veh | 0.9    |      |      |         |      |       |       |        |                 |      |        |           |          |
| Movement                      | EBL    | EBT  | EBR  | WBL     | WBT  | WBR   | N     | IBL    | NBT             | NBR  | SBL    | SBT       | SBR      |
| Lane Configurations           |        | 414  |      |         | 414  |       |       |        | 4               |      |        | 4         | <u> </u> |
| Traffic Vol, veh/h            | 19     | 681  | 1    | 1       | 783  | 17    |       | 0      | 1               | 1    | 6      | 1         | 50       |
| Future Vol, veh/h             | 19     | 681  | 1    | 1       | 783  | 17    |       | 0      | 1               | 1    | 6      | 1         | 50       |
| Conflicting Peds, #/hr        | 0      | 0    | 0    | 0       | 0    | 0     |       | 0      | 0               | 0    | 0      | 0         | 0        |
| Sign Control                  | Free   | Free | Free | Free    | Free | Free  | 9     | top    | Stop            | Stop | Stop   | Stop      | Stop     |
| RT Channelized                | -      | -    | None | -       | -    | None  |       | -<br>- | - Clop          | None | -      | Olop<br>- | None     |
| Storage Length                | _      | _    | -    | _       | _    | -     |       | _      |                 | -    | _      | _         | 140110   |
| Veh in Median Storage, #      | -      | 0    | _    | _       | 0    | _     |       | _      | 0               | _    | _      | 0         |          |
| Grade, %                      | _      | 0    | _    | -       | 0    | _     |       | _      | 0               | _    | _      | 0         |          |
| Peak Hour Factor              | 92     | 92   | 92   | 92      | 92   | 92    |       | 92     | 92              | 92   | 92     | 92        | 92       |
| Heavy Vehicles, %             | 3      | 3    | 32   | 3       | 3    | 3     |       | 3      | 3               | 32   | 3      | 32        | 32       |
| Mvmt Flow                     | 21     | 740  | 1    | 1       | 851  | 18    |       | 0      | 1               | 1    | 7      | 1         | 54       |
| WIVIIIL FIOW                  | 21     | 740  | 1    | ı       | 001  | 10    |       | U      | ı               |      | ı      |           | 34       |
| Major/Minor                   | Major1 |      |      | Major2  |      |       | Min   | or1    |                 |      | Minor2 |           |          |
| Conflicting Flow All          | 870    | 0    | 0    | 741     | 0    | 0     |       | 210    | 1654            | 371  | 1275   | 1646      | 435      |
| Stage 1                       | -      | -    | -    | -       | -    | -     |       | 782    | 782             | -    | 863    | 863       | -100     |
| Stage 2                       | _      | _    | _    | _       | _    | _     |       | 128    | 872             | _    | 412    | 783       | _        |
| Critical Hdwy                 | 4.16   | _    | _    | 4.16    | _    | _     |       | .56    | 6.56            | 6.96 | 7.56   | 6.56      | 6.96     |
| Critical Hdwy Stg 1           | 7.10   | _    | _    | ٦.١٥    | _    | _     |       | .56    | 5.56            | -    | 6.56   | 5.56      | 0.50     |
| Critical Hdwy Stg 2           | _      | _    | _    | _       | _    | _     |       | .56    | 5.56            | _    | 6.56   | 5.56      | _        |
| Follow-up Hdwy                | 2.23   | _    | _    | 2.23    | _    | _     |       | .53    | 4.03            | 3.33 | 3.53   | 4.03      | 3.33     |
| Pot Cap-1 Maneuver            | 764    |      | _    | 855     | _    | _     |       | 137    | 96              | 623  | 123    | 97        | 566      |
| Stage 1                       | 704    |      | _    | -       |      | _     |       | 351    | 401             | -    | 314    | 367       | 300      |
| Stage 2                       | -      |      |      | -       |      |       |       | 572    | 364             | _    | 585    | 400       | _        |
| Platoon blocked, %            |        | _    | _    |         | _    | _     | •     | )      | JU <del>1</del> |      | 303    | 400       |          |
| Mov Cap-1 Maneuver            | 764    | _    | _    | 855     |      | _     |       | 118    | 91              | 623  | 117    | 92        | 566      |
| Mov Cap-1 Maneuver            | 704    | _    | -    | 033     | -    | -     |       | 118    | 91              | 023  | 117    | 92        | 300      |
| Stage 1                       | _      | _    | _    | -       | _    | _     |       | 335    | 382             | -    | 299    | 366       | _        |
| Stage 2                       | -      | -    | -    | -       | -    | -     |       | 515    | 363             | -    | 555    | 381       | -        |
| Slage 2                       | -      | -    | -    | -       | -    | -     | ,     | 010    | 303             | -    | ວວວ    | 301       | -        |
| Approach                      | EB     |      |      | WB      |      |       |       | NB     |                 |      | SB     |           |          |
| HCM Control Delay, s          | 0.5    |      |      | 0       |      |       |       | 28     |                 |      | 16.3   |           |          |
| HCM LOS                       | 0.0    |      |      | · ·     |      |       |       | D      |                 |      | C      |           |          |
| Minor Lane/Major Mvmt         | NBLn1  | EBL  | EBT  | EBR WBL | WBT  | WBR : | SBLn1 |        |                 |      |        |           |          |
| Capacity (veh/h)              | 159    | 764  | _    | - 855   | _    | _     | 379   |        |                 |      |        |           |          |
| HCM Lane V/C Ratio            | 0.014  |      | _    | - 0.001 | _    | _     | 0.163 |        |                 |      |        |           |          |
| HCM Control Delay (s)         | 28     | 9.8  | 0.2  | - 9.2   | 0    | -     |       |        |                 |      |        |           |          |
| HCM Lane LOS                  | D      | Α.   | Α    | - A     | A    | _     | C     |        |                 |      |        |           |          |
| HCM 95th %tile Q(veh)         | 0      | 0.1  | -    | - 0     | -    | _     | 0.6   |        |                 |      |        |           |          |

# 4: Cornwall Street & Dewdney Avenue

| Intersection             |        |       |      |         |      |       |        |       |      |        |      |      |
|--------------------------|--------|-------|------|---------|------|-------|--------|-------|------|--------|------|------|
| Int Delay, s/veh         | 1      |       |      |         |      |       |        |       |      |        |      |      |
| Movement                 | EBL    | EBT   | EBR  | WBL     | WBT  | WBR   | NBL    | . NBT | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations      |        | 4î.   |      |         | 47>  |       |        | 4     |      |        | 4    |      |
| Traffic Vol, veh/h       | 31     | 657   | 0    | 0       | 736  | 23    | (      | 0     | 0    | 5      | 0    | 65   |
| Future Vol, veh/h        | 31     | 657   | 0    | 0       | 736  | 23    | (      | 0     | 0    | 5      | 0    | 65   |
| Conflicting Peds, #/hr   | 0      | 0     | 0    | 0       | 0    | 0     | (      | 0     | 0    | 0      | 0    | 0    |
| Sign Control             | Free   | Free  | Free | Free    | Free | Free  | Stop   | Stop  | Stop | Stop   | Stop | Stop |
| RT Channelized           | -      | -     | None | -       | -    | None  |        |       | None | -      | -    | None |
| Storage Length           | -      | -     | -    | -       | -    | -     |        | -     | -    | -      | -    | -    |
| Veh in Median Storage, # | -      | 0     | -    | -       | 0    | -     |        | . 0   | -    | -      | 0    | -    |
| Grade, %                 | -      | 0     | -    | -       | 0    | -     |        | . 0   | -    | -      | 0    | -    |
| Peak Hour Factor         | 92     | 92    | 92   | 92      | 92   | 92    | 92     | 92    | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %        | 3      | 3     | 3    | 3       | 3    | 3     | 3      | 3     | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 34     | 714   | 0    | 0       | 800  | 25    | (      | 0     | 0    | 5      | 0    | 71   |
|                          |        |       |      |         |      |       |        |       |      |        |      |      |
| Major/Minor              | Major1 |       |      | Major2  |      |       | Minor1 |       |      | Minor2 |      |      |
| Conflicting Flow All     | 825    | 0     | 0    | 714     | 0    | 0     | 1182   | 1607  | 357  | 1237   | 1595 | 413  |
| Stage 1                  | -      | -     | -    | -       | -    | -     | 782    | 782   | -    | 813    | 813  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -     | 400    | 825   | -    | 424    | 782  | -    |
| Critical Hdwy            | 4.16   | _     | -    | 4.16    | -    | -     | 7.56   | 6.56  | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -      | -     | -    | -       | -    | -     | 6.56   | 5.56  | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2      | -      | _     | -    | -       | -    | -     | 6.56   | 5.56  | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy           | 2.23   | -     | -    | 2.23    | -    | -     | 3.53   | 4.03  | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 795    | _     | -    | 875     | -    | -     | 144    | 103   | 637  | 131    | 105  | 585  |
| Stage 1                  | -      | -     | -    | -       | -    | -     | 351    | 401   | -    | 336    | 388  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -     | 595    | 383   | -    | 576    | 401  | -    |
| Platoon blocked, %       |        | -     | -    |         | -    | -     |        |       |      |        |      |      |
| Mov Cap-1 Maneuver       | 795    | -     | -    | 875     | -    | -     | 120    | 96    | 637  | 124    | 98   | 585  |
| Mov Cap-2 Maneuver       | -      | -     | -    | -       | -    | -     | 120    | 96    | -    | 124    | 98   | -    |
| Stage 1                  | -      | _     | -    | -       | -    | -     | 326    | 373   | -    | 312    | 388  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -     | 523    | 383   | -    | 535    | 373  | -    |
| ū                        |        |       |      |         |      |       |        |       |      |        |      |      |
| Approach                 | EB     |       |      | WB      |      |       | NE     |       |      | SB     |      |      |
| HCM Control Delay, s     | 0.7    |       |      | 0       |      |       | (      |       |      | 14.3   |      |      |
| HCM LOS                  |        |       |      |         |      |       | P      |       |      | В      |      |      |
|                          |        |       |      |         |      |       |        |       |      |        |      |      |
| Minor Lane/Major Mvmt    | NBLn1  | EBL   | EBT  | EBR WBL | WBT  | WBR : | SBLn1  |       |      |        |      |      |
| Capacity (veh/h)         | -      | 795   | -    | - 875   | -    | -     | 462    |       |      |        |      |      |
| HCM Lane V/C Ratio       | _      | 0.042 | -    |         | -    | _     | 0.165  |       |      |        |      |      |
| HCM Control Delay (s)    | 0      | 9.7   | 0.3  | - 0     | -    | _     |        |       |      |        |      |      |
| HCM Lane LOS             | A      | Α     | A    | - A     | _    | _     | В      |       |      |        |      |      |
| HCM 95th %tile Q(veh)    | -      | 0.1   | -    | - 0     | -    | -     | 0.6    |       |      |        |      |      |
| / 500. / 500. (1011)     |        | 7.1   |      | •       |      |       | 0.0    |       |      |        |      |      |

| Intersection             |              |       |          |                   |            |      |        |      |  |
|--------------------------|--------------|-------|----------|-------------------|------------|------|--------|------|--|
| Int Delay, s/veh         | 0.8          |       | _        |                   |            |      |        |      |  |
| Movement                 | EBL          | EBT   |          |                   | WBT        | WBR  | SBL    | SBR  |  |
| Lane Configurations      |              | 414   |          |                   | <b>†</b> } |      | ¥      |      |  |
| Traffic Vol, veh/h       | 16           | 646   |          |                   | 701        | 14   | 7      | 58   |  |
| Future Vol, veh/h        | 16           | 646   |          |                   | 701        | 14   | 7      | 58   |  |
| Conflicting Peds, #/hr   | 0            | 0     |          |                   | 0          | 0    | 0      | 0    |  |
| Sign Control             | Free         | Free  |          |                   | Free       | Free | Stop   | Stop |  |
| RT Channelized           | -            |       |          |                   | _          | None | -      | None |  |
| Storage Length           | -            | -     |          |                   | -          | -    | 0      | -    |  |
| Veh in Median Storage, # | _            | 0     |          |                   | 0          | _    | 0      | _    |  |
| Grade, %                 | _            | 0     |          |                   | 0          | _    | 0      | _    |  |
| Peak Hour Factor         | 92           | 92    |          |                   | 92         | 92   | 92     | 92   |  |
| Heavy Vehicles, %        | 3            | 3     |          |                   | 3          | 3    | 3      | 3    |  |
| Mvmt Flow                | 17           | 702   |          |                   | 762        | 15   | 8      | 63   |  |
|                          | - 17         | 102   |          |                   | 102        | 10   | 0      | 30   |  |
| Major/Minor              | Major1       |       |          | M                 | ajor2      |      | Minor2 |      |  |
| Conflicting Flow All     | 777          | 0     |          |                   | -JU12      | 0    | 1156   | 389  |  |
| Stage 1                  | 111          | -     |          |                   |            | -    | 770    | 309  |  |
| Stage 2                  | -            | -     |          |                   | _          |      | 386    | -    |  |
| Critical Hdwy            | 4.16         | _     |          |                   | -          | _    | 6.86   | 6.96 |  |
| Critical Hdwy Stg 1      | 4.10         | -     |          |                   | -          | -    | 5.86   | 0.90 |  |
| Critical Hdwy Stg 2      | -            | -     |          |                   | -          | -    | 5.86   | -    |  |
|                          | 2.23         | -     |          |                   | -          | -    | 3.53   | 3.33 |  |
| Follow-up Hdwy           | 829          | -     |          |                   | -          | -    | 188    | 607  |  |
| Pot Cap-1 Maneuver       |              | -     |          |                   | -          | -    | 415    |      |  |
| Stage 1                  | -            | -     |          |                   | -          | -    | 654    | -    |  |
| Stage 2                  | -            | -     |          |                   | -          | -    | 054    | -    |  |
| Platoon blocked, %       | 000          | -     |          |                   | -          | -    | 400    | 607  |  |
| Mov Cap-1 Maneuver       | 829          | -     |          |                   | -          | -    | 182    | 607  |  |
| Mov Cap-2 Maneuver       | -            | -     |          |                   | -          | -    | 182    | -    |  |
| Stage 1                  | -            | -     |          |                   | -          | -    | 415    | -    |  |
| Stage 2                  | -            | -     |          |                   | -          | -    | 632    | -    |  |
| Approach                 | EB           |       |          |                   | WB         |      | SB     |      |  |
| Approach                 | 0.4          |       |          |                   |            |      | 13.7   |      |  |
| HCM Control Delay, s     | 0.4          |       |          |                   | 0          |      |        |      |  |
| HCM LOS                  |              |       |          |                   |            |      | В      |      |  |
| Minor Lane/Major Mvmt    | EBL          | EBT   | WBT WI   | RR SRI n1         |            |      |        |      |  |
| Capacity (veh/h)         | 829          | LDI   | AADI AAI | - 485             |            |      |        |      |  |
| HCM Lane V/C Ratio       |              | -     | -        |                   |            |      |        |      |  |
|                          | 0.021<br>9.4 | - 0.2 | -        | - 0.146<br>- 13.7 |            |      |        |      |  |
| HCM Long LOS             |              | 0.2   | -        |                   |            |      |        |      |  |
| HCM Lane LOS             | Α            | Α     | -        | - B               |            |      |        |      |  |
| HCM 95th %tile Q(veh)    | 0.1          | -     | -        | - 0.5             |            |      |        |      |  |

| Intersection             |          |      |     |           |             |      |        |        |
|--------------------------|----------|------|-----|-----------|-------------|------|--------|--------|
| Int Delay, s/veh         | 0.7      |      |     |           |             |      |        |        |
| Movement                 | EBL      | EBT  |     |           | WBT         | WBR  | SBL    | SBR    |
| Lane Configurations      |          | 414  |     |           | <b>†</b> 1> |      | Y      | 92.1   |
| Traffic Vol, veh/h       | 11       | 642  |     |           | 666         | 15   | 9      | 49     |
| Future Vol, veh/h        | 11       | 642  |     |           | 666         | 15   | 9      | 49     |
| Conflicting Peds, #/hr   | 0        | 0    |     |           | 0           | 0    | 0      | 0      |
| Sign Control             | Free     | Free |     |           | Free        | Free | Stop   | Stop   |
| RT Channelized           | -        |      |     |           | -           | None | Оюр    | None   |
| Storage Length           | _        | -    |     |           |             | -    | 0      | TVOTIC |
| Veh in Median Storage, # | <u> </u> | 0    |     |           | 0           | -    | 0      |        |
| Grade, %                 | _        | 0    |     |           | 0           | _    | 0      |        |
| Peak Hour Factor         | 92       | 92   |     |           | 92          | 92   | 92     | 92     |
| Heavy Vehicles, %        | 3        | 3    |     |           | 3           | 3    | 3      | 3      |
| Mymt Flow                | 12       | 698  |     |           | 724         | 16   | 10     | 53     |
| IVIVIIIL I IUW           | 12       | 030  |     |           | 124         | 10   | 10     | 33     |
|                          |          |      |     |           |             |      |        |        |
| Major/Minor              | Major1   |      |     | N         | //ajor2     |      | Minor2 |        |
| Conflicting Flow All     | 740      | 0    |     |           | -           | 0    | 1105   | 370    |
| Stage 1                  | -        | -    |     |           | -           | -    | 732    | -      |
| Stage 2                  | -        | -    |     |           | -           | -    | 373    | -      |
| Critical Hdwy            | 4.16     | -    |     |           | -           | -    | 6.86   | 6.96   |
| Critical Hdwy Stg 1      | -        | -    |     |           | -           | -    | 5.86   | -      |
| Critical Hdwy Stg 2      | -        | -    |     |           | -           | -    | 5.86   | -      |
| Follow-up Hdwy           | 2.23     | -    |     |           | -           | -    | 3.53   | 3.33   |
| Pot Cap-1 Maneuver       | 856      | -    |     |           | -           | -    | 203    | 624    |
| Stage 1                  | -        | -    |     |           | -           | -    | 434    | -      |
| Stage 2                  | -        | -    |     |           | -           | -    | 664    | -      |
| Platoon blocked, %       |          | -    |     |           | -           | -    |        |        |
| Mov Cap-1 Maneuver       | 856      | -    |     |           | -           | -    | 198    | 624    |
| Mov Cap-2 Maneuver       | -        | -    |     |           | -           | -    | 198    | -      |
| Stage 1                  | -        | -    |     |           | -           | -    | 434    | -      |
| Stage 2                  | -        | -    |     |           | -           | -    | 649    | -      |
| <u> </u>                 |          |      |     |           |             |      |        |        |
| Annroach                 | EB       |      |     |           | WB          |      | SB     |        |
| Approach                 |          |      |     |           |             |      |        |        |
| HCM Control Delay, s     | 0.3      |      |     |           | 0           |      | 13.9   |        |
| HCM LOS                  |          |      |     |           |             |      | В      |        |
|                          |          |      |     |           |             |      |        |        |
| Minor Lane/Major Mvmt    | EBL      | EBT  | WBT | WBR SBLn1 |             |      |        |        |
| Capacity (veh/h)         | 856      | -    | -   | - 468     |             |      |        |        |
| HCM Lane V/C Ratio       | 0.014    | -    | -   | - 0.135   |             |      |        |        |
| HCM Control Delay (s)    | 9.3      | 0.1  | -   | - 13.9    |             |      |        |        |
| HCM Lane LOS             | Α        | Α    | -   | - B       |             |      |        |        |
| HCM 95th %tile Q(veh)    | 0        | -    | -   | - 0.5     |             |      |        |        |
|                          | •        |      |     | 7.0       |             |      |        |        |

| Intersection             |          |      |     |       |        |            |      |            |      |  |
|--------------------------|----------|------|-----|-------|--------|------------|------|------------|------|--|
| Int Delay, s/veh         | 0.8      |      |     |       |        |            |      |            |      |  |
| Movement                 | EBL      | EBT  |     |       | W      | ВТ         | WBR  | SBL        | SBR  |  |
| Lane Configurations      |          | 414  |     |       | 4      | <b>'</b> } |      | ¥          |      |  |
| Traffic Vol, veh/h       | 20       | 631  |     |       |        | 18         | 22   | 2          | 63   |  |
| Future Vol, veh/h        | 20       | 631  |     |       |        | 18         | 22   | 2          | 63   |  |
| Conflicting Peds, #/hr   | 0        | 0    |     |       |        | 0          | 0    | 0          | 0    |  |
| Sign Control             | Free     | Free |     |       | Fr     | ee         | Free | Stop       | Stop |  |
| RT Channelized           | -        | None |     |       |        | -          | None | -          | None |  |
| Storage Length           | -        | _    |     |       |        | -          | -    | 0          | -    |  |
| Veh in Median Storage, # | <u>.</u> | 0    |     |       |        | 0          | _    | 0          | -    |  |
| Grade, %                 | -        | 0    |     |       |        | 0          | _    | 0          | -    |  |
| Peak Hour Factor         | 92       | 92   |     |       |        | 92         | 92   | 92         | 92   |  |
| Heavy Vehicles, %        | 3        | 3    |     |       |        | 3          | 3    | 3          | 3    |  |
| Mvmt Flow                | 22       | 686  |     |       | 6      | 72         | 24   | 2          | 68   |  |
|                          |          |      |     |       |        | _          |      | _          | 30   |  |
| Major/Minor              | Major1   |      |     |       | Majo   | nr2        |      | Minor2     |      |  |
| Conflicting Flow All     | 696      | 0    |     |       | iviaje | <i>7</i> 1 | 0    | 1070       | 348  |  |
| Stage 1                  | 090      | U    |     |       |        | -          | -    | 684        | 340  |  |
| Stage 2                  | -        | -    |     |       |        | -          |      | 386        | -    |  |
| Critical Hdwy            | 4.16     | -    |     |       |        | -          | -    | 6.86       | 6.96 |  |
|                          | 4.10     |      |     |       |        | -          |      | 5.86       |      |  |
| Critical Hdwy Stg 1      | -        | -    |     |       |        | -          | -    | 5.86       | -    |  |
| Critical Hdwy Stg 2      | 2.23     | -    |     |       |        | -          | -    | 3.53       | 3.33 |  |
| Follow-up Hdwy           | 889      | -    |     |       |        | -          | -    | 214        | 645  |  |
| Pot Cap-1 Maneuver       | 009      | -    |     |       |        | -          | -    | 460        |      |  |
| Stage 1                  | -        | -    |     |       |        | -          | -    |            | -    |  |
| Stage 2                  | -        | -    |     |       |        | -          | -    | 654        | -    |  |
| Platoon blocked, %       | 889      | -    |     |       |        | -          | -    | 205        | GAE  |  |
| Mov Cap-1 Maneuver       | 009      | -    |     |       |        | -          | -    | 205<br>205 | 645  |  |
| Mov Cap-2 Maneuver       | -        | -    |     |       |        | -          | -    | 460        | -    |  |
| Stage 1                  | -        | -    |     |       |        | -          | -    | 628        | -    |  |
| Stage 2                  | -        | -    |     |       |        | -          | -    | 028        | -    |  |
| A nara a ah              | ED       |      |     |       | 14     | ۸/D        |      | CD         |      |  |
| Approach                 | EB 0.5   |      |     |       | V      | <u>VB</u>  |      | SB         |      |  |
| HCM Control Delay, s     | 0.5      |      |     |       |        | 0          |      | 11.7       |      |  |
| HCM LOS                  |          |      |     |       |        |            |      | В          |      |  |
|                          |          |      |     |       |        |            |      |            |      |  |
| Minor Lane/Major Mvmt    | EBL      | EBT  | WBT | WBR S |        |            |      |            |      |  |
| Capacity (veh/h)         | 889      | -    | -   | -     | 605    |            |      |            |      |  |
| HCM Lane V/C Ratio       | 0.024    | -    | -   |       | 0.117  |            |      |            |      |  |
| HCM Control Delay (s)    | 9.2      | 0.2  | -   | -     | 11.7   |            |      |            |      |  |
| HCM Lane LOS             | Α        | Α    | -   | -     | В      |            |      |            |      |  |
| HCM 95th %tile Q(veh)    | 0.1      | -    | -   | -     | 0.4    |            |      |            |      |  |
|                          |          |      |     |       |        |            |      |            |      |  |

|                         | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | 4     | <b>†</b>        | <b>/</b> | <b>/</b> | <b>+</b>        | 4    |
|-------------------------|-------|----------|-------|-------|----------|-------|-------|-----------------|----------|----------|-----------------|------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT             | NBR      | SBL      | SBT             | SBR  |
| Lane Configurations     | ሻ     | <b>^</b> | 7     | ሻ     | <b>^</b> | 7     | ሻ     | ተተ <sub>ጉ</sub> |          | ሻ        | <del>ተ</del> ተኈ |      |
| Traffic Volume (vph)    | 144   | 895      | 225   | 144   | 653      | 47    | 122   | 588             | 142      | 165      | 1381            | 112  |
| Future Volume (vph)     | 144   | 895      | 225   | 144   | 653      | 47    | 122   | 588             | 142      | 165      | 1381            | 112  |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800     | 1800  | 1800  | 1800            | 1800     | 1800     | 1800            | 1800 |
| Storage Length (m)      | 30.0  |          | 50.0  | 30.0  |          | 30.0  | 90.0  |                 | 0.0      | 75.0     |                 | 0.0  |
| Storage Lanes           | 1     |          | 1     | 1     |          | 1     | 1     |                 | 0        | 1        |                 | 0    |
| Taper Length (m)        | 20.0  |          |       | 25.0  |          |       | 35.0  |                 |          | 40.0     |                 |      |
| Lane Util. Factor       | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.91            | 0.91     | 1.00     | 0.91            | 0.91 |
| Ped Bike Factor         | 1.00  |          | 0.98  | 1.00  |          | 0.97  | 1.00  | 0.99            |          | 1.00     | 1.00            |      |
| Frt                     |       |          | 0.850 |       |          | 0.850 |       | 0.971           |          |          | 0.989           |      |
| Flt Protected           | 0.950 |          |       | 0.950 |          |       | 0.950 |                 |          | 0.950    |                 |      |
| Satd. Flow (prot)       | 1679  | 3357     | 1502  | 1679  | 3357     | 1502  | 1679  | 4659            | 0        | 1679     | 4755            | 0    |
| Flt Permitted           | 0.189 |          |       | 0.101 |          |       | 0.098 |                 |          | 0.202    |                 |      |
| Satd. Flow (perm)       | 332   | 3357     | 1471  | 178   | 3357     | 1456  | 173   | 4659            | 0        | 356      | 4755            | 0    |
| Right Turn on Red       |       |          | Yes   |       |          | Yes   |       |                 | Yes      |          |                 | Yes  |
| Satd. Flow (RTOR)       |       |          | 162   |       |          | 123   |       | 50              |          |          | 13              |      |
| Link Speed (k/h)        |       | 50       |       |       | 50       |       |       | 50              |          |          | 50              |      |
| Link Distance (m)       |       | 458.3    |       |       | 110.3    |       |       | 220.1           |          |          | 211.9           |      |
| Travel Time (s)         |       | 33.0     |       |       | 7.9      |       |       | 15.8            |          |          | 15.3            |      |
| Confl. Peds. (#/hr)     | 17    |          | 8     | 8     |          | 17    | 26    |                 | 13       | 13       |                 | 26   |
| Peak Hour Factor        | 0.85  | 0.85     | 0.85  | 0.85  | 0.85     | 0.85  | 0.85  | 0.85            | 0.85     | 0.85     | 0.85            | 0.85 |
| Adj. Flow (vph)         | 169   | 1053     | 265   | 169   | 768      | 55    | 144   | 692             | 167      | 194      | 1625            | 132  |
| Shared Lane Traffic (%) |       |          |       |       |          |       |       |                 |          |          |                 |      |
| Lane Group Flow (vph)   | 169   | 1053     | 265   | 169   | 768      | 55    | 144   | 859             | 0        | 194      | 1757            | 0    |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  | pm+pt | NA              |          | pm+pt    | NA              |      |
| Protected Phases        | 7     | 4        |       | 3     | 8        |       | 5     | 2               |          | 1        | 6               |      |
| Permitted Phases        | 4     |          | 4     | 8     |          | 8     | 2     |                 |          | 6        |                 |      |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        | 8     | 5     | 2               |          | 1        | 6               |      |
| Switch Phase            |       |          |       |       |          |       |       |                 |          |          |                 |      |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     | 10.0  | 7.0   | 15.0            |          | 7.0      | 15.0            |      |
| Minimum Split (s)       | 11.0  | 36.5     | 36.5  | 11.0  | 36.5     | 36.5  | 11.0  | 33.5            |          | 11.0     | 33.5            |      |
| Total Split (s)         | 13.0  | 44.0     | 44.0  | 13.0  | 44.0     | 44.0  | 12.0  | 43.0            |          | 20.0     | 51.0            |      |
| Total Split (%)         | 10.8% | 36.7%    | 36.7% | 10.8% | 36.7%    | 36.7% | 10.0% | 35.8%           |          | 16.7%    | 42.5%           |      |
| Maximum Green (s)       | 9.0   | 39.5     | 39.5  | 9.0   | 39.5     | 39.5  | 8.0   | 38.5            |          | 16.0     | 46.5            |      |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      | 3.5   | 3.0   | 3.5             |          | 3.0      | 3.5             |      |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0             |          | 1.0      | 1.0             |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0             |          | 0.0      | 0.0             |      |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      | 4.5   | 4.0   | 4.5             |          | 4.0      | 4.5             |      |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   | Lead  | Lag             |          | Lead     | Lag             |      |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   | Yes   | Yes             |          | Yes      | Yes             |      |
| Vehicle Extension (s)   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0             |          | 4.0      | 4.0             |      |
| Recall Mode             | None  | None     | None  | None  | None     | None  | None  | C-Max           |          | None     | C-Max           |      |
| Walk Time (s)           |       | 10.0     | 10.0  |       | 10.0     | 10.0  |       | 10.0            |          |          | 10.0            |      |
| Flash Dont Walk (s)     |       | 22.0     | 22.0  |       | 22.0     | 22.0  |       | 19.0            |          |          | 19.0            |      |
| Pedestrian Calls (#/hr) |       | 15       | 15    |       | 15       | 15    |       | 8               |          |          | 15              |      |
| Act Effct Green (s)     | 49.0  | 39.5     | 39.5  | 49.0  | 39.5     | 39.5  | 49.2  | 40.7            |          | 58.6     | 46.5            |      |
| Actuated g/C Ratio      | 0.41  | 0.33     | 0.33  | 0.41  | 0.33     | 0.33  | 0.41  | 0.34            |          | 0.49     | 0.39            |      |
| v/c Ratio               | 0.72  | 0.95     | 0.45  | 0.91  | 0.70     | 0.10  | 0.84  | 0.53            |          | 0.60     | 0.95            |      |
| Control Delay           | 40.1  | 57.6     | 14.7  | 74.6  | 39.0     | 0.3   | 63.9  | 31.8            |          | 25.6     | 47.7            |      |

### 1: Albert Street & Dewdney Avenue

|                        | •     | <b>→</b> | •    | •     | ←    | •    | 4     | <b>†</b> | ~   | -    | <b>↓</b> | 4   |
|------------------------|-------|----------|------|-------|------|------|-------|----------|-----|------|----------|-----|
| Lane Group             | EBL   | EBT      | EBR  | WBL   | WBT  | WBR  | NBL   | NBT      | NBR | SBL  | SBT      | SBR |
| Queue Delay            | 0.0   | 0.0      | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0      |     | 0.0  | 0.0      |     |
| Total Delay            | 40.1  | 57.6     | 14.7 | 74.6  | 39.0 | 0.3  | 63.9  | 31.8     |     | 25.6 | 47.7     |     |
| LOS                    | D     | Е        | В    | Ε     | D    | Α    | E     | С        |     | С    | D        |     |
| Approach Delay         |       | 48.0     |      |       | 42.9 |      |       | 36.4     |     |      | 45.5     |     |
| Approach LOS           |       | D        |      |       | D    |      |       | D        |     |      | D        |     |
| Queue Length 50th (m)  | 24.2  | 127.0    | 17.4 | 24.9  | 82.3 | 0.0  | 19.0  | 56.4     |     | 25.5 | 144.2    |     |
| Queue Length 95th (m)  | #38.4 | #152.2   | 36.2 | #59.2 | 96.4 | 0.0  | #49.8 | 66.2     |     | 37.6 | 152.0    |     |
| Internal Link Dist (m) |       | 434.3    |      |       | 86.3 |      |       | 196.1    |     |      | 187.9    |     |
| Turn Bay Length (m)    | 30.0  |          | 50.0 | 30.0  |      | 30.0 | 90.0  |          |     | 75.0 |          |     |
| Base Capacity (vph)    | 236   | 1105     | 592  | 185   | 1105 | 561  | 171   | 1612     |     | 351  | 1850     |     |
| Starvation Cap Reductn | 0     | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0    | 0        |     |
| Spillback Cap Reductn  | 0     | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0    | 0        |     |
| Storage Cap Reductn    | 0     | 0        | 0    | 0     | 0    | 0    | 0     | 0        |     | 0    | 0        |     |
| Reduced v/c Ratio      | 0.72  | 0.95     | 0.45 | 0.91  | 0.70 | 0.10 | 0.84  | 0.53     |     | 0.55 | 0.95     |     |

Intersection Summary

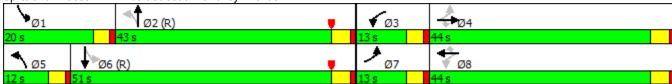
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.95 Intersection Signal Delay: 44.0 Intersection Capacity Utilization 86.9%

Intersection LOS: D
ICU Level of Service E

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                         | ٠     | <b>→</b> | •     | •     | <b>←</b> | •    | 4     | †          | <b>/</b> | <b>/</b> | ţ        | 4     |
|-------------------------|-------|----------|-------|-------|----------|------|-------|------------|----------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR  | NBL   | NBT        | NBR      | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ     | <u></u>  | 7     | ሻ     | <b>^</b> |      | ሻ     | <b>∱</b> } |          | ሻ        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 287   | 84       | 720   | 7     | 48       | 4    | 553   | 791        | 21       | 13       | 1169     | 259   |
| Future Volume (vph)     | 287   | 84       | 720   | 7     | 48       | 4    | 553   | 791        | 21       | 13       | 1169     | 259   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800     | 1800 | 1800  | 1800       | 1800     | 1800     | 1800     | 1800  |
| Storage Length (m)      | 40.0  |          | 0.0   | 10.0  |          | 0.0  | 35.0  |            | 60.0     | 45.0     |          | 0.0   |
| Storage Lanes           | 1     |          | 1     | 1     |          | 0    | 1     |            | 0        | 1        |          | 1     |
| Taper Length (m)        | 23.0  |          |       | 10.0  |          |      | 25.0  |            |          | 35.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95     | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         | 0.99  |          |       |       | 1.00     |      |       |            |          |          |          | 0.96  |
| Frt                     |       |          | 0.850 |       | 0.988    |      |       | 0.996      |          |          |          | 0.850 |
| Flt Protected           | 0.950 |          |       | 0.950 |          |      | 0.950 |            |          | 0.950    |          |       |
| Satd. Flow (prot)       | 1679  | 1767     | 1502  | 1647  | 1709     | 0    | 1679  | 3344       | 0        | 1679     | 3357     | 1502  |
| FIt Permitted           | 0.627 |          |       | 0.693 |          |      | 0.096 |            |          | 0.299    |          |       |
| Satd. Flow (perm)       | 1098  | 1767     | 1502  | 1201  | 1709     | 0    | 170   | 3344       | 0        | 528      | 3357     | 1437  |
| Right Turn on Red       |       |          | Yes   |       |          | Yes  |       |            | Yes      |          |          | Yes   |
| Satd. Flow (RTOR)       |       |          | 459   |       | 4        |      |       | 4          |          |          |          | 211   |
| Link Speed (k/h)        |       | 50       |       |       | 50       |      |       | 50         |          |          | 50       |       |
| Link Distance (m)       |       | 105.7    |       |       | 332.1    |      |       | 329.7      |          |          | 294.1    |       |
| Travel Time (s)         |       | 7.6      |       |       | 23.9     |      |       | 23.7       |          |          | 21.2     |       |
| Confl. Peds. (#/hr)     | 9     |          |       |       |          | 9    | 23    |            |          |          |          | 23    |
| Peak Hour Factor        | 0.85  | 0.85     | 0.85  | 0.85  | 0.85     | 0.85 | 0.85  | 0.85       | 0.85     | 0.85     | 0.85     | 0.85  |
| Heavy Vehicles (%)      | 3%    | 3%       | 3%    | 5%    | 5%       | 5%   | 3%    | 3%         | 3%       | 3%       | 3%       | 3%    |
| Adj. Flow (vph)         | 338   | 99       | 847   | 8     | 56       | 5    | 651   | 931        | 25       | 15       | 1375     | 305   |
| Shared Lane Traffic (%) |       |          |       |       |          |      |       |            |          |          |          |       |
| Lane Group Flow (vph)   | 338   | 99       | 847   | 8     | 61       | 0    | 651   | 956        | 0        | 15       | 1375     | 305   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       |      | pm+pt | NA         |          | Perm     | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8        |      | 5     | 2          |          |          | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |          |      | 2     |            |          | 6        |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        |      | 5     | 2          |          | 6        | 6        | 6     |
| Switch Phase            |       |          |       |       |          |      |       |            |          |          |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     |      | 7.0   | 15.0       |          | 15.0     | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5     |      | 11.0  | 19.5       |          | 30.5     | 30.5     | 30.5  |
| Total Split (s)         | 11.0  | 36.5     | 36.5  | 11.0  | 36.5     |      | 27.0  | 72.5       |          | 45.5     | 45.5     | 45.5  |
| Total Split (%)         | 9.2%  | 30.4%    | 30.4% | 9.2%  | 30.4%    |      | 22.5% | 60.4%      |          | 37.9%    | 37.9%    | 37.9% |
| Maximum Green (s)       | 7.0   | 32.0     | 32.0  | 7.0   | 32.0     |      | 23.0  | 68.0       |          | 41.0     | 41.0     | 41.0  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      |      | 3.0   | 3.5        |          | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |      | 1.0   | 1.0        |          | 1.0      | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |      | 0.0   | 0.0        |          | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      |      | 4.0   | 4.5        |          | 4.5      | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      |      | Lead  |            |          | Lag      | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      |      | Yes   |            |          | Yes      | Yes      | Yes   |
| Vehicle Extension (s)   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      |      | 4.0   | 4.0        |          | 4.0      | 4.0      | 4.0   |
| Recall Mode             | None  | None     | None  | None  | None     |      | None  | C-Max      |          | C-Max    | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0     |      |       |            |          | 10.0     | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0     |      |       |            |          | 16.0     | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 9        |      |       |            |          | 15       | 15       | 15    |
| Act Effct Green (s)     | 42.7  | 40.8     | 40.8  | 33.0  | 27.6     |      | 68.5  | 68.0       |          | 41.0     | 41.0     | 41.0  |
| Actuated g/C Ratio      | 0.36  | 0.34     | 0.34  | 0.28  | 0.23     |      | 0.57  | 0.57       |          | 0.34     | 0.34     | 0.34  |
| v/c Ratio               | 0.74  | 0.16     | 1.04  | 0.02  | 0.15     |      | 1.69  | 0.50       |          | 0.08     | 1.20     | 0.48  |

WSP Canada Inc. James Sun 07/20/2017

|                        | •     | -    | •      | •    | <b>←</b> | •   | 4      | <b>†</b> | ~   | <b>&gt;</b> | <b>↓</b> | 1    |
|------------------------|-------|------|--------|------|----------|-----|--------|----------|-----|-------------|----------|------|
| Lane Group             | EBL   | EBT  | EBR    | WBL  | WBT      | WBR | NBL    | NBT      | NBR | SBL         | SBT      | SBR  |
| Control Delay          | 44.6  | 30.0 | 61.7   | 24.9 | 32.6     |     | 346.5  | 16.9     |     | 28.5        | 134.3    | 12.4 |
| Queue Delay            | 0.0   | 0.0  | 0.0    | 0.0  | 0.0      |     | 0.0    | 0.0      |     | 0.0         | 0.0      | 0.0  |
| Total Delay            | 44.6  | 30.0 | 61.7   | 24.9 | 32.6     |     | 346.5  | 16.9     |     | 28.5        | 134.3    | 12.4 |
| LOS                    | D     | С    | Е      | С    | С        |     | F      | В        |     | С           | F        | В    |
| Approach Delay         |       | 54.8 |        |      | 31.7     |     |        | 150.4    |     |             | 111.4    |      |
| Approach LOS           |       | D    |        |      | С        |     |        | F        |     |             | F        |      |
| Queue Length 50th (m)  | 63.0  | 15.7 | ~136.5 | 1.2  | 10.2     |     | ~210.2 | 68.1     |     | 2.4         | ~206.6   | 15.5 |
| Queue Length 95th (m)  | #95.8 | 30.7 | #197.9 | 4.3  | 19.8     |     | #259.1 | 78.0     |     | 7.2         | #226.8   | 35.0 |
| Internal Link Dist (m) |       | 81.7 |        |      | 308.1    |     |        | 305.7    |     |             | 270.1    |      |
| Turn Bay Length (m)    | 40.0  |      |        | 10.0 |          |     | 35.0   |          |     | 45.0        |          |      |
| Base Capacity (vph)    | 459   | 601  | 813    | 356  | 458      |     | 386    | 1896     |     | 180         | 1146     | 629  |
| Starvation Cap Reductn | 0     | 0    | 0      | 0    | 0        |     | 0      | 0        |     | 0           | 0        | 0    |
| Spillback Cap Reductn  | 0     | 0    | 0      | 0    | 0        |     | 0      | 0        |     | 0           | 0        | 0    |
| Storage Cap Reductn    | 0     | 0    | 0      | 0    | 0        |     | 0      | 0        |     | 0           | 0        | 0    |
| Reduced v/c Ratio      | 0.74  | 0.16 | 1.04   | 0.02 | 0.13     |     | 1.69   | 0.50     |     | 0.08        | 1.20     | 0.48 |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.69

Intersection Signal Delay: 108.1 Intersection LOS: F
Intersection Capacity Utilization 100.7% ICU Level of Service G

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Intersection                            |        |      |      |         |      |       |        |      |      |        |      |      |
|-----------------------------------------|--------|------|------|---------|------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh                        | 2      |      |      |         |      |       |        |      |      |        |      |      |
| Movement                                | EBL    | EBT  | EBR  | WBL     | WBT  | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations                     | ሻ      | ħβ   |      | *       | ħβ   |       |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h                      | 27     | 1143 | 32   | 59      | 823  | 15    | 1      | 2    | 26   | 4      | 2    | 21   |
| Future Vol, veh/h                       | 27     | 1143 | 32   | 59      | 823  | 15    | 1      | 2    | 26   | 4      | 2    | 21   |
| Conflicting Peds, #/hr                  | 0      | 0    | 0    | 0       | 0    | 0     | 0      | 0    | 0    | 0      | 0    | 0    |
| Sign Control                            | Free   | Free | Free | Free    | Free | Free  | Stop   | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized                          | -      | -    | None | -       | -    | None  | -      | -    | None | -      | -    | None |
| Storage Length                          | 200    | -    | -    | 250     | -    | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage, #                | -      | 0    | -    | -       | 0    | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %                                | -      | 0    | -    | -       | 0    | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor                        | 81     | 81   | 81   | 81      | 81   | 81    | 81     | 81   | 81   | 81     | 81   | 81   |
| Heavy Vehicles, %                       | 3      | 3    | 3    | 3       | 3    | 3     | 3      | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                               | 33     | 1411 | 40   | 73      | 1016 | 19    | 1      | 2    | 32   | 5      | 2    | 26   |
|                                         |        |      |      |         |      |       |        |      |      |        |      |      |
| Major/Minor                             | Major1 |      |      | Major2  |      |       | Minor1 |      |      | Minor2 |      |      |
| Conflicting Flow All                    | 1035   | 0    | 0    | 1451    | 0    | 0     | 2153   | 2678 | 725  | 1944   | 2688 | 517  |
| Stage 1                                 | -      | -    | -    | -       | -    | -     | 1498   | 1498 | -    | 1171   | 1171 | -    |
| Stage 2                                 | -      | -    | -    | -       | -    | -     | 655    | 1180 | -    | 773    | 1517 | -    |
| Critical Hdwy                           | 4.16   | -    | -    | 4.16    | -    | -     | 7.56   | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1                     | -      | -    | -    | -       | -    | -     | 6.56   | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2                     | -      | -    | -    | -       | -    | -     | 6.56   | 5.56 | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy                          | 2.23   | -    | -    | 2.23    | -    | -     | 3.53   | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver                      | 661    | -    | -    | 458     | -    | -     | 27     | 21   | 365  | 39     | 21   | 501  |
| Stage 1                                 | -      | -    | -    | -       | -    | -     | 127    | 182  | -    | 203    | 263  | -    |
| Stage 2                                 | -      | -    | -    | -       | -    | -     | 419    | 260  | -    | 356    | 178  | -    |
| Platoon blocked, %                      |        | -    | -    |         | -    | -     |        |      |      |        |      |      |
| Mov Cap-1 Maneuver                      | 661    | -    | -    | 458     | -    | -     | 19     | 17   | 365  | 27     | 17   | 501  |
| Mov Cap-2 Maneuver                      | -      | -    | -    | -       | -    | -     | 19     | 17   | -    | 27     | 17   | -    |
| Stage 1                                 | -      | -    | -    | -       | -    | -     | 121    | 173  | -    | 193    | 221  | -    |
| Stage 2                                 | -      | -    | -    | -       | -    | -     | 330    | 219  | -    | 304    | 169  | -    |
|                                         |        |      |      |         |      |       |        |      |      |        |      |      |
| Approach                                | EB     |      |      | WB      |      |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s                    | 0.2    |      |      | 0.9     |      |       | 47.3   |      |      | 69     |      |      |
| HCM LOS                                 | V      |      |      | 0.0     |      |       | E      |      |      | F      |      |      |
|                                         |        |      |      |         |      |       |        |      |      |        |      |      |
| Minor Lane/Major Mvmt                   | NBLn1  | EBL  | EBT  | EBR WBL | WBT  | WBR S | BLn1   |      |      |        |      |      |
| Capacity (veh/h)                        | 120    | 661  | -    | - 458   | -    | -     | 88     |      |      |        |      |      |
| HCM Lane V/C Ratio                      | 0.298  | 0.05 | -    | - 0.159 | -    | -     | 0.379  |      |      |        |      |      |
| HCM Control Delay (s)                   | 47.3   | 10.7 | -    | - 14.3  | -    | -     | 69     |      |      |        |      |      |
| HCM Lane LOS                            | E      | В    | -    | - B     | -    | -     | F      |      |      |        |      |      |
| HCM 95th %tile Q(veh)                   | 1.1    | 0.2  | -    | - 0.6   | -    | -     | 1.5    |      |      |        |      |      |
| ======================================= |        |      |      |         |      |       |        |      |      |        |      |      |

| Int Delay, s/veh   2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement   EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Traffic Vol, veh/h   30   1142   1   1   883   16   1   1   1   1   8   1   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Traffic Vol, veh/h         30         1142         1         1         883         16         1         1         1         8         1         13           Future Vol, veh/h         30         1142         1         1         883         16         1         1         1         8         1         13           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                              |
| Future Vol, veh/h         30         1142         1         1         883         16         1         1         1         8         1         13           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                          |
| Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                 |
| Sign Control         Free         None         -         None         -         None         -         None         -         None         -         None         -         -         None         -         -         None         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         2         1         1         1         1 |
| RT Channelized         -         None         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         1         1         1         1         1         1         1                                                              |
| Storage Length         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                         |
| Veh in Median Storage, #         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                               |
| Grade, %         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         1         1         1         1         0         0         1         1         1         0         0         1         1         1         0         0         1         1         1         0         0         1         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                    |
| Peak Hour Factor         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81                                     |
| Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1110         0         0         1411         0         0         2033         2597         706         1882         2587         555         555         Stage 1         -         -         -         -         -         -         1485         1485         -         1102         1102         -           Stage 2         -         -         -         -         -         548         1112         -         780         1485         -           Critical Hdwy         4.16         -         4.16         -         7.56         6.56         6.96         7.56         6.56         6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Momt Flow         37         1410         1         1090         20         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                      |
| Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1110         0         0         1411         0         0         2033         2597         706         1882         2587         555           Stage 1         -         -         -         -         -         1485         1485         -         1102         1102         -           Stage 2         -         -         -         -         548         1112         -         780         1485         -           Critical Hdwy         4.16         -         -         4.16         -         -         7.56         6.56         6.96         7.56         6.56         6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conflicting Flow All       1110       0       0       1411       0       0       2033       2597       706       1882       2587       555         Stage 1       -       -       -       -       -       1485       1485       -       1102       1102       -         Stage 2       -       -       -       -       -       548       1112       -       780       1485       -         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56       6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Conflicting Flow All       1110       0       0       1411       0       0       2033       2597       706       1882       2587       555         Stage 1       -       -       -       -       -       1485       1485       -       1102       1102       -         Stage 2       -       -       -       -       -       548       1112       -       780       1485       -         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56       6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Conflicting Flow All       1110       0       0       1411       0       0       2033       2597       706       1882       2587       555         Stage 1       -       -       -       -       -       1485       1485       -       1102       1102       -         Stage 2       -       -       -       -       -       548       1112       -       780       1485       -         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56       6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stage 1       -       -       -       -       -       -       1485       1485       -       1102       1102       -         Stage 2       -       -       -       -       -       548       1112       -       780       1485       -         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56       6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stage 2       -       -       -       -       -       548       1112       -       780       1485       -         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56       6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Critical Hdwy 4.16 4.16 7.56 6.56 6.96 7.56 6.56 6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Critical Hdwy Stg 1 6.56 5.56 - 6.56 5.56 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Critical Hdwy Stg 2 6.56 5.56 - 6.56 5.56 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Follow-up Hdwy 2.23 2.23 3.53 4.03 3.33 3.53 4.03 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pot Cap-1 Maneuver 619 474 33 24 376 43 25 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stage 1 129 185 - 224 283 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stage 2 486 280 - 352 185 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mov Cap-1 Maneuver 619 474 24 17 376 32 18 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mov Cap-2 Maneuver 24 17 - 32 18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stage 1 93 134 - 162 281 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 2 465 278 - 251 134 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HCM Control Delay, s 1.7 0 146.5 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCM LOS F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Capacity (veh/h) 29 619 474 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCM Lane V/C Ratio 0.128 0.06 0.003 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HCM Control Delay (s) 146.5 11.2 1.5 - 12.6 0 - 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HCM Lane LOS F B A - B A - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HCM 95th %tile Q(veh) 0.4 0.2 0 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# 4: Cornwall Street & Dewdney Avenue

| Intersection             |        |      |            |         |      |       |           |     |      |      |        |      |      |
|--------------------------|--------|------|------------|---------|------|-------|-----------|-----|------|------|--------|------|------|
| Int Delay, s/veh         | 0.7    |      |            |         |      |       |           |     |      |      |        |      |      |
| ·                        |        | FDT  | <b>EDD</b> | 14/01   | MOT  | 14/00 |           |     | NET  | LIDD | 051    | 007  | 000  |
| Movement                 | EBL    | EBT  | EBR        | WBL     | WBT  | WBR   | N         | BL  | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations      |        | 414  |            |         | 47>  |       |           |     | 4    | _    |        | 4    | 4.0  |
| Traffic Vol, veh/h       | 15     | 1136 | 0          | 0       | 887  | 8     |           | 0   | 0    | 0    | 4      | 0    | 13   |
| Future Vol, veh/h        | 15     | 1136 | 0          | 0       | 887  | 8     |           | 0   | 0    | 0    | 4      | 0    | 13   |
| Conflicting Peds, #/hr   | 0      | 0    | 0          | 0       | 0    | 0     |           | 0   | 0    | 0    | 0      | 0    | 0    |
| Sign Control             | Free   | Free | Free       | Free    | Free | Free  | S         | top | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized           | -      | -    | None       | -       | -    | None  |           | -   | -    | None | -      | -    | None |
| Storage Length           | -      | -    | -          | -       | -    | -     |           | -   | -    | -    | -      | -    | -    |
| Veh in Median Storage, # | -      | 0    | -          | -       | 0    | -     |           | -   | 0    | -    | -      | 0    | -    |
| Grade, %                 | -      | 0    | -          | -       | 0    | -     |           | -   | 0    | -    | -      | 0    | -    |
| Peak Hour Factor         | 81     | 81   | 81         | 81      | 81   | 81    |           | 81  | 81   | 81   | 81     | 81   | 81   |
| Heavy Vehicles, %        | 3      | 3    | 3          | 3       | 3    | 3     |           | 3   | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 19     | 1402 | 0          | 0       | 1095 | 10    |           | 0   | 0    | 0    | 5      | 0    | 16   |
|                          |        |      |            |         |      |       |           |     |      |      |        |      |      |
| Major/Minor              | Major1 |      |            | Major2  |      |       | Mino      | or1 |      |      | Minor2 |      |      |
| Conflicting Flow All     | 1105   | 0    | 0          | 1402    | 0    | 0     | 19        | 88  | 2545 | 701  | 1838   | 2540 | 552  |
| Stage 1                  | -      | _    | -          | -       | -    | -     |           | 40  | 1440 | -    | 1100   | 1100 | _    |
| Stage 2                  | _      | _    | _          | _       | _    | _     |           | 48  | 1105 | _    | 738    | 1440 | _    |
| Critical Hdwy            | 4.16   | _    | _          | 4.16    | _    | _     |           | .56 | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -      | _    | _          | -       | _    | _     |           | .56 | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2      | _      | -    | -          | -       | _    | -     |           | .56 | 5.56 | _    | 6.56   | 5.56 | _    |
| Follow-up Hdwy           | 2.23   | _    | _          | 2.23    | _    | _     |           | .53 | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 622    | _    | _          | 478     | _    | -     |           | 36  | 26   | 379  | 46     | 26   | 475  |
| Stage 1                  | -      | _    | _          | -       | _    | _     | 1         | 38  | 195  | -    | 225    | 284  | -    |
| Stage 2                  | _      | -    | -          | _       | _    | _     |           | 86  | 283  | _    | 373    | 195  | _    |
| Platoon blocked, %       |        | _    | _          |         | _    | _     | 7         | 00  | 200  |      | 010    | 100  |      |
| Mov Cap-1 Maneuver       | 622    | _    | _          | 478     | _    | _     |           | 31  | 22   | 379  | 41     | 22   | 475  |
| Mov Cap-1 Maneuver       | 022    | _    | _          | -770    | _    |       |           | 31  | 22   | -    | 41     | 22   | 413  |
| Stage 1                  | _      | _    | _          | -       | _    | _     | 1         | 19  | 168  | _    | 194    | 284  | _    |
| Stage 2                  | -      | -    | -          | -       | _    | -     |           | 70  | 283  | _    | 322    | 168  | -    |
| Stage 2                  | -      | -    | -          | -       | -    | -     | 4         | +70 | 203  | -    | 322    | 100  | -    |
| Approach                 | EB     |      |            | WB      |      |       |           | NB  |      |      | SB     |      |      |
| HCM Control Delay, s     | 0.8    |      |            | 0       |      |       |           | 0   |      |      | 36.2   |      |      |
| HCM LOS                  | 0.0    |      |            | J       |      |       |           | Å   |      |      | E      |      |      |
| Minor Lane/Major Mvmt    | NBLn1  | EBL  | EBT        | EBR WBL | WBT  | WBR   | SBLn1     |     |      |      |        |      |      |
| Capacity (veh/h)         |        | 622  |            | - 478   |      |       | 136       |     |      |      |        |      |      |
| HCM Lane V/C Ratio       | _      | 0.03 | _          |         |      | _     | 0.154     |     |      |      |        |      |      |
| HCM Control Delay (s)    | 0      | 11   | 0.7        | - 0     | _    |       | 36.2      |     |      |      |        |      |      |
| HCM Lane LOS             | A      | В    | Α          | - A     | _    | -     | 50.2<br>E |     |      |      |        |      |      |
| HCM 95th %tile Q(veh)    | ^      | 0.1  | -          | - 0     | -    | -     | 0.5       |     |      |      |        |      |      |
| HOW SOUL WILL W(VEIL)    | -      | 0.1  | -          | - 0     | -    | -     | 0.5       |     |      |      |        |      |      |

| Intersection             |        |      |     |        |            |      |        |      |
|--------------------------|--------|------|-----|--------|------------|------|--------|------|
| Int Delay, s/veh         | 0.8    |      |     |        |            |      |        |      |
| Movement                 | EBL    | EBT  |     |        | WBT        | WBR  | SBL    | SBR  |
| Lane Configurations      |        | 414  |     |        | <b>↑</b> ↑ |      | ¥      |      |
| Traffic Vol, veh/h       | 17     | 1123 |     |        | 874        | 7    | 2      | 21   |
| Future Vol, veh/h        | 17     | 1123 |     |        | 874        | 7    | 2      | 21   |
| Conflicting Peds, #/hr   | 0      | 0    |     |        | 0          | 0    | 0      | 0    |
| Sign Control             | Free   | Free |     |        | Free       | Free | Stop   | Stop |
| RT Channelized           | -      | None |     |        | -          | None | -      | None |
| Storage Length           | -      | -    |     |        | -          | -    | 0      | -    |
| Veh in Median Storage, # | -      | 0    |     |        | 0          | -    | 0      | -    |
| Grade, %                 | -      | 0    |     |        | 0          | -    | 0      | -    |
| Peak Hour Factor         | 81     | 81   |     |        | 81         | 81   | 81     | 81   |
| Heavy Vehicles, %        | 3      | 3    |     |        | 3          | 3    | 3      | 3    |
| Mvmt Flow                | 21     | 1386 |     |        | 1079       | 9    | 2      | 26   |
|                          |        |      |     |        |            |      |        | -    |
| Major/Minor              | Major1 |      |     |        | Major2     |      | Minor2 |      |
| Conflicting Flow All     | 1088   | 0    |     |        | -          | 0    | 1818   | 544  |
| Stage 1                  | 1000   | -    |     |        | -          | -    | 1083   | 544  |
| Stage 2                  | -      | -    |     |        | -          | _    | 735    | -    |
| Critical Hdwy            | 4.16   | _    |     |        | -          | -    | 6.86   | 6.96 |
| Critical Hdwy Stg 1      | 7.10   | -    |     |        | _          |      | 5.86   | 0.30 |
| Critical Hdwy Stg 2      | -      | _    |     |        | _          |      | 5.86   | -    |
| Follow-up Hdwy           | 2.23   | _    |     |        | _          | _    | 3.53   | 3.33 |
| Pot Cap-1 Maneuver       | 631    | _    |     |        | -          | -    | 68     | 481  |
| Stage 1                  | -      | _    |     |        | _          |      | 284    | 701  |
| Stage 2                  | -      | _    |     |        | _          |      | 433    | -    |
| Platoon blocked, %       | -      | -    |     |        | -          | _    | 400    | -    |
| Mov Cap-1 Maneuver       | 631    | _    |     |        | -          | -    | 58     | 481  |
| Mov Cap-1 Maneuver       | 001    | _    |     |        | -          | _    | 58     | 401  |
| Stage 1                  | -      | -    |     |        | -          | -    | 284    | -    |
| Stage 1                  | -      | -    |     |        | -          | _    | 370    | -    |
| Olaye Z                  | -      | -    |     |        | -          | -    | 310    | -    |
| Annroach                 | EB     |      |     |        | WB         |      | SB     |      |
| Approach                 |        |      |     |        |            |      |        |      |
| HCM Control Delay, s     | 1      |      |     |        | 0          |      | 18.6   |      |
| HCM LOS                  |        |      |     |        |            |      | С      |      |
| Minor Long/Maior Missort | רחי    | EDT  | WDT | WDD CD | l n1       |      |        |      |
| Minor Lane/Major Mvmt    | EBL    | EBT  | WBT | WBR SB |            |      |        |      |
| Capacity (veh/h)         | 631    | -    | -   |        | 294        |      |        |      |
| HCM Lane V/C Ratio       | 0.033  | -    | -   | - 0.   |            |      |        |      |
| HCM Control Delay (s)    | 10.9   | 0.8  | -   |        | 18.6       |      |        |      |
| HCM Lane LOS             | В      | Α    | -   | -      | С          |      |        |      |
| HCM 95th %tile Q(veh)    | 0.1    | -    | -   | -      | 0.3        |      |        |      |

| Literatura                              |                  |      |     |       |          |               |       |           |        |  |
|-----------------------------------------|------------------|------|-----|-------|----------|---------------|-------|-----------|--------|--|
| Intersection Int Delay, s/veh           | 0.5              |      |     |       |          |               |       |           |        |  |
| Movement                                | EBL              | EBT  |     |       | WB       | Т             | WBR   | SBL       | SBR    |  |
| Lane Configurations                     | LDL              | 41   |     |       | <u> </u> |               | WDIX  | ₩.        | OBIT   |  |
| Traffic Vol, veh/h                      | 9                | 1116 |     |       | 85       |               | 5     | <u>т</u>  | 31     |  |
| Future Vol, veh/h                       | 9                | 1116 |     |       | 85       |               | 5     | 1         | 31     |  |
| Conflicting Peds, #/hr                  | 0                | 0    |     |       |          | 0             | 0     | 0         | 0      |  |
| Sign Control                            | Free             | Free |     |       | Fre      |               | Free  | Stop      | Stop   |  |
| RT Channelized                          | 1166             | None |     |       | 116      |               | None  | Slop      | None   |  |
| Storage Length                          | -                | NOHE |     |       |          | -             | INOHE | 0         | 110116 |  |
| Veh in Median Storage, #                | _<br>!           | 0    |     |       |          | 0             | _     | 0         |        |  |
| Grade, %                                | <br>-            | 0    |     |       |          | 0             | -     | 0         | -      |  |
| Peak Hour Factor                        | 81               | 81   |     |       | 8        |               | 81    | 81        | 81     |  |
| Heavy Vehicles, %                       | 3                | 3    |     |       |          | 3             | 3     | 3         | 3      |  |
| Mvmt Flow                               | 11               | 1378 |     |       | 104      |               | 6     | 1         | 38     |  |
| IVIVIII ( I I I I I I I I I I I I I I I | - 11             | 1070 |     |       | 104      | J             | U     |           | 30     |  |
| Major/Minor                             | Major1           |      |     |       | Major    | 2             |       | Minor2    |        |  |
| Conflicting Flow All                    | 1056             | 0    |     |       | iviajoi  | <u>-</u><br>- | 0     | 1763      | 528    |  |
| Stage 1                                 | 1000             | -    |     |       |          | _             | -     | 1052      | 520    |  |
| Stage 2                                 | _                | -    |     |       |          | _             | _     | 711       | _      |  |
| Critical Hdwy                           | 4.16             | -    |     |       |          | _             | -     | 6.86      | 6.96   |  |
| Critical Hdwy Stg 1                     | 4.10             | -    |     |       |          | -             | _     | 5.86      | 0.90   |  |
| Critical Hdwy Stg 2                     | -                | -    |     |       |          | -             | -     | 5.86      | -      |  |
| Follow-up Hdwy                          | 2.23             | -    |     |       |          | _             | -     | 3.53      | 3.33   |  |
| Pot Cap-1 Maneuver                      | 649              | _    |     |       |          | -             | -     | 74        | 492    |  |
| Stage 1                                 | 043              | -    |     |       |          | _             | -     | 295       | 432    |  |
| Stage 2                                 | -                | _    |     |       |          | _             | _     | 445       | -      |  |
| Platoon blocked, %                      | _                | -    |     |       |          | _             | _     | UFF       | _      |  |
| Mov Cap-1 Maneuver                      | 649              | _    |     |       |          | _             | -     | 69        | 492    |  |
| Mov Cap-1 Maneuver                      | U <del>1</del> 3 | _    |     |       |          | _             | _     | 69        | 732    |  |
| Stage 1                                 | -                | _    |     |       |          | _             | _     | 295       | -      |  |
| Stage 2                                 | -                | -    |     |       |          | _             | _     | 413       | -      |  |
| Olaye 2                                 | -                | _    |     |       |          | _             | -     | 413       | -      |  |
| Approach                                | EB               |      |     |       | W        | В             |       | SB        |        |  |
| HCM Control Delay, s                    | 0.5              |      |     |       |          | 0             |       | 14.6      |        |  |
| HCM LOS                                 | 0.0              |      |     |       |          | J             |       | 14.0<br>B |        |  |
| TIOM EOU                                |                  |      |     |       |          |               |       | Ь         |        |  |
| Minor Lane/Major Mvmt                   | EBL              | EBT  | WRT | WBR S | Bl n1    |               |       |           |        |  |
| Capacity (veh/h)                        | 649              | -    | -   | -     | 413      |               |       |           |        |  |
| HCM Lane V/C Ratio                      | 0.017            | -    | _   |       | 0.096    |               |       |           |        |  |
| HCM Control Delay (s)                   | 10.6             | 0.4  | -   |       | 14.6     |               |       |           |        |  |
| HCM Lane LOS                            | В                | Α    | _   | _     | В        |               |       |           |        |  |
| HCM 95th %tile Q(veh)                   | 0.1              | -    | -   |       | 0.3      |               |       |           |        |  |
| TOWN JOHN JOHNE Q(VEII)                 | 0.1              | _    | -   | -     | 0.0      |               |       |           |        |  |

| Intersection                 |        |       |     |        |               |      |        |        |  |
|------------------------------|--------|-------|-----|--------|---------------|------|--------|--------|--|
| Int Delay, s/veh             | 0.8    |       |     |        |               |      |        |        |  |
| Movement                     | EBL    | EBT   |     |        | WBT           | WBR  | SBL    | SBR    |  |
| Lane Configurations          |        | 414   |     |        | <b>↑</b> ↑    |      | W      |        |  |
| Traffic Vol, veh/h           | 27     | 1090  |     |        | 837           | 23   | 1      | 18     |  |
| Future Vol, veh/h            | 27     | 1090  |     |        | 837           | 23   | 1      | 18     |  |
| Conflicting Peds, #/hr       | 0      | 0     |     |        | 0             | 0    | 0      | 0      |  |
| Sign Control                 | Free   | Free  |     |        | Free          | Free | Stop   | Stop   |  |
| RT Channelized               | -      | None  |     |        | -             | None | -      | None   |  |
| Storage Length               | _      | -     |     |        | _             | -    | 0      | -      |  |
| Veh in Median Storage, #     | ! _    | 0     |     |        | 0             | _    | 0      | -      |  |
| Grade, %                     | _      | 0     |     |        | 0             | _    | 0      | _      |  |
| Peak Hour Factor             | 81     | 81    |     |        | 81            | 81   | 81     | 81     |  |
| Heavy Vehicles, %            | 3      | 3     |     |        | 3             | 3    | 3      | 3      |  |
| Mymt Flow                    | 33     | 1346  |     |        | 1033          | 28   | 1      | 22     |  |
|                              | - 00   | 10-10 |     |        | 1000          | 20   |        |        |  |
| Major/Minor                  | Major1 |       |     |        | Major2        |      | Minor2 |        |  |
|                              | 1062   | 0     |     |        | iviajuiz<br>- | 0    | 1788   | 531    |  |
| Conflicting Flow All Stage 1 | 1002   | -     |     |        | -             | -    | 1048   | 331    |  |
|                              | -      |       |     |        | -             |      | 740    | -      |  |
| Stage 2                      | 4.16   | -     |     |        | -             | -    | 6.86   | 6.96   |  |
| Critical Hdwy                | 4.10   | -     |     |        | -             | -    |        | 0.90   |  |
| Critical Hdwy Stg 1          | -      | -     |     |        | -             | -    | 5.86   | -      |  |
| Critical Hdwy Stg 2          | - 0.00 | -     |     |        | -             | -    | 5.86   | - 2.22 |  |
| Follow-up Hdwy               | 2.23   | -     |     |        | -             | -    | 3.53   | 3.33   |  |
| Pot Cap-1 Maneuver           | 646    | -     |     |        | -             | -    | 72     | 490    |  |
| Stage 1                      | -      | -     |     |        | -             | -    | 296    | -      |  |
| Stage 2                      | -      | -     |     |        | -             | -    | 430    | -      |  |
| Platoon blocked, %           | 0.10   | -     |     |        | -             | -    |        | 400    |  |
| Mov Cap-1 Maneuver           | 646    | -     |     |        | -             | -    | 57     | 490    |  |
| Mov Cap-2 Maneuver           | -      | -     |     |        | -             | -    | 57     | -      |  |
| Stage 1                      | -      | -     |     |        | -             | -    | 296    | -      |  |
| Stage 2                      | -      | -     |     |        | -             | -    | 343    | -      |  |
|                              |        |       |     |        |               |      |        |        |  |
| Approach                     | EB     |       |     |        | WB            |      | SB     |        |  |
| HCM Control Delay, s         | 1.2    |       |     |        | 0             |      | 16     |        |  |
| HCM LOS                      |        |       |     |        |               |      | С      |        |  |
|                              |        |       |     |        |               |      |        |        |  |
| Minor Lane/Major Mvmt        | EBL    | EBT   | WBT | WBR SE | BLn1          |      |        |        |  |
| Capacity (veh/h)             | 646    | -     | -   | -      | 350           |      |        |        |  |
| HCM Lane V/C Ratio           | 0.052  | -     | -   | - 0    | .067          |      |        |        |  |
| HCM Control Delay (s)        | 10.9   | 1     | -   | -      | 16            |      |        |        |  |
| HCM Lane LOS                 | В      | A     | -   | -      | C             |      |        |        |  |
| HCM 95th %tile Q(veh)        | 0.2    | -     | -   | -      | 0.2           |      |        |        |  |
|                              |        |       |     |        |               |      |        |        |  |

|                         | ۶      | <b>→</b> | •       | •      | <b>←</b>   | •       | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|-------------------------|--------|----------|---------|--------|------------|---------|--------|----------|-------------|----------|----------|------|
| Lane Group              | EBL    | EBT      | EBR     | WBL    | WBT        | WBR     | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations     | ች      | <b>^</b> | 7       | ሻ      | <b>†</b> † | 7       | ሻ      | ተተኈ      |             | ች        | ተተኈ      |      |
| Traffic Volume (vph)    | 164    | 749      | 165     | 295    | 862        | 136     | 265    | 1338     | 206         | 124      | 1047     | 158  |
| Future Volume (vph)     | 164    | 749      | 165     | 295    | 862        | 136     | 265    | 1338     | 206         | 124      | 1047     | 158  |
| Ideal Flow (vphpl)      | 1800   | 1800     | 1800    | 1800   | 1800       | 1800    | 1800   | 1800     | 1800        | 1800     | 1800     | 1800 |
| Storage Length (m)      | 30.0   |          | 50.0    | 30.0   |            | 30.0    | 90.0   |          | 0.0         | 75.0     |          | 0.0  |
| Storage Lanes           | 1      |          | 1       | 1      |            | 1       | 1      |          | 0           | 1        |          | 0    |
| Taper Length (m)        | 20.0   |          | •       | 25.0   |            | •       | 35.0   |          | -           | 40.0     |          |      |
| Lane Util. Factor       | 1.00   | 0.95     | 1.00    | 1.00   | 0.95       | 1.00    | 1.00   | 0.91     | 0.91        | 1.00     | 0.91     | 0.91 |
| Ped Bike Factor         | 1.00   |          | 0.97    | 1.00   |            | 0.97    |        | 1.00     |             | 1.00     | 0.99     |      |
| Frt                     |        |          | 0.850   |        |            | 0.850   |        | 0.980    |             |          | 0.980    |      |
| Flt Protected           | 0.950  |          |         | 0.950  |            |         | 0.950  |          |             | 0.950    |          |      |
| Satd. Flow (prot)       | 1695   | 3390     | 1517    | 1695   | 3390       | 1517    | 1695   | 4751     | 0           | 1695     | 4742     | 0    |
| Flt Permitted           | 0.131  |          |         | 0.113  |            |         | 0.102  |          | -           | 0.113    |          |      |
| Satd. Flow (perm)       | 233    | 3390     | 1478    | 201    | 3390       | 1477    | 182    | 4751     | 0           | 201      | 4742     | 0    |
| Right Turn on Red       |        |          | Yes     |        |            | Yes     |        |          | Yes         |          |          | Yes  |
| Satd. Flow (RTOR)       |        |          | 159     |        |            | 123     |        | 27       |             |          | 24       |      |
| Link Speed (k/h)        |        | 50       |         |        | 50         |         |        | 50       |             |          | 50       |      |
| Link Distance (m)       |        | 458.3    |         |        | 110.3      |         |        | 220.1    |             |          | 211.9    |      |
| Travel Time (s)         |        | 33.0     |         |        | 7.9        |         |        | 15.8     |             |          | 15.3     |      |
| Confl. Peds. (#/hr)     | 13     | 00.0     | 12      | 12     | 7.0        | 13      | 32     | 10.0     | 20          | 20       | 10.0     | 32   |
| Peak Hour Factor        | 0.92   | 0.92     | 0.92    | 0.92   | 0.92       | 0.92    | 0.92   | 0.92     | 0.92        | 0.92     | 0.92     | 0.92 |
| Heavy Vehicles (%)      | 2%     | 2%       | 2%      | 2%     | 2%         | 2%      | 2%     | 2%       | 2%          | 2%       | 2%       | 2%   |
| Adj. Flow (vph)         | 178    | 814      | 179     | 321    | 937        | 148     | 288    | 1454     | 224         | 135      | 1138     | 172  |
| Shared Lane Traffic (%) | 170    | 011      | 170     | 021    | 001        | 110     | 200    | 1101     |             | 100      | 1100     |      |
| Lane Group Flow (vph)   | 178    | 814      | 179     | 321    | 937        | 148     | 288    | 1678     | 0           | 135      | 1310     | 0    |
| Turn Type               | pm+pt  | NA       | Perm    | pm+pt  | NA         | Perm    | pm+pt  | NA       |             | pm+pt    | NA       |      |
| Protected Phases        | 7      | 4        | 1 01111 | 3      | 8          | 1 01111 | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases        | 4      |          | 4       | 8      |            | 8       | 2      | _        |             | 6        |          |      |
| Detector Phase          | 7      | 4        | 4       | 3      | 8          | 8       | 5      | 2        |             | 1        | 6        |      |
| Switch Phase            |        |          | ·       |        |            |         | J      | _        |             | ·        | , i      |      |
| Minimum Initial (s)     | 7.0    | 10.0     | 10.0    | 7.0    | 10.0       | 10.0    | 7.0    | 15.0     |             | 8.0      | 15.0     |      |
| Minimum Split (s)       | 11.0   | 36.5     | 36.5    | 11.0   | 36.5       | 36.5    | 11.0   | 33.5     |             | 12.0     | 33.5     |      |
| Total Split (s)         | 16.2   | 36.8     | 36.8    | 23.2   | 43.8       | 43.8    | 21.0   | 48.0     |             | 12.0     | 39.0     |      |
| Total Split (%)         | 13.5%  | 30.7%    | 30.7%   | 19.3%  | 36.5%      | 36.5%   | 17.5%  | 40.0%    |             | 10.0%    | 32.5%    |      |
| Maximum Green (s)       | 12.2   | 32.3     | 32.3    | 19.2   | 39.3       | 39.3    | 17.0   | 43.5     |             | 8.0      | 34.5     |      |
| Yellow Time (s)         | 3.0    | 3.5      | 3.5     | 3.0    | 3.5        | 3.5     | 3.0    | 3.5      |             | 3.0      | 3.5      |      |
| All-Red Time (s)        | 1.0    | 1.0      | 1.0     | 1.0    | 1.0        | 1.0     | 1.0    | 1.0      |             | 1.0      | 1.0      |      |
| Lost Time Adjust (s)    | 0.0    | 0.0      | 0.0     | 0.0    | 0.0        | 0.0     | 0.0    | 0.0      |             | 0.0      | 0.0      |      |
| Total Lost Time (s)     | 4.0    | 4.5      | 4.5     | 4.0    | 4.5        | 4.5     | 4.0    | 4.5      |             | 4.0      | 4.5      |      |
| Lead/Lag                | Lead   | Lag      | Lag     | Lead   | Lag        | Lag     | Lead   | Lag      |             | Lead     | Lag      |      |
| Lead-Lag Optimize?      | Yes    | Yes      | Yes     | Yes    | Yes        | Yes     | Yes    | Yes      |             | Yes      | Yes      |      |
| Vehicle Extension (s)   | 2.0    | 2.0      | 2.0     | 2.0    | 2.0        | 2.0     | 2.0    | 2.0      |             | 2.0      | 2.0      |      |
| Recall Mode             | None   | None     | None    | None   | None       | None    | None   | C-Max    |             | None     | C-Max    |      |
| Walk Time (s)           | 140110 | 10.0     | 10.0    | 140110 | 10.0       | 10.0    | 140110 | 10.0     |             | 140110   | 10.0     |      |
| Flash Dont Walk (s)     |        | 22.0     | 22.0    |        | 22.0       | 22.0    |        | 19.0     |             |          | 19.0     |      |
| Pedestrian Calls (#/hr) |        | 10       | 10      |        | 10         | 10      |        | 10       |             |          | 20       |      |
| Act Effct Green (s)     | 43.2   | 31.4     | 31.4    | 55.1   | 39.4       | 39.4    | 56.9   | 44.4     |             | 44.0     | 35.5     |      |
| Actuated g/C Ratio      | 0.36   | 0.26     | 0.26    | 0.46   | 0.33       | 0.33    | 0.47   | 0.37     |             | 0.37     | 0.30     |      |
| v/c Ratio               | 0.81   | 0.20     | 0.26    | 0.40   | 0.33       | 0.33    | 0.47   | 0.95     |             | 0.37     | 0.30     |      |
| V/C Natio               | 0.01   | 0.52     | 0.50    | 0.97   | 0.04       | 0.20    | 0.90   | บ.ชอ     |             | 0.70     | 0.92     |      |

WSP Canada Inc. James Sun 07/20/2017

|                        | •     | -      | •    | •      | <b>←</b> | •    | •      | <b>†</b> | ~   | <b>&gt;</b> | Ţ      | 4   |
|------------------------|-------|--------|------|--------|----------|------|--------|----------|-----|-------------|--------|-----|
| Lane Group             | EBL   | EBT    | EBR  | WBL    | WBT      | WBR  | NBL    | NBT      | NBR | SBL         | SBT    | SBR |
| Control Delay          | 52.9  | 59.0   | 9.3  | 76.1   | 45.7     | 8.7  | 76.1   | 48.5     |     | 54.6        | 52.2   |     |
| Queue Delay            | 0.0   | 0.0    | 0.0  | 0.0    | 0.0      | 0.0  | 0.0    | 0.0      |     | 0.0         | 0.0    |     |
| Total Delay            | 52.9  | 59.0   | 9.3  | 76.1   | 45.7     | 8.7  | 76.1   | 48.5     |     | 54.6        | 52.2   |     |
| LOS                    | D     | Е      | Α    | Е      | D        | Α    | Ε      | D        |     | D           | D      |     |
| Approach Delay         |       | 50.5   |      |        | 48.7     |      |        | 52.5     |     |             | 52.5   |     |
| Approach LOS           |       | D      |      |        | D        |      |        | D        |     |             | D      |     |
| Queue Length 50th (m)  | 24.7  | 97.2   | 3.5  | 60.0   | 107.4    | 4.0  | 53.0   | 139.1    |     | 18.0        | 109.0  |     |
| Queue Length 95th (m)  | #57.6 | #130.9 | 21.0 | #116.3 | 133.7    | 18.6 | #107.1 | #173.2   |     | #49.3       | #139.0 |     |
| Internal Link Dist (m) |       | 434.3  |      |        | 86.3     |      |        | 196.1    |     |             | 187.9  |     |
| Turn Bay Length (m)    | 30.0  |        | 50.0 | 30.0   |          | 30.0 | 90.0   |          |     | 75.0        |        |     |
| Base Capacity (vph)    | 234   | 912    | 514  | 331    | 1117     | 569  | 300    | 1774     |     | 173         | 1418   |     |
| Starvation Cap Reductn | 0     | 0      | 0    | 0      | 0        | 0    | 0      | 0        |     | 0           | 0      |     |
| Spillback Cap Reductn  | 0     | 0      | 0    | 0      | 0        | 0    | 0      | 0        |     | 0           | 0      |     |
| Storage Cap Reductn    | 0     | 0      | 0    | 0      | 0        | 0    | 0      | 0        |     | 0           | 0      |     |
| Reduced v/c Ratio      | 0.76  | 0.89   | 0.35 | 0.97   | 0.84     | 0.26 | 0.96   | 0.95     |     | 0.78        | 0.92   |     |

Intersection Summary

Area Type: Other

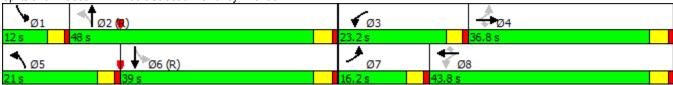
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 105

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.97

Intersection Signal Delay: 51.2 Intersection LOS: D
Intersection Capacity Utilization 95.8% ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                         | ۶     | <b>→</b> | •     | •     | <b>←</b> | •    | 4     | †          | /    | <b>/</b> | ţ        | 4     |
|-------------------------|-------|----------|-------|-------|----------|------|-------|------------|------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR  | NBL   | NBT        | NBR  | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ     | <u></u>  | 7     | ሻ     | ĵ»       |      | ሻ     | <b>↑</b> ↑ |      | ሻ        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 360   | 112      | 542   | 26    | 110      | 22   | 635   | 1567       | 21   | 16       | 1084     | 274   |
| Future Volume (vph)     | 360   | 112      | 542   | 26    | 110      | 22   | 635   | 1567       | 21   | 16       | 1084     | 274   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800     | 1800 | 1800  | 1800       | 1800 | 1800     | 1800     | 1800  |
| Storage Length (m)      | 40.0  |          | 0.0   | 10.0  |          | 0.0  | 35.0  |            | 60.0 | 45.0     |          | 0.0   |
| Storage Lanes           | 1     |          | 1     | 1     |          | 0    | 1     |            | 0    | 1        |          | 1     |
| Taper Length (m)        | 23.0  |          |       | 10.0  |          |      | 25.0  |            |      | 35.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95 | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |       |       | 1.00     |      |       |            |      |          |          | 0.92  |
| Frt                     |       |          | 0.850 |       | 0.975    |      |       | 0.998      |      |          |          | 0.850 |
| Flt Protected           | 0.950 |          |       | 0.950 |          |      | 0.950 |            |      | 0.950    |          |       |
| Satd. Flow (prot)       | 1695  | 1784     | 1517  | 1695  | 1713     | 0    | 1695  | 3383       | 0    | 1695     | 3390     | 1517  |
| FIt Permitted           | 0.456 |          |       | 0.679 |          |      | 0.104 |            |      | 0.138    |          |       |
| Satd. Flow (perm)       | 811   | 1784     | 1517  | 1212  | 1713     | 0    | 186   | 3383       | 0    | 246      | 3390     | 1394  |
| Right Turn on Red       |       |          | Yes   |       |          | Yes  |       |            | Yes  |          |          | Yes   |
| Satd. Flow (RTOR)       |       |          | 525   |       | 8        |      |       | 2          |      |          |          | 227   |
| Link Speed (k/h)        |       | 50       |       |       | 50       |      |       | 50         |      |          | 50       |       |
| Link Distance (m)       |       | 105.7    |       |       | 332.1    |      |       | 329.7      |      |          | 294.1    |       |
| Travel Time (s)         |       | 7.6      |       |       | 23.9     |      |       | 23.7       |      |          | 21.2     |       |
| Confl. Peds. (#/hr)     | 4     |          |       |       |          | 4    | 51    |            |      |          |          | 51    |
| Peak Hour Factor        | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92 | 0.92  | 0.92       | 0.92 | 0.92     | 0.92     | 0.92  |
| Heavy Vehicles (%)      | 2%    | 2%       | 2%    | 2%    | 3%       | 5%   | 2%    | 2%         | 2%   | 2%       | 2%       | 2%    |
| Adj. Flow (vph)         | 391   | 122      | 589   | 28    | 120      | 24   | 690   | 1703       | 23   | 17       | 1178     | 298   |
| Shared Lane Traffic (%) |       |          |       |       |          |      |       |            |      |          |          |       |
| Lane Group Flow (vph)   | 391   | 122      | 589   | 28    | 144      | 0    | 690   | 1726       | 0    | 17       | 1178     | 298   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       |      | pm+pt | NA         |      | Perm     | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8        |      | 5     | 2          |      |          | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |          |      | 2     |            |      | 6        |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        |      | 5     | 2          |      | 6        | 6        | 6     |
| Switch Phase            |       |          |       |       |          |      |       |            |      |          |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     |      | 7.0   | 15.0       |      | 15.0     | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5     |      | 11.0  | 19.5       |      | 30.5     | 30.5     | 30.5  |
| Total Split (s)         | 11.0  | 36.5     | 36.5  | 11.0  | 36.5     |      | 32.0  | 72.5       |      | 40.5     | 40.5     | 40.5  |
| Total Split (%)         | 9.2%  | 30.4%    | 30.4% | 9.2%  | 30.4%    |      | 26.7% | 60.4%      |      | 33.8%    | 33.8%    | 33.8% |
| Maximum Green (s)       | 7.0   | 32.0     | 32.0  | 7.0   | 32.0     |      | 28.0  | 68.0       |      | 36.0     | 36.0     | 36.0  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      |      | 3.0   | 3.5        |      | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |      | 1.0   | 1.0        |      | 1.0      | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |      | 0.0   | 0.0        |      | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      |      | 4.0   | 4.5        |      | 4.5      | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      |      | Lead  |            |      | Lag      | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      |      | Yes   |            |      | Yes      | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |      | 2.0   | 2.0        |      | 2.0      | 2.0      | 2.0   |
| Recall Mode             | None  | None     | None  | None  | None     |      | None  | C-Max      |      | C-Max    | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0     |      |       |            |      | 10.0     | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0     |      |       |            |      | 16.0     | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 4        |      |       |            |      | 25       | 25       | 25    |
| Act Effct Green (s)     | 27.1  | 22.4     | 22.4  | 25.5  | 18.0     |      | 82.5  | 82.0       |      | 36.0     | 36.0     | 36.0  |
| Actuated g/C Ratio      | 0.23  | 0.19     | 0.19  | 0.21  | 0.15     |      | 0.69  | 0.68       |      | 0.30     | 0.30     | 0.30  |
| v/c Ratio               | 1.67  | 0.37     | 0.83  | 0.10  | 0.55     |      | 1.05  | 0.75       |      | 0.23     | 1.16     | 0.52  |

WSP Canada Inc. James Sun 07/20/2017

### 8: Broad Street & Dewdney Avenue

|                        | •      | -     | •    | •    | •     | •   | 4      | <b>†</b> | ~   | -    | <b>↓</b> | 4    |
|------------------------|--------|-------|------|------|-------|-----|--------|----------|-----|------|----------|------|
| Lane Group             | EBL    | EBT   | EBR  | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL  | SBT      | SBR  |
| Control Delay          | 349.0  | 45.2  | 17.4 | 31.5 | 50.4  |     | 81.6   | 16.8     |     | 41.5 | 120.8    | 12.4 |
| Queue Delay            | 0.0    | 0.0   | 0.0  | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0  | 0.0      | 0.0  |
| Total Delay            | 349.0  | 45.2  | 17.4 | 31.5 | 50.4  |     | 81.6   | 16.8     |     | 41.5 | 120.8    | 12.4 |
| LOS                    | F      | D     | В    | С    | D     |     | F      | В        |     | D    | F        | В    |
| Approach Delay         |        | 138.1 |      |      | 47.3  |     |        | 35.3     |     |      | 98.3     |      |
| Approach LOS           |        | F     |      |      | D     |     |        | D        |     |      | F        |      |
| Queue Length 50th (m)  | ~118.6 | 27.7  | 14.1 | 5.3  | 31.3  |     | 140.3  | 109.7    |     | 3.0  | ~172.6   | 12.3 |
| Queue Length 95th (m)  | #172.9 | 39.0  | 54.5 | 10.6 | 43.6  |     | #283.6 | 218.6    |     | 10.1 | #213.9   | 38.4 |
| Internal Link Dist (m) |        | 81.7  |      |      | 308.1 |     |        | 305.7    |     |      | 270.1    |      |
| Turn Bay Length (m)    | 40.0   |       |      | 10.0 |       |     | 35.0   |          |     | 45.0 |          |      |
| Base Capacity (vph)    | 234    | 475   | 789  | 285  | 462   |     | 656    | 2312     |     | 73   | 1017     | 577  |
| Starvation Cap Reductn | 0      | 0     | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Spillback Cap Reductn  | 0      | 0     | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Storage Cap Reductn    | 0      | 0     | 0    | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Reduced v/c Ratio      | 1.67   | 0.26  | 0.75 | 0.10 | 0.31  |     | 1.05   | 0.75     |     | 0.23 | 1.16     | 0.52 |

#### Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.67

Intersection Signal Delay: 75.7 Intersection LOS: E
Intersection Capacity Utilization 114.6% ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | late as a still a             |        |             |     |         |             |     |        |      |     |        |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-------------|-----|---------|-------------|-----|--------|------|-----|--------|------|------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection Int Delay, s/veh | 4.8    |             |     |         |             |     |        |      |     |        |      |      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • .                           | EBL    | EBT         | EBR | WBL     | WBT         | WBR | NBL    | NBT  | NBR | SBL    | SBT  | SBR  |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lane Configurations           | ች      | <b>≜</b> t₃ |     | *       | <b>A</b> ta |     |        | 44   |     |        | 44   |      |
| Future Vol, veh/h         52         999         29         22         1167         23         8         2         77         6         1           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |        |             | 29  |         |             | 23  | 8      |      | 77  | 6      | 1    | 118  |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |        |             |     |         |             |     |        |      |     |        | 1    | 118  |
| Sign Control   Free   Stop   Stop   Stop   Stop   Stop   RT Channelized   -   None   None | · ·                           |        |             |     |         |             |     |        |      |     |        | 0    | 0    |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                             | -      |             | -   | -       | -           |     |        |      |     |        |      | Stop |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |        |             |     |         |             |     | -      |      |     |        | -    | None |
| Veh in Median Storage, #         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         0         -         -         0         -         -         0         -         -         0         0         -         -         0         0         -         -         0         -         -         0         0         -         -         0         0         1         Major William         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 200    | _           |     | 250     | _           |     | _      | _    | -   | -      | _    | -    |
| Grade, %         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         -         0         -         0         0         2         9         2         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |        | 0           | _   |         | 0           | -   | _      | 0    | _   | -      | 0    | _    |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |        |             |     | _       |             | _   |        |      |     | _      |      | _    |
| Heavy Vehicles, %   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                             |        |             |     |         |             |     |        |      |     |        |      | 92   |
| Mymmt Flow         57         1086         32         24         1268         25         9         2         84         7         1           Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1293         0         0         1117         0         0         1898         2556         559         1986         2559           Stage 1         -         -         -         -         -         -         1215         1215         -         1329         1329           Stage 2         -         -         -         -         -         683         1341         -         657         1230           Critical Hdwy         4.16         -         -         -         -         6.56         6.56         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |        |             |     |         |             |     |        |      |     |        |      | 3    |
| Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1293         0         0         1117         0         0         1898         2556         559         1986         2559           Stage 1         -         -         -         -         -         1215         1215         -         1329         1329           Stage 2         -         -         -         -         683         1341         -         657         1230           Critical Hdwy Stg 1         -         -         -         -         6.56         5.56         -         6.56         5.56           Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56           Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56           Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56           Follow-up Hdwy         2.23         -         -         2.33         -         -         2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |        |             |     |         |             |     |        |      |     |        |      | 128  |
| Conflicting Flow All   1293   0   0   1117   0   0   1898   2556   559   1986   2559   Stage 1     1215   1215     1329   1329   Stage 2     683   1341     657   1230   Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WWIIICI IOW                   | 31     | 1000        | 52  | 24      | 1200        | 25  | 3      | 2    | 04  | ı      | ı    | 120  |
| Conflicting Flow All   1293   0   0   1117   0   0   1898   2556   559   1986   2559   Stage 1     1215   1215     1329   1329   Stage 2     683   1341     657   1230   Critical Hdwy Stg 2     6.56   6.56   6.56   6.56   Critical Hdwy Stg 1     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     6.56   5.56   -   6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2   -     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     -   6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     -   6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2     -   6.56   5.56   -   6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2   -     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56     6.56   5.56   -   6.56   5.56   Critical Hdwy Stg 2       6.56   5.56   -   6.56   5.56   Cri                                                                                                                                                                                                                                                                                                                | Major/Minor                   | Major1 |             |     | Major2  |             |     | Minor1 |      |     | Minor2 |      |      |
| Stage 1       -       -       -       -       1215       1215       -       1329       1329         Stage 2       -       -       -       -       -       -       683       1341       -       657       1230         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56         Critical Hdwy Stg 1       -       -       -       -       -       6.56       5.56       -       6.56       5.56         Critical Hdwy Stg 2       -       -       -       -       -       6.56       5.56       -       6.56       5.56         Critical Hdwy Stg 2       -       -       -       -       6.56       5.56       -       6.56       5.56         Follow-up Hdwy       2.23       -       2.23       -       3.53       4.03       3.33       3.53       4.03         Pollow-up Hdwy       2.23       -       -       615       -       42       26       470       36       26         Stage 1       -       -       -       -       -       191       250       -       162 <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>1898</td> <td>2556</td> <td>559</td> <td>1986</td> <td>2559</td> <td>647</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |        | 0           | 0   |         | 0           | 0   | 1898   | 2556 | 559 | 1986   | 2559 | 647  |
| Stage 2         -         -         -         -         683         1341         -         657         1230           Critical Hdwy         4.16         -         -         4.16         -         -         7.56         6.56         6.96         7.56         6.56           Critical Hdwy Stg 1         -         -         -         -         6.56         5.56         -         6.56         5.56           Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56           Follow-up Hdwy         2.23         -         2.23         -         3.53         4.03         3.33         3.53         4.03           Pot Cap-1 Maneuver         527         -         615         -         42         26         470         36         26           Stage 1         -         -         -         -         191         250         -         162         220           Stage 2         -         -         -         -         25         22         470         24         22           Mov Cap-1 Maneuver         527         -         615         -         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ū                             |        |             |     |         |             |     |        |      |     |        |      | _    |
| Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6.56         Critical Hdwy Stg 1       -       -       -       -       -       6.56       5.56       -       6.56       5.56         Critical Hdwy Stg 2       -       -       -       -       -       6.56       5.56       -       6.56       5.56         Follow-up Hdwy       2.23       -       -       2.23       -       -       6.56       5.56       -       6.56       5.56         Follow-up Hdwy       2.23       -       -       2.23       -       -       6.56       5.56       -       6.56       5.56         Follow-up Hdwy       2.23       -       -       615       -       4.2       26       470       36       26         Stage 1       -       -       -       -       -       -       -       191       250       -       162       220         Mov Cap-1 Maneuver       527       -       -       615       -       25       22       470       24       22         Mov Cap-2 Maneuver       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |        |             |     | _       |             |     |        |      |     |        |      | _    |
| Critical Hdwy Stg 1       -       -       -       -       6.56       5.56       -       6.56       5.56         Critical Hdwy Stg 2       -       -       -       -       6.56       5.56       -       6.56       5.56         Follow-up Hdwy       2.23       -       -       2.23       -       -       3.53       4.03       3.33       3.53       4.03         Pot Cap-1 Maneuver       527       -       615       -       42       26       470       36       26         Stage 1       -       -       -       -       -       191       250       -       162       220         Stage 2       -       -       -       -       -       403       218       -       418       246         Platoon blocked, %       -       -       -       -       -       403       218       -       418       246         Mov Cap-1 Maneuver       527       -       615       -       -       25       22       470       24       22         Mov Cap-2 Maneuver       -       -       -       -       -       170       223       -       144       211 <td>ū</td> <td></td> <td>_</td> <td>-</td> <td>4 16</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.96</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ū                             |        | _           | -   | 4 16    | _           | _   |        |      |     |        |      | 6.96 |
| Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56           Follow-up Hdwy         2.23         -         -         2.23         -         -         3.53         4.03         3.33         3.53         4.03           Pot Cap-1 Maneuver         527         -         -         615         -         42         26         470         36         26           Stage 1         -         -         -         -         191         250         -         162         220           Stage 2         -         -         -         -         -         403         218         -         418         246           Plation blocked, %         -         -         -         -         -         -         -         -         -         -         -         -         -         418         246           Plation blocked, %         -         -         -         -         25         22         470         24         22         22         400         24         22         22         22         40         22         22         30         30         219 </td <td>•</td> <td>4.10</td> <td>_</td> <td>_</td> <td>4.10</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                             | 4.10   | _           | _   | 4.10    | _           |     |        |      |     |        |      | 0.00 |
| Follow-up Hdwy 2.23 2.23 3.53 4.03 3.33 3.53 4.03 Pot Cap-1 Maneuver 527 615 42 26 470 36 26 Stage 1 191 250 - 162 220 Stage 2 403 218 - 418 246 Platoon blocked, % 403 218 - 418 246 Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ,                           | -      |             | _   | _       | _           |     |        |      |     |        |      | _    |
| Pot Cap-1 Maneuver         527         -         615         -         42         26         470         36         26           Stage 1         -         -         -         -         191         250         -         162         220           Stage 2         -         -         -         -         -         403         218         -         418         246           Platoon blocked, %         -         -         -         -         -         -         -         -         -         -         -         -         418         246           Platoon blocked, %         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         25         22         470         24         22         -         -         -         -         -         25         22         -         24         22         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                           | 2 23   |             | _   | 2 23    | _           | _   |        |      |     |        |      | 3.33 |
| Stage 1       -       -       -       -       -       191       250       -       162       220         Stage 2       -       -       -       -       -       403       218       -       418       246         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |        | _           | _   |         |             | _   |        |      |     |        |      | 411  |
| Stage 2       -       -       -       -       -       403       218       -       418       246         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                             | 521    |             | _   | 010     |             | _   |        |      |     |        |      | 711  |
| Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       527       -       615       -       25       22       470       24       22         Mov Cap-2 Maneuver       -       -       -       -       -       25       22       -       24       22         Stage 1       -       -       -       -       -       170       223       -       144       211         Stage 2       -       -       -       -       -       265       209       -       303       219         Approach       EB       WB       NB       NB       SB         HCM Control Delay, s       0.6       0.2       62.2       46.7         HCM LOS       F       E         Minor Lane/Major Mvmt       NBLn1       EBL       EBR       WBL       WBT       WBR SBLn1         Capacity (veh/h)       151       527       -       615       -       215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                             |        |             |     |         |             |     |        |      |     |        |      | _    |
| Mov Cap-1 Maneuver         527         -         615         -         25         22         470         24         22           Mov Cap-2 Maneuver         -         -         -         -         -         25         22         -         24         22           Stage 1         -         -         -         -         -         170         223         -         144         211           Stage 2         -         -         -         -         -         265         209         -         303         219           Approach         EB         WB         NB         NB         SB           HCM Control Delay, s         0.6         0.2         62.2         46.7           HCM LOS         F         E         E    Minor Lane/Major Mvmt  NBLn1  EBL  EBT  EBR  WBL  WBT  WBR SBLn1  Capacity (veh/h)  151  527  - 615  - 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |        | _           | _   |         | _           | _   | 400    | 210  |     | 410    | 240  |      |
| Mov Cap-2 Maneuver         -         -         -         -         -         25         22         -         24         22         Stage 1         -         -         -         -         -         -         170         223         -         144         211         211         223         -         144         211         211         223         -         144         211         211         223         -         144         211         211         223         -         144         211         211         220         -         265         209         -         303         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219         219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                             | 527    |             | _   | 615     | _           | _   | 25     | 22   | 470 | 24     | 22   | 411  |
| Stage 1         -         -         -         -         -         170         223         -         144         211           Stage 2         -         -         -         -         -         265         209         -         303         219           Approach         EB         WB         NB         NB         SB           HCM Control Delay, s         0.6         0.2         62.2         46.7           HCM LOS         F         E         E             Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         151         527         -         615         -         215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                             | JZI    | -           | -   | 013     | -           | -   |        |      |     |        |      | 411  |
| Stage 2         -         -         -         -         -         -         265         209         -         303         219           Approach         EB         WB         NB         SB           HCM Control Delay, s         0.6         0.2         62.2         46.7           HCM LOS         F         E           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         151         527         -         615         -         215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | -      | _           | _   | -       | _           | _   |        |      |     |        |      | -    |
| Approach         EB         WB         NB         SB           HCM Control Delay, s         0.6         0.2         62.2         46.7           HCM LOS         F         E           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         151         527         -         615         -         -         215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |        | -           | -   | -       | _           | _   |        |      |     |        |      | -    |
| HCM Control Delay, s   0.6   0.2   62.2   46.7     HCM LOS   F   E     Minor Lane/Major Mvmt   NBLn1   EBL   EBT   EBR   WBL   WBT   WBR SBLn1     Capacity (veh/h)   151   527   - 615   - 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stage 2                       | -      | -           | -   | -       | -           | -   | 200    | 209  | -   | 303    | 219  | -    |
| HCM Control Delay, s   0.6   0.2   62.2   46.7     HCM LOS   F   E     Minor Lane/Major Mvmt   NBLn1   EBL   EBT   EBR   WBL   WBT   WBR SBLn1     Capacity (veh/h)   151   527   - 615   - 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Annroach                      | FR     |             |     | WR      |             |     | NR     |      |     | SB     |      |      |
| Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         151         527         -         615         -         -         215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |        |             |     |         |             |     |        |      |     |        |      |      |
| Capacity (veh/h) 151 527 615 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                             | 0.0    |             |     | 0.2     |             |     |        |      |     |        |      |      |
| Capacity (veh/h) 151 527 615 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minor Lane/Maior Mymt         | NBLn1  | EBL         | EBT | EBR WBL | WBT         | WBR | SBLn1  |      |     |        |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |        |             |     |         |             |     |        |      |     |        |      |      |
| 11011 Latto 1/0 hatto 0.000 0.101 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |        |             | _   |         | _           |     |        |      |     |        |      |      |
| HCM Control Delay (s) 62.2 12.7 11.1 46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |        |             | _   |         | _           |     |        |      |     |        |      |      |
| HCM Lane LOS F B B E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |        |             | _   |         | _           | _   |        |      |     |        |      |      |
| HCM 95th %tile Q(veh) 3.4 0.4 0.1 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |        |             | _   |         |             | _   |        |      |     |        |      |      |

| Internaction                  |        |       |        |         |                     |      |       |      |               |       |        |            |       |
|-------------------------------|--------|-------|--------|---------|---------------------|------|-------|------|---------------|-------|--------|------------|-------|
| Intersection Int Delay, s/veh | 1.4    |       |        |         |                     |      |       |      |               |       |        |            |       |
| Movement                      | EBL    | EBT   | EBR    | WBL     | WBT                 | WBR  |       | NBL  | NBT           | NBR   | SBL    | SBT        | SBR   |
| Lane Configurations           | EDL    | 413   | EDR    | VVDL    |                     | WDR  |       | INDL |               | INDIX | SDL    |            | SDR   |
| Traffic Vol, veh/h            | 19     | 1062  | 1      | 1       | <b>41</b> ₽<br>1162 | 17   |       | 1    | <b>↔</b><br>1 | 1     | 6      | <b>-</b> ♣ | 50    |
| Future Vol, veh/h             | 19     | 1062  | 1      | 1       | 1162                | 17   |       | 1    | 1             | 1     | 6      | 1          | 50    |
| Conflicting Peds, #/hr        | 0      | 0     | 0      | 0       | 0                   | 0    |       | 0    | 0             | 0     | 0      | 0          | 0     |
| Sign Control                  | Free   | Free  | Free   | Free    | Free                | Free |       | Stop | Stop          | Stop  | Stop   | Stop       | Stop  |
| RT Channelized                | -      |       | None   |         | riee<br>-           | None | •     | Stop |               | None  |        | Stop<br>-  | None  |
|                               | -      | -     | None   | -       | -                   | None |       | -    | -             | None  | -      | -          | None  |
| Storage Length                | -      | 0     | -      | -       | 0                   | -    |       | -    | 0             |       | -      | 0          | -     |
| Veh in Median Storage, #      | -      | 0     | -      | -       | 0                   | -    |       |      | 0             | -     | -      |            | -     |
| Grade, %<br>Peak Hour Factor  | 92     | 92    | 92     | 92      | 92                  | 92   |       | 92   | 92            | 92    | 92     | 92         | 92    |
|                               | 3      | 3     | 3      | 3       | 3                   | 3    |       |      | 3             | 3     | 3      | 3          | 3     |
| Heavy Vehicles, %             | 21     | 1154  | ა<br>1 | ა<br>1  | 1263                | 18   |       | 3    | ა<br>1        |       | 7      | ა<br>1     | 54    |
| Mvmt Flow                     | 21     | 1154  | ı      | ı       | 1203                | 10   |       | ı    | ı             | 1     | 1      | ı          | 54    |
| Major/Minor                   | Major1 |       |        | Major2  |                     |      | Mi    | nor1 |               |       | Minor2 |            |       |
|                               |        |       |        |         |                     |      |       |      | 0400          |       |        | 0474       | C 4 4 |
| Conflicting Flow All          | 1282   | 0     | 0      | 1155    | 0                   | 0    |       | 1830 | 2480          | 578   | 1893   | 2471       | 641   |
| Stage 1                       | -      | -     | -      | -       | -                   | -    | 1     | 1196 | 1196          | -     | 1274   | 1274       | -     |
| Stage 2                       | - 4.40 | -     | -      | -       | -                   | -    |       | 634  | 1284          | -     | 619    | 1197       | -     |
| Critical Hdwy                 | 4.16   | -     | -      | 4.16    | -                   | -    |       | 7.56 | 6.56          | 6.96  | 7.56   | 6.56       | 6.96  |
| Critical Hdwy Stg 1           | -      | -     | -      | -       | -                   | -    |       | 6.56 | 5.56          | -     | 6.56   | 5.56       | -     |
| Critical Hdwy Stg 2           | -      | -     | -      | -       | -                   | -    |       | 6.56 | 5.56          | -     | 6.56   | 5.56       | -     |
| Follow-up Hdwy                | 2.23   | -     | -      | 2.23    | -                   | -    |       | 3.53 | 4.03          | 3.33  | 3.53   | 4.03       | 3.33  |
| Pot Cap-1 Maneuver            | 532    | -     | -      | 595     | -                   | -    |       | 47   | 29            | 457   | 42     | 29         | 415   |
| Stage 1                       | -      | -     | -      | -       | -                   | -    |       | 196  | 256           | -     | 175    | 234        | -     |
| Stage 2                       | -      | -     | -      | -       | -                   | -    |       | 431  | 232           | -     | 440    | 255        | -     |
| Platoon blocked, %            |        | -     | -      |         | -                   | -    |       |      |               |       |        |            |       |
| Mov Cap-1 Maneuver            | 532    | -     | -      | 595     | -                   | -    |       | 36   | 26            | 457   | 37     | 26         | 415   |
| Mov Cap-2 Maneuver            | -      | -     | -      | -       | -                   | -    |       | 36   | 26            | -     | 37     | 26         | -     |
| Stage 1                       | -      | -     | -      | -       | -                   | -    |       | 174  | 228           | -     | 156    | 233        | -     |
| Stage 2                       | -      | -     | -      | -       | -                   | -    |       | 371  | 231           | -     | 389    | 227        | -     |
|                               |        |       |        |         |                     |      |       |      |               |       |        |            |       |
| Approach                      | EB     |       |        | WB      |                     |      |       | NB   |               |       | SB     |            |       |
| HCM Control Delay, s          | 8.0    |       |        | 0       |                     |      |       | 93.3 |               |       | 35.7   |            |       |
| HCM LOS                       |        |       |        |         |                     |      |       | F    |               |       | E      |            |       |
|                               |        |       |        |         |                     |      |       |      |               |       |        |            |       |
| Minor Lane/Major Mvmt         | NBLn1  | EBL   | EBT    | EBR WBL | WBT                 | WBR  | SBLn1 |      |               |       |        |            |       |
| Capacity (veh/h)              | 44     | 532   | -      | - 595   | -                   | -    | 178   |      |               |       |        |            |       |
| HCM Lane V/C Ratio            | 0.074  | 0.039 | -      | - 0.002 | -                   | -    | 0.348 |      |               |       |        |            |       |
| HCM Control Delay (s)         | 93.3   | 12    | 0.6    | - 11.1  | 0                   | -    | 35.7  |      |               |       |        |            |       |
| HCM Lane LOS                  | F      | В     | Α      | - B     | Α                   | -    | Е     |      |               |       |        |            |       |
| HCM 95th %tile Q(veh)         | 0.2    | 0.1   | -      | - 0     | -                   | -    | 1.5   |      |               |       |        |            |       |

# 4: Cornwall Street & Dewdney Avenue

| Intersection             |        |       |      |         |      |      |           |        |      |        |      |      |
|--------------------------|--------|-------|------|---------|------|------|-----------|--------|------|--------|------|------|
| Int Delay, s/veh         | 1.3    |       |      |         |      |      |           |        |      |        |      |      |
| Movement                 | EBL    | EBT   | EBR  | WBL     |      | WBR  | NE        |        | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations      |        | 414   |      |         | 47>  |      |           | 4      |      |        | 4    |      |
| Traffic Vol, veh/h       | 31     | 1038  | 0    | 0       | _    | 23   |           | 0 0    | 0    | 5      | 0    | 65   |
| Future Vol, veh/h        | 31     | 1038  | 0    | 0       | 1115 | 23   |           | 0 0    | 0    | 5      | 0    | 65   |
| Conflicting Peds, #/hr   | 0      | 0     | 0    | 0       |      | 0    |           | 0 0    | 0    | 0      | 0    | 0    |
| Sign Control             | Free   | Free  | Free | Free    | Free | Free | Sto       | p Stop | Stop | Stop   | Stop | Stop |
| RT Channelized           | -      | -     | None | -       | -    | None |           |        | None | -      | -    | None |
| Storage Length           | -      | -     | -    | -       | -    | -    |           |        | -    | -      | -    | -    |
| Veh in Median Storage, # | -      | 0     | -    | -       | 0    | -    |           | - 0    | -    | -      | 0    | -    |
| Grade, %                 | -      | 0     | -    | -       | ·    | -    |           | - 0    | -    | -      | 0    | -    |
| Peak Hour Factor         | 92     | 92    | 92   | 92      | 92   | 92   | ç         | 2 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %        | 3      | 3     | 3    | 3       | 3    | 3    |           | 3 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 34     | 1128  | 0    | 0       | 1212 | 25   |           | 0 0    | 0    | 5      | 0    | 71   |
|                          |        |       |      |         |      |      |           |        |      |        |      |      |
| Major/Minor              | Major1 |       |      | Major2  |      |      | Mino      | ·1     |      | Minor2 |      |      |
| Conflicting Flow All     | 1237   | 0     | 0    | 1128    | 0    | 0    | 180       | 2 2433 | 564  | 1856   | 2420 | 618  |
| Stage 1                  | _      | _     | _    | -       | _    | _    | 119       |        | _    | 1224   | 1224 | _    |
| Stage 2                  | _      | _     | _    | -       | -    | _    | 60        |        | _    | 632    | 1196 | _    |
| Critical Hdwy            | 4.16   | -     | -    | 4.16    | -    | -    | 7.5       |        | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -      | -     | -    |         | -    | -    | 6.5       |        | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2      | -      | -     | -    | -       | -    | -    | 6.5       |        | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy           | 2.23   | -     | -    | 2.23    | -    | -    | 3.5       | 3 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 553    | -     | -    | 609     | -    | -    |           | 9 31   | 466  | 45     | 32   | 430  |
| Stage 1                  | -      | -     | -    |         | -    | -    | 19        | 6 256  | -    | 188    | 248  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -    | 44        | 8 244  | -    | 433    | 256  | -    |
| Platoon blocked, %       |        | -     | -    |         | -    | -    |           |        |      |        |      |      |
| Mov Cap-1 Maneuver       | 553    | -     | -    | 609     | -    | _    | 3         | 6 26   | 466  | 39     | 27   | 430  |
| Mov Cap-2 Maneuver       | -      | -     | -    |         | -    | -    | 3         | 6 26   | -    | 39     | 27   | -    |
| Stage 1                  | -      | -     | -    | -       | -    | _    | 16        | 4 214  | _    | 157    | 248  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -    | 37        |        | -    | 362    | 214  | -    |
| Ü                        |        |       |      |         |      |      |           |        |      |        |      |      |
| Approach                 | EB     |       |      | WB      |      |      | N         | В      |      | SB     |      |      |
| HCM Control Delay, s     | 1.2    |       |      | 0       |      |      |           | 0      |      | 25.5   |      |      |
| HCM LOS                  | 1.2    |       |      | •       |      |      |           | A      |      | D      |      |      |
| 110111 200               |        |       |      |         |      |      |           | , ,    |      |        |      |      |
| Minor Lane/Major Mvmt    | NBLn1  | EBL   | EBT  | EBR WBL | WBT  | WBR: | SBLn1     |        |      |        |      |      |
| Capacity (veh/h)         | -      | 553   |      | - 609   |      | -    | 251       |        |      |        |      |      |
| HCM Lane V/C Ratio       | _      | 0.061 | _    |         | _    | _    | 0.303     |        |      |        |      |      |
| HCM Control Delay (s)    | 0      | 11.9  | 0.9  | - 0     | _    | _    | _         |        |      |        |      |      |
| HCM Lane LOS             | A      | В     | Α    | - A     |      | _    | 25.5<br>D |        |      |        |      |      |
| HCM 95th %tile Q(veh)    |        | 0.2   | -    | - 0     |      | -    | 1.2       |        |      |        |      |      |
| HOW JOHN JUHIE W(VEII)   | _      | 0.2   | _    | - 0     | _    | -    | 1.4       |        |      |        |      |      |

| Intersection               |           |      |     |       |       |          |      |       |        |  |
|----------------------------|-----------|------|-----|-------|-------|----------|------|-------|--------|--|
| Int Delay, s/veh           | 0.9       |      |     |       |       |          |      |       |        |  |
| Movement                   | EBL       | EBT  |     |       |       | WBT      | WBR  | SBI   | SBR    |  |
| Lane Configurations        |           | 414  |     |       |       | <b>†</b> |      | Ϋ́    | 1      |  |
| Traffic Vol, veh/h         | 16        | 1027 |     |       |       | 1080     | 14   | -     | 7 58   |  |
| Future Vol, veh/h          | 16        | 1027 |     |       |       | 1080     | 14   | -     | 7 58   |  |
| Conflicting Peds, #/hr     | 0         | 0    |     |       |       | 0        | 0    | (     | 0      |  |
| Sign Control               | Free      | Free |     |       |       | Free     | Free | Stop  | Stop   |  |
| RT Channelized             | -         | None |     |       |       | -        | None |       | - None |  |
| Storage Length             | _         | _    |     |       |       | -        | -    | (     | ) -    |  |
| Veh in Median Storage, #   | <u> -</u> | 0    |     |       |       | 0        | -    |       | ) -    |  |
| Grade, %                   | _         | 0    |     |       |       | 0        | -    |       | ) -    |  |
| Peak Hour Factor           | 92        | 92   |     |       |       | 92       | 92   | 92    |        |  |
| Heavy Vehicles, %          | 3         | 3    |     |       |       | 3        | 3    |       | 3      |  |
| Mvmt Flow                  | 17        | 1116 |     |       |       | 1174     | 15   | (     |        |  |
|                            |           |      |     |       |       |          | .5   |       |        |  |
| Major/Minor                | Major1    |      |     |       | М     | ajor2    |      | Minor | )      |  |
| Conflicting Flow All       | 1189      | 0    |     |       |       |          | 0    | 177   |        |  |
| Stage 1                    | -         | -    |     |       |       | _        | -    | 1182  |        |  |
| Stage 2                    | _         | _    |     |       |       | _        | _    | 593   |        |  |
| Critical Hdwy              | 4.16      | _    |     |       |       | _        | -    | 6.86  |        |  |
| Critical Hdwy Stg 1        | 7.10      | _    |     |       |       |          |      | 5.86  |        |  |
| Critical Hdwy Stg 2        |           |      |     |       |       | _        | _    | 5.86  |        |  |
| Follow-up Hdwy             | 2.23      | _    |     |       |       |          |      | 3.5   |        |  |
| Pot Cap-1 Maneuver         | 577       |      |     |       |       | _        | _    | 73    |        |  |
| Stage 1                    | -         | _    |     |       |       | _        | _    | 252   |        |  |
| Stage 2                    | -         |      |     |       |       | _        | _    | 512   |        |  |
| Platoon blocked, %         |           | _    |     |       |       |          |      | 312   | _      |  |
| Mov Cap-1 Maneuver         | 577       |      |     |       |       | -        | _    | 6     | 7 445  |  |
| Mov Cap-1 Maneuver         | -         | _    |     |       |       | _        | _    | 6     |        |  |
| Stage 1                    | -         |      |     |       |       |          | -    | 252   |        |  |
| Stage 2                    | -         | _    |     |       |       | _        | _    | 472   |        |  |
| Olage 2                    | _         |      |     |       |       |          | _    | 712   | -      |  |
| Approach                   | EB        |      |     |       |       | WB       |      | SI    | }      |  |
| HCM Control Delay, s       | 0.6       |      |     |       |       | 0        |      | 22.4  |        |  |
| HCM LOS                    | 0.0       |      |     |       |       | U        |      | (     |        |  |
|                            |           |      |     |       |       |          |      |       |        |  |
| Minor Lane/Major Mvmt      | EBL       | EBT  | WBT | WBR S | SBLn1 |          |      |       |        |  |
| Capacity (veh/h)           | 577       |      |     | -     | 277   |          |      |       |        |  |
| HCM Lane V/C Ratio         | 0.03      | _    | _   |       | 0.255 |          |      |       |        |  |
| HCM Control Delay (s)      | 11.4      | 0.4  | _   | _     |       |          |      |       |        |  |
| HCM Lane LOS               | В         | Α    | _   | _     | C C   |          |      |       |        |  |
| HCM 95th %tile Q(veh)      | 0.1       | -    | _   | _     | 1     |          |      |       |        |  |
| TOTAL SOUTH FULLIC Q(VOIT) | 0.1       |      |     |       |       |          |      |       |        |  |

| Intersection                    |        |      |     |        |          |    |      |            |        |  |
|---------------------------------|--------|------|-----|--------|----------|----|------|------------|--------|--|
|                                 | 0.8    |      |     |        |          |    |      |            |        |  |
| Movement                        | EBL    | EBT  |     |        | WE       | т  | WBR  | SBL        | SBR    |  |
| Lane Configurations             |        | 41   |     |        | <b>A</b> |    |      | ¥          |        |  |
| Traffic Vol, veh/h              | 11     | 1023 |     |        | 104      |    | 15   | 9          | 49     |  |
| Future Vol, veh/h               | 11     | 1023 |     |        | 104      |    | 15   | 9          | 49     |  |
| Conflicting Peds, #/hr          | 0      | 0    |     |        | 10       | 0  | 0    | 0          | 0      |  |
| Sign Control                    | Free   | Free |     |        | Fre      |    | Free | Stop       | Stop   |  |
| RT Channelized                  | -      | None |     |        | 110      |    | None | -          | None   |  |
| Storage Length                  | _      | -    |     |        |          |    | -    | 0          | TAOLIC |  |
| Veh in Median Storage, #        | _      | 0    |     |        |          | 0  | _    | 0          | _      |  |
| Grade, %                        | _      | 0    |     |        |          | 0  | -    | 0          | -      |  |
| Peak Hour Factor                | 92     | 92   |     |        | (        | )2 | 92   | 92         | 92     |  |
| Heavy Vehicles, %               | 3      | 3    |     |        |          | 3  | 3    | 3          | 3      |  |
| Mvmt Flow                       |        | 1112 |     |        | 113      |    | 16   | 10         | 53     |  |
| IVIVIIIL FIOW                   | 12     | 1112 |     |        | 113      | 00 | 10   | 10         | - 33   |  |
| Major/Minor                     | Major1 |      |     |        | Majo     | 2  |      | Minor2     |        |  |
| Conflicting Flow All            | 1152   | 0    |     |        |          | _  | 0    | 1724       | 576    |  |
| Stage 1                         | - 1102 | -    |     |        |          | _  | -    | 1144       | -      |  |
| Stage 2                         | _      | _    |     |        |          | -  | _    | 580        | _      |  |
| Critical Hdwy                   | 4.16   | -    |     |        |          | _  | -    | 6.86       | 6.96   |  |
| Critical Hdwy Stg 1             | 4.10   | -    |     |        |          |    | -    | 5.86       | 0.30   |  |
| Critical Hdwy Stg 2             | -      | -    |     |        |          | -  | -    | 5.86       | -      |  |
| Follow-up Hdwy                  | 2.23   | -    |     |        |          | -  | -    | 3.53       | 3.33   |  |
| Pot Cap-1 Maneuver              | 597    |      |     |        |          | -  | -    | 79         | 458    |  |
|                                 |        | -    |     |        |          | -  | -    | 79<br>264  |        |  |
| Stage 1                         | -      | -    |     |        |          | -  | -    | 520<br>520 | -      |  |
| Stage 2                         | -      | -    |     |        |          | -  | -    | 520        | -      |  |
| Platoon blocked, %              | 597    | -    |     |        |          | -  | -    | 75         | 458    |  |
| Mov Cap-1 Maneuver              |        | -    |     |        |          | -  | -    | 75<br>75   |        |  |
| Mov Cap-2 Maneuver              | -      | -    |     |        |          | -  | -    | 75<br>264  | -      |  |
| Stage 1                         | -      | -    |     |        |          | -  | -    | 264        | -      |  |
| Stage 2                         | -      | -    |     |        |          | -  | -    | 492        | -      |  |
| Approach                        | EB     |      |     |        | W        | 'R |      | SB         |        |  |
|                                 | 0.4    |      |     |        | VV       | 0  |      | 23.6       |        |  |
| HCM Control Delay, s<br>HCM LOS | 0.4    |      |     |        |          | U  |      | 23.0<br>C  |        |  |
| TION LOO                        |        |      |     |        |          |    |      | O          |        |  |
| Minor Lane/Major Mvmt           | EBL    | EBT  | WBT | WBR SE | BLn1     |    |      |            |        |  |
| Capacity (veh/h)                | 597    | -    | -   |        | 256      |    |      |            |        |  |
| HCM Lane V/C Ratio              | 0.02   | -    | _   |        | .246     |    |      |            |        |  |
| HCM Control Delay (s)           | 11.2   | 0.3  | _   |        | 23.6     |    |      |            |        |  |
| HCM Lane LOS                    | В      | A    | _   | -      | C        |    |      |            |        |  |
| HCM 95th %tile Q(veh)           | 0.1    | -    | _   | -      | 0.9      |    |      |            |        |  |

| HCM 2010 TWS0<br>7: Dewdney Aver |        | ose S | treet |
|----------------------------------|--------|-------|-------|
|                                  |        |       |       |
| Intersection                     |        |       |       |
| Int Delay, s/veh                 | 0.8    |       |       |
| ·                                |        | EDT   |       |
| Movement                         | EBL    | EBT   |       |
| Lane Configurations              |        | ्र4∱  |       |
| Traffic Vol, veh/h               | 20     |       |       |
| Future Vol, veh/h                | 20     | 1012  |       |
| Conflicting Peds, #/hr           | 0      | 0     |       |
| Sign Control                     | Free   | Free  |       |
| RT Channelized                   | -      | None  |       |
| Storage Length                   | -      | -     |       |
| Veh in Median Storage, #         | -      | 0     |       |
| Grade, %                         | -      | 0     |       |
| Peak Hour Factor                 | 92     | 92    |       |
| Heavy Vehicles, %                | 3      | 3     |       |
| Mvmt Flow                        | 22     | 1100  |       |
|                                  |        |       |       |
| Major/Minor                      | Major1 |       |       |
| Conflicting Flow All             | 1108   | 0     |       |
| Stage 1                          | -      | -     |       |
| Stage 2                          | -      | -     |       |
| Critical Hdwy                    | 4.16   | -     |       |
| Critical Lidury Cta 1            |        |       |       |

| Movement                 | EBL    | EBI  |     |           | WBI    | WBK  | SBL       | SBR  |  |
|--------------------------|--------|------|-----|-----------|--------|------|-----------|------|--|
| Lane Configurations      |        | 41   |     |           | Φβ     |      | W         |      |  |
| Traffic Vol, veh/h       | 20     | 1012 |     |           | 997    | 22   | 2         | 63   |  |
| Future Vol, veh/h        | 20     | 1012 |     |           | 997    | 22   | 2         | 63   |  |
| Conflicting Peds, #/hr   | 0      | 0    |     |           | 0      | 0    | 0         | 0    |  |
| Sign Control             | Free   | Free |     |           | Free   | Free | Stop      | Stop |  |
| RT Channelized           | -      | None |     |           | -      | None | -         | None |  |
| Storage Length           | -      | -    |     |           | -      | -    | 0         | -    |  |
| Veh in Median Storage, # | -      | 0    |     |           | 0      | -    | 0         | -    |  |
| Grade, %                 | -      | 0    |     |           | 0      | -    | 0         | -    |  |
| Peak Hour Factor         | 92     | 92   |     |           | 92     | 92   | 92        | 92   |  |
| Heavy Vehicles, %        | 3      | 3    |     |           | 3      | 3    | 3         | 3    |  |
| Mvmt Flow                | 22     | 1100 |     |           | 1084   | 24   | 2         | 68   |  |
|                          |        |      |     |           |        |      |           |      |  |
| NA : /NA:                |        |      |     |           |        |      |           |      |  |
| Major/Minor              | Major1 |      |     |           | Major2 |      | Minor2    |      |  |
| Conflicting Flow All     | 1108   | 0    |     |           | -      | 0    | 1689      | 554  |  |
| Stage 1                  | -      | -    |     |           | -      | -    | 1096      | -    |  |
| Stage 2                  | -      | -    |     |           | -      | -    | 593       | -    |  |
| Critical Hdwy            | 4.16   | -    |     |           | -      | -    | 6.86      | 6.96 |  |
| Critical Hdwy Stg 1      | -      | -    |     |           | -      | -    | 5.86      | -    |  |
| Critical Hdwy Stg 2      | -      | -    |     |           | -      | -    | 5.86      | -    |  |
| Follow-up Hdwy           | 2.23   | -    |     |           | -      | -    | 3.53      | 3.33 |  |
| Pot Cap-1 Maneuver       | 620    | -    |     |           | -      | -    | 84        | 473  |  |
| Stage 1                  | -      | -    |     |           | -      | -    | 280       | -    |  |
| Stage 2                  | -      | -    |     |           | -      | -    | 512       | -    |  |
| Platoon blocked, %       |        | -    |     |           | -      | -    |           |      |  |
| Mov Cap-1 Maneuver       | 620    | -    |     |           | -      | -    | 76        | 473  |  |
| Mov Cap-2 Maneuver       | -      | -    |     |           | -      | -    | 76        | -    |  |
| Stage 1                  | -      | -    |     |           | -      | -    | 280       | -    |  |
| Stage 2                  | -      | -    |     |           | -      | -    | 465       | -    |  |
|                          |        |      |     |           |        |      |           |      |  |
| Approach                 | EB     |      |     |           | WB     |      | SB        |      |  |
| HCM Control Delay, s     | 0.7    |      |     |           | 0      |      | 15.7      |      |  |
| HCM LOS                  | 0.7    |      |     |           | U      |      | 15.7<br>C |      |  |
| I IOIVI LOO              |        |      |     |           |        |      | C         |      |  |
|                          |        |      |     |           |        |      |           |      |  |
| Minor Lane/Major Mvmt    | EBL    | EBT  | WBT | WBR SBLn1 |        |      |           |      |  |
| Capacity (veh/h)         | 620    | -    | -   | - 408     |        |      |           |      |  |
| HCM Lane V/C Ratio       | 0.035  | -    | -   | - 0.173   |        |      |           |      |  |
| HCM Control Delay (s)    | 11     | 0.5  | -   | - 15.7    |        |      |           |      |  |
| HCM Lane LOS             | В      | Α    | -   | - C       |        |      |           |      |  |
| HCM 95th %tile Q(veh)    | 0.1    | -    | -   | - 0.6     |        |      |           |      |  |
| ,                        |        |      |     |           |        |      |           |      |  |

WBT WBR

SBL

SBR

|                         | ۶     | <b>→</b>   | •       | •     | <b>←</b> | •       | 1     | <b>†</b>   | <i>&gt;</i> | <b>/</b>   | <b>+</b>        | 4    |
|-------------------------|-------|------------|---------|-------|----------|---------|-------|------------|-------------|------------|-----------------|------|
| Lane Group              | EBL   | EBT        | EBR     | WBL   | WBT      | WBR     | NBL   | NBT        | NBR         | SBL        | SBT             | SBR  |
| Lane Configurations     | ሻ     | <b>†</b> † | 7       | ሻ     | <b>^</b> | 7       | ሻ     | ተተኈ        |             | ሻ          | ተተ <sub>ጉ</sub> |      |
| Traffic Volume (vph)    | 144   | 950        | 225     | 210   | 685      | 79      | 122   | 588        | 221         | 220        | 1381            | 112  |
| Future Volume (vph)     | 144   | 950        | 225     | 210   | 685      | 79      | 122   | 588        | 221         | 220        | 1381            | 112  |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800    | 1800  | 1800     | 1800    | 1800  | 1800       | 1800        | 1800       | 1800            | 1800 |
| Storage Length (m)      | 30.0  |            | 50.0    | 30.0  |          | 30.0    | 90.0  |            | 0.0         | 75.0       |                 | 0.0  |
| Storage Lanes           | 1     |            | 1       | 1     |          | 1       | 1     |            | 0           | 1          |                 | 0    |
| Taper Length (m)        | 20.0  |            |         | 25.0  |          |         | 35.0  |            |             | 40.0       |                 | -    |
| Lane Util. Factor       | 1.00  | 0.95       | 1.00    | 1.00  | 0.95     | 1.00    | 1.00  | 0.91       | 0.91        | 1.00       | 0.91            | 0.91 |
| Ped Bike Factor         | 1.00  |            | 0.97    | 1.00  |          | 0.97    | 1.00  | 0.99       |             | 0.99       | 1.00            |      |
| Frt                     |       |            | 0.850   |       |          | 0.850   |       | 0.959      |             |            | 0.989           |      |
| Flt Protected           | 0.950 |            |         | 0.950 |          |         | 0.950 |            |             | 0.950      |                 |      |
| Satd. Flow (prot)       | 1695  | 3390       | 1517    | 1695  | 3390     | 1517    | 1695  | 4625       | 0           | 1695       | 4799            | 0    |
| Flt Permitted           | 0.226 |            |         | 0.098 |          |         | 0.106 | .020       | •           | 0.181      |                 | J    |
| Satd. Flow (perm)       | 402   | 3390       | 1478    | 175   | 3390     | 1477    | 189   | 4625       | 0           | 321        | 4799            | 0    |
| Right Turn on Red       | 102   | 0000       | Yes     | 110   | 0000     | Yes     | 100   | 1020       | Yes         | 021        | 1700            | Yes  |
| Satd. Flow (RTOR)       |       |            | 151     |       |          | 123     |       | 81         | 100         |            | 12              | 100  |
| Link Speed (k/h)        |       | 50         | 101     |       | 50       | 120     |       | 50         |             |            | 50              |      |
| Link Distance (m)       |       | 458.3      |         |       | 110.3    |         |       | 220.1      |             |            | 211.9           |      |
| Travel Time (s)         |       | 33.0       |         |       | 7.9      |         |       | 15.8       |             |            | 15.3            |      |
| Confl. Peds. (#/hr)     | 13    | 55.0       | 12      | 12    | 1.5      | 13      | 32    | 10.0       | 20          | 20         | 10.0            | 32   |
| Peak Hour Factor        | 0.92  | 0.92       | 0.92    | 0.92  | 0.92     | 0.92    | 0.92  | 0.92       | 0.92        | 0.92       | 0.92            | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%         | 2%      | 2%    | 2%       | 2%      | 2%    | 2%         | 2%          | 2%         | 2%              | 2%   |
| Adj. Flow (vph)         | 157   | 1033       | 245     | 228   | 745      | 86      | 133   | 639        | 240         | 239        | 1501            | 122  |
| Shared Lane Traffic (%) | 101   | 1000       | 240     | 220   | 745      | 00      | 100   | 000        | 240         | 200        | 1501            | 122  |
| Lane Group Flow (vph)   | 157   | 1033       | 245     | 228   | 745      | 86      | 133   | 879        | 0           | 239        | 1623            | 0    |
| Turn Type               | pm+pt | NA         | Perm    | pm+pt | NA       | Perm    | pm+pt | NA         | U           | pm+pt      | NA              | U    |
| Protected Phases        | 7     | 4          | I GIIII | 3     | 8        | I CIIII | 5     | 2          |             | 1          | 6               |      |
| Permitted Phases        | 4     | 7          | 4       | 8     | Ü        | 8       | 2     |            |             | 6          | U               |      |
| Detector Phase          | 7     | 4          | 4       | 3     | 8        | 8       | 5     | 2          |             | 1          | 6               |      |
| Switch Phase            | 1     | 7          | 7       | 3     | Ü        | U       | 3     |            |             | '          | U               |      |
| Minimum Initial (s)     | 7.0   | 10.0       | 10.0    | 7.0   | 10.0     | 10.0    | 7.0   | 15.0       |             | 8.0        | 15.0            |      |
| Minimum Split (s)       | 11.0  | 36.5       | 36.5    | 11.0  | 36.5     | 36.5    | 11.0  | 33.5       |             | 12.0       | 33.5            |      |
| Total Split (s)         | 16.0  | 43.0       | 43.0    | 17.0  | 44.0     | 44.0    | 11.0  | 40.0       |             | 20.0       | 49.0            |      |
| Total Split (%)         | 13.3% | 35.8%      | 35.8%   | 14.2% | 36.7%    | 36.7%   | 9.2%  | 33.3%      |             | 16.7%      | 40.8%           |      |
| Maximum Green (s)       | 12.0  | 38.5       | 38.5    | 13.0  | 39.5     | 39.5    | 7.0   | 35.5       |             | 16.0       | 44.5            |      |
| Yellow Time (s)         | 3.0   | 3.5        | 3.5     | 3.0   | 3.5      | 3.5     | 3.0   | 3.5        |             | 3.0        | 3.5             |      |
| All-Red Time (s)        | 1.0   | 1.0        | 1.0     | 1.0   | 1.0      | 1.0     | 1.0   | 1.0        |             | 1.0        | 1.0             |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        | 0.0     | 0.0   | 0.0      | 0.0     | 0.0   | 0.0        |             | 0.0        | 0.0             |      |
| Total Lost Time (s)     | 4.0   | 4.5        | 4.5     | 4.0   | 4.5      | 4.5     | 4.0   | 4.5        |             | 4.0        | 4.5             |      |
| Lead/Lag                |       |            |         |       |          |         |       |            |             | Lead       |                 |      |
| •                       | Lead  | Lag        | Lag     | Lead  | Lag      | Lag     | Lead  | Lag        |             |            | Lag             |      |
| Lead-Lag Optimize?      | Yes   | Yes        | Yes     | Yes   | Yes      | Yes     | Yes   | Yes<br>2.0 |             | Yes<br>2.0 | Yes<br>2.0      |      |
| Vehicle Extension (s)   | 2.0   | 2.0        | 2.0     | 2.0   | 2.0      | 2.0     | 2.0   |            |             |            |                 |      |
| Recall Mode             | None  | None       | None    | None  | None     | None    | None  | C-Max      |             | None       | C-Max           |      |
| Walk Time (s)           |       | 10.0       | 10.0    |       | 10.0     | 10.0    |       | 10.0       |             |            | 10.0            |      |
| Flash Dont Walk (s)     |       | 22.0       | 22.0    |       | 22.0     | 22.0    |       | 19.0       |             |            | 19.0            |      |
| Pedestrian Calls (#/hr) | 40.0  | 10         | 10      | E4.0  | 10       | 10      | 45.0  | 10         |             | FF 0       | 20              |      |
| Act Effct Green (s)     | 49.0  | 38.2       | 38.2    | 54.0  | 40.9     | 40.9    | 45.3  | 37.7       |             | 55.9       | 44.6            |      |
| Actuated g/C Ratio      | 0.41  | 0.32       | 0.32    | 0.45  | 0.34     | 0.34    | 0.38  | 0.31       |             | 0.47       | 0.37            |      |
| v/c Ratio               | 0.57  | 0.96       | 0.43    | 0.94  | 0.65     | 0.15    | 0.83  | 0.58       |             | 0.77       | 0.91            |      |

|                        | ۶    | -      | $\rightarrow$ | •     | ←     | •    | •     | <b>†</b> | /   | <b>&gt;</b> | <b>↓</b> | 4   |
|------------------------|------|--------|---------------|-------|-------|------|-------|----------|-----|-------------|----------|-----|
| Lane Group             | EBL  | EBT    | EBR           | WBL   | WBT   | WBR  | NBL   | NBT      | NBR | SBL         | SBT      | SBR |
| Control Delay          | 27.8 | 59.3   | 14.7          | 73.5  | 35.4  | 6.0  | 62.9  | 33.4     |     | 37.4        | 43.9     |     |
| Queue Delay            | 0.0  | 0.0    | 0.0           | 0.0   | 0.0   | 0.0  | 0.0   | 0.0      |     | 0.0         | 0.0      |     |
| Total Delay            | 27.8 | 59.3   | 14.7          | 73.5  | 35.4  | 6.0  | 62.9  | 33.4     |     | 37.4        | 43.9     |     |
| LOS                    | С    | Е      | В             | Е     | D     | Α    | Е     | С        |     | D           | D        |     |
| Approach Delay         |      | 48.3   |               |       | 41.2  |      |       | 37.3     |     |             | 43.1     |     |
| Approach LOS           |      | D      |               |       | D     |      |       | D        |     |             | D        |     |
| Queue Length 50th (m)  | 21.2 | 124.6  | 16.0          | 34.8  | 81.7  | 0.3  | 17.7  | 58.8     |     | 34.1        | 130.7    |     |
| Queue Length 95th (m)  | 34.8 | #166.8 | 38.4          | #83.7 | 115.6 | 7.4  | #52.4 | 73.7     |     | #58.0       | 151.9    |     |
| Internal Link Dist (m) |      | 434.3  |               |       | 86.3  |      |       | 196.1    |     |             | 187.9    |     |
| Turn Bay Length (m)    | 30.0 |        | 50.0          | 30.0  |       | 30.0 | 90.0  |          |     | 75.0        |          |     |
| Base Capacity (vph)    | 299  | 1087   | 576           | 243   | 1154  | 584  | 161   | 1507     |     | 334         | 1792     |     |
| Starvation Cap Reductn | 0    | 0      | 0             | 0     | 0     | 0    | 0     | 0        |     | 0           | 0        |     |
| Spillback Cap Reductn  | 0    | 0      | 0             | 0     | 0     | 0    | 0     | 0        |     | 0           | 0        |     |
| Storage Cap Reductn    | 0    | 0      | 0             | 0     | 0     | 0    | 0     | 0        |     | 0           | 0        |     |
| Reduced v/c Ratio      | 0.53 | 0.95   | 0.43          | 0.94  | 0.65  | 0.15 | 0.83  | 0.58     |     | 0.72        | 0.91     |     |

Intersection Summary

Area Type: Other

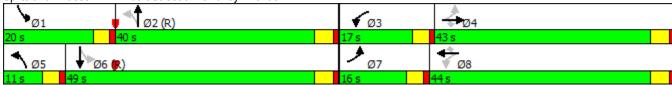
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 95

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.96

Intersection Signal Delay: 43.0 Intersection LOS: D
Intersection Capacity Utilization 92.3% ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                         | ۶     | <b>→</b> | •     | •     | <b>←</b> | •    | 4     | †          | <b>/</b> | <b>&gt;</b> | ţ        | 1     |
|-------------------------|-------|----------|-------|-------|----------|------|-------|------------|----------|-------------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR  | NBL   | NBT        | NBR      | SBL         | SBT      | SBR   |
| Lane Configurations     | ሻ     | <b></b>  | 7     | ሻ     | ₽        |      | ሻ     | <b>↑</b> ↑ |          | ሻ           | <b>^</b> | 7     |
| Traffic Volume (vph)    | 365   | 86       | 785   | 7     | 53       | 4    | 635   | 791        | 21       | 13          | 1169     | 299   |
| Future Volume (vph)     | 365   | 86       | 785   | 7     | 53       | 4    | 635   | 791        | 21       | 13          | 1169     | 299   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800     | 1800 | 1800  | 1800       | 1800     | 1800        | 1800     | 1800  |
| Storage Length (m)      | 40.0  |          | 0.0   | 10.0  |          | 0.0  | 35.0  |            | 60.0     | 45.0        |          | 0.0   |
| Storage Lanes           | 1     |          | 1     | 1     |          | 0    | 1     |            | 0        | 1           |          | 1     |
| Taper Length (m)        | 23.0  |          |       | 10.0  |          |      | 25.0  |            |          | 35.0        |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95     | 1.00        | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |       |       | 1.00     |      |       |            |          |             |          | 0.92  |
| Frt                     |       |          | 0.850 |       | 0.990    |      |       | 0.996      |          |             |          | 0.850 |
| Flt Protected           | 0.950 |          |       | 0.950 |          |      | 0.950 |            |          | 0.950       |          |       |
| Satd. Flow (prot)       | 1695  | 1784     | 1517  | 1695  | 1745     | 0    | 1695  | 3377       | 0        | 1695        | 3390     | 1517  |
| Flt Permitted           | 0.627 |          |       | 0.697 |          |      | 0.103 |            |          | 0.322       |          |       |
| Satd. Flow (perm)       | 1114  | 1784     | 1517  | 1244  | 1745     | 0    | 184   | 3377       | 0        | 575         | 3390     | 1394  |
| Right Turn on Red       |       |          | Yes   |       |          | Yes  |       |            | Yes      |             |          | Yes   |
| Satd. Flow (RTOR)       |       |          | 504   |       | 3        |      |       | 4          |          |             |          | 235   |
| Link Speed (k/h)        |       | 50       |       |       | 50       |      |       | 50         |          |             | 50       |       |
| Link Distance (m)       |       | 105.7    |       |       | 332.1    |      |       | 329.7      |          |             | 294.1    |       |
| Travel Time (s)         |       | 7.6      |       |       | 23.9     |      |       | 23.7       |          |             | 21.2     |       |
| Confl. Peds. (#/hr)     | 4     |          |       |       |          | 4    | 51    |            |          |             |          | 51    |
| Peak Hour Factor        | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92 | 0.92  | 0.92       | 0.92     | 0.92        | 0.92     | 0.92  |
| Heavy Vehicles (%)      | 2%    | 2%       | 2%    | 2%    | 3%       | 5%   | 2%    | 2%         | 2%       | 2%          | 2%       | 2%    |
| Adj. Flow (vph)         | 397   | 93       | 853   | 8     | 58       | 4    | 690   | 860        | 23       | 14          | 1271     | 325   |
| Shared Lane Traffic (%) |       |          |       |       |          |      |       |            |          |             |          |       |
| Lane Group Flow (vph)   | 397   | 93       | 853   | 8     | 62       | 0    | 690   | 883        | 0        | 14          | 1271     | 325   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       |      | pm+pt | NA         |          | Perm        | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8        |      | 5     | 2          |          |             | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |          |      | 2     |            |          | 6           |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        |      | 5     | 2          |          | 6           | 6        | 6     |
| Switch Phase            |       |          |       |       |          |      |       |            |          |             |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     |      | 7.0   | 15.0       |          | 15.0        | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5     |      | 11.0  | 19.5       |          | 30.5        | 30.5     | 30.5  |
| Total Split (s)         | 11.0  | 36.5     | 36.5  | 11.0  | 36.5     |      | 30.0  | 72.5       |          | 42.5        | 42.5     | 42.5  |
| Total Split (%)         | 9.2%  | 30.4%    | 30.4% | 9.2%  | 30.4%    |      | 25.0% | 60.4%      |          | 35.4%       | 35.4%    | 35.4% |
| Maximum Green (s)       | 7.0   | 32.0     | 32.0  | 7.0   | 32.0     |      | 26.0  | 68.0       |          | 38.0        | 38.0     | 38.0  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      |      | 3.0   | 3.5        |          | 3.5         | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |      | 1.0   | 1.0        |          | 1.0         | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |      | 0.0   | 0.0        |          | 0.0         | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      |      | 4.0   | 4.5        |          | 4.5         | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      |      | Lead  |            |          | Lag         | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      |      | Yes   |            |          | Yes         | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |      | 2.0   | 2.0        |          | 2.0         | 2.0      | 2.0   |
| Recall Mode             | None  | None     | None  | None  | None     |      | None  | C-Max      |          | C-Max       | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0     |      |       |            |          | 10.0        | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0     |      |       |            |          | 16.0        | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 4        |      |       |            |          | 25          | 25       | 25    |
| Act Effct Green (s)     | 42.7  | 40.8     | 40.8  | 33.0  | 27.6     |      | 68.5  | 68.0       |          | 38.0        | 38.0     | 38.0  |
| Actuated g/C Ratio      | 0.36  | 0.34     | 0.34  | 0.28  | 0.23     |      | 0.57  | 0.57       |          | 0.32        | 0.32     | 0.32  |
| v/c Ratio               | 0.85  | 0.15     | 1.01  | 0.02  | 0.15     |      | 1.60  | 0.46       |          | 0.08        | 1.18     | 0.54  |

|                        | ٠      | <b>→</b> | •      | •    | •     | •   | 4      | <b>†</b> | ~   | <b>&gt;</b> | Ţ      | 4    |
|------------------------|--------|----------|--------|------|-------|-----|--------|----------|-----|-------------|--------|------|
| Lane Group             | EBL    | EBT      | EBR    | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL         | SBT    | SBR  |
| Control Delay          | 48.2   | 23.3     | 49.9   | 24.9 | 33.3  |     | 306.9  | 16.2     |     | 30.4        | 129.8  | 13.2 |
| Queue Delay            | 0.0    | 0.0      | 16.9   | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0         | 0.0    | 0.0  |
| Total Delay            | 48.2   | 23.3     | 66.8   | 24.9 | 33.3  |     | 306.9  | 16.2     |     | 30.4        | 129.8  | 13.2 |
| LOS                    | D      | С        | Е      | С    | С     |     | F      | В        |     | С           | F      | В    |
| Approach Delay         |        | 58.3     |        |      | 32.3  |     |        | 143.7    |     |             | 105.4  |      |
| Approach LOS           |        | Ε        |        |      | С     |     |        | F        |     |             | F      |      |
| Queue Length 50th (m)  | 87.8   | 12.4     | 146.8  | 1.2  | 10.6  |     | ~217.8 | 60.8     |     | 2.3         | ~189.3 | 15.5 |
| Queue Length 95th (m)  | #160.7 | m28.1    | #215.4 | 4.5  | 21.7  |     | #289.6 | 76.1     |     | 7.5         | #231.1 | 43.3 |
| Internal Link Dist (m) |        | 81.7     |        |      | 308.1 |     |        | 305.7    |     |             | 270.1  |      |
| Turn Bay Length (m)    | 40.0   |          |        | 10.0 |       |     | 35.0   |          |     | 45.0        |        |      |
| Base Capacity (vph)    | 465    | 606      | 848    | 368  | 467   |     | 432    | 1915     |     | 182         | 1073   | 602  |
| Starvation Cap Reductn | 0      | 0        | 42     | 0    | 0     |     | 0      | 0        |     | 0           | 0      | 0    |
| Spillback Cap Reductn  | 0      | 0        | 0      | 0    | 0     |     | 0      | 0        |     | 0           | 0      | 0    |
| Storage Cap Reductn    | 0      | 0        | 0      | 0    | 0     |     | 0      | 0        |     | 0           | 0      | 0    |
| Reduced v/c Ratio      | 0.85   | 0.15     | 1.06   | 0.02 | 0.13  |     | 1.60   | 0.46     |     | 0.08        | 1.18   | 0.54 |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.60

Intersection Signal Delay: 103.6 Intersection LOS: F
Intersection Capacity Utilization 110.1% ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
  - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Broad Street & Dewdney Avenue



# 2: McIntyre Street & Dewdney Avenue

| Intersection             |           |          |      |               |            |       |           |      |      |           |      |      |
|--------------------------|-----------|----------|------|---------------|------------|-------|-----------|------|------|-----------|------|------|
| Int Delay, s/veh         | 1.7       |          |      |               |            |       |           |      |      |           |      |      |
|                          |           | EDT      | EDD  | VA/DI         | WDT        | WDD   | NDI       | NDT  | NDD  | ODI       | ODT  | 000  |
| Movement                 | EBL       | EBT      | EBR  | WBL           | WBT        | WBR   | NBL       |      | NBR  | SBL       | SBT  | SBR  |
| Lane Configurations      | <b>\</b>  | <b>†</b> | 20   | <b>\</b>      | <b>↑</b> ↑ | 45    |           | - ♣  | 00   | 4         | - ♣  | 04   |
| Traffic Vol, veh/h       | 27        | 1332     | 32   | 59            | 953        | 15    | 1         | _    | 26   | 4         | 2    | 21   |
| Future Vol, veh/h        | 27        | 1332     | 32   | 59            | 953        | 15    | 1         |      | 26   | 4         | 2    | 21   |
| Conflicting Peds, #/hr   | _ 0       | _ 0      | _ 0  | _ 0           | _ 0        | _ 0   | (         |      | 0    | 0         | 0    | 0    |
| Sign Control             | Free      | Free     | Free | Free          | Free       | Free  | Stop      |      | Stop | Stop      | Stop | Stop |
| RT Channelized           | -         | -        | None | -             | -          | None  | •         | -    | None | -         | -    | None |
| Storage Length           | 200       | -        | -    | 250           | -          | -     |           |      | -    | -         | -    | -    |
| Veh in Median Storage, # | -         | 0        | -    | -             | 0          | -     |           | -    | -    | -         | 0    | -    |
| Grade, %                 | -         | 0        | -    | -             | 0          | -     |           | U    | -    | -         | 0    | -    |
| Peak Hour Factor         | 92        | 92       | 92   | 92            | 92         | 92    | 92        |      | 92   | 92        | 92   | 92   |
| Heavy Vehicles, %        | 3         | 3        | 3    | 3             | 3          | 3     | 3         |      | 3    | 3         | 3    | 3    |
| Mvmt Flow                | 29        | 1448     | 35   | 64            | 1036       | 16    | 1         | 2    | 28   | 4         | 2    | 23   |
|                          |           |          |      |               |            |       |           |      |      |           |      |      |
| Major/Minor              | Major1    |          |      | Major2        |            |       | Minor1    |      |      | Minor2    |      |      |
| Conflicting Flow All     | 1052      | 0        | 0    | 1483          | 0          | 0     | 2171      | 2704 | 741  | 1956      | 2713 | 526  |
| Stage 1                  | -         | _        | -    | _             | -          | -     | 1524      |      | -    | 1172      | 1172 | -    |
| Stage 2                  | _         | _        | _    | _             | _          | _     | 647       |      | _    | 784       | 1541 | _    |
| Critical Hdwy            | 4.16      | _        | _    | 4.16          | _          | _     | 7.56      |      | 6.96 | 7.56      | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -         | _        | _    | -             | _          | _     | 6.56      |      | -    | 6.56      | 5.56 | -    |
| Critical Hdwy Stg 2      | _         | -        | _    | -             | _          | _     | 6.56      |      | _    | 6.56      | 5.56 | _    |
| Follow-up Hdwy           | 2.23      | _        | _    | 2.23          | _          | _     | 3.53      |      | 3.33 | 3.53      | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 651       | _        | _    | 445           | _          | _     | 26        |      | 356  | 38        | 20   | 494  |
| Stage 1                  | -         | _        | _    | -             | _          | _     | 122       |      | -    | 203       | 262  | -    |
| Stage 2                  | _         | _        | _    | -             | _          | _     | 424       |      | _    | 350       | 174  | _    |
| Platoon blocked, %       |           | _        | _    |               | _          | _     |           | 200  |      | 000       |      |      |
| Mov Cap-1 Maneuver       | 651       | _        | _    | 445           | _          | _     | 19        | 17   | 356  | 27        | 16   | 494  |
| Mov Cap-2 Maneuver       | -         | _        | _    | -             | _          | _     | 19        |      | -    | 27        | 16   | -    |
| Stage 1                  | _         | _        | _    | -             | _          | -     | 117       |      | _    | 194       | 224  | _    |
| Stage 2                  | _         | _        | _    | _             | _          | _     | 343       |      | _    | 304       | 166  | _    |
| Olugo Z                  |           |          |      |               |            |       | 010       |      |      | 001       | 100  |      |
| Approach                 | EB        |          |      | WB            |            |       | NE        |      |      | SB        |      |      |
| HCM Control Delay, s     | 0.2       |          |      | 0.8           |            |       | 45.8      |      |      | 67.2      |      |      |
| HCM LOS                  | 0.2       |          |      | 0.0           |            |       | 45.C      |      |      | 67.2<br>F |      |      |
| HOW LOO                  |           |          |      |               |            |       | _         |      |      | '         |      |      |
| Minor Lane/Major Mvmt    | NBLn1     | EBL      | EBT  | EBR WBL       | WBT        | WBR S | SBI n1    |      |      |           |      |      |
| Capacity (veh/h)         | 119       | 651      |      | - 445         |            |       | 86        |      |      |           |      |      |
| HCM Lane V/C Ratio       | 0.265     |          | -    | - 0.144       |            | -     | 0.341     |      |      |           |      |      |
| HCM Control Delay (s)    | 45.8      | 10.8     | -    | - 14.4        | -          | -     | 67.2      |      |      |           |      |      |
| HCM Lane LOS             | 45.6<br>E |          | -    | - 14.4<br>- B | -          | -     | 67.2<br>F |      |      |           |      |      |
|                          | 1         | 0.1      | -    | - B           | -          | -     | 1.3       |      |      |           |      |      |
| HCM 95th %tile Q(veh)    |           | 0.1      | -    | - 0.5         | -          | -     | 1.3       |      |      |           |      |      |

### 4: Cornwall Street & Dewdney Avenue

| Intersection             |        |       |      |         |      |      |           |      |      |      |        |      |      |
|--------------------------|--------|-------|------|---------|------|------|-----------|------|------|------|--------|------|------|
| Int Delay, s/veh         | 1.1    |       |      |         |      |      |           |      |      |      |        |      |      |
| Movement                 | EBL    | EBT   | EBR  | WBL     | WBT  | WBR  |           | NBL  | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations      | ሻ      | ħβ    |      | ሻ       | Λħ   |      |           |      | 4    |      |        | 4    |      |
| Traffic Vol, veh/h       | 15     | 1263  | 14   | 32      | 994  | 8    |           | 5    | 0    | 30   | 4      | 0    | 13   |
| Future Vol, veh/h        | 15     | 1263  | 14   | 32      | 994  | 8    |           | 5    | 0    | 30   | 4      | 0    | 13   |
| Conflicting Peds, #/hr   | 0      | 0     | 0    | 0       | 0    | 0    |           | 0    | 0    | 0    | 0      | 0    | 0    |
| Sign Control             | Free   | Free  | Free | Free    | Free | Free | ;         | Stop | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized           | -      | -     | None | -       | -    | None |           | -    | -    | None | -      | -    | None |
| Storage Length           | 500    | -     | -    | 300     | -    | -    |           | -    | -    | -    | -      | -    | -    |
| Veh in Median Storage, # | -      | 0     | -    | -       | 0    | -    |           | -    | 0    | -    | -      | 0    | -    |
| Grade, %                 | -      | 0     | -    | -       | 0    | -    |           | -    | 0    | -    | -      | 0    | -    |
| Peak Hour Factor         | 92     | 92    | 92   | 92      | 92   | 92   |           | 92   | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %        | 3      | 3     | 3    | 3       | 3    | 3    |           | 3    | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 16     | 1373  | 15   | 35      | 1080 | 9    |           | 5    | 0    | 33   | 4      | 0    | 14   |
|                          |        |       |      |         |      |      |           |      |      |      |        |      |      |
| Major/Minor              | Major1 |       |      | Major2  |      |      |           | nor1 |      |      | Minor2 |      |      |
| Conflicting Flow All     | 1089   | 0     | 0    | 1388    | 0    | 0    |           | 2023 | 2572 | 694  | 1873   | 2575 | 545  |
| Stage 1                  | -      | -     | -    | -       | -    | -    | 1         | 1413 | 1413 | -    | 1154   | 1154 | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -    |           | 610  | 1159 | -    | 719    | 1421 | -    |
| Critical Hdwy            | 4.16   | -     | -    | 4.16    | -    | -    |           | 7.56 | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -      | -     | -    | -       | -    | -    |           | 6.56 | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2      | -      | -     | -    | -       | -    | -    |           | 6.56 | 5.56 | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy           | 2.23   | -     | -    | 2.23    | -    | -    |           | 3.53 | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 631    | -     | -    | 484     | -    | -    |           | 34   | 25   | 383  | 44     | 25   | 480  |
| Stage 1                  | -      | -     | -    | -       | -    | -    |           | 144  | 201  | -    | 208    | 268  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -    |           | 446  | 266  | -    | 383    | 199  | -    |
| Platoon blocked, %       |        | -     | -    |         | -    | -    |           |      |      |      |        |      |      |
| Mov Cap-1 Maneuver       | 631    | -     | -    | 484     | -    | -    |           | 31   | 23   | 383  | 37     | 23   | 480  |
| Mov Cap-2 Maneuver       | -      | -     | -    | -       | -    | -    |           | 31   | 23   | -    | 37     | 23   | -    |
| Stage 1                  | -      | -     | -    | -       | -    | -    |           | 140  | 196  | -    | 203    | 249  | -    |
| Stage 2                  | -      | -     | -    | -       | -    | -    |           | 402  | 247  | -    | 342    | 194  | -    |
| A I                      | ED     |       |      | MD      |      |      |           | ND   |      |      | 0.0    |      |      |
| Approach                 | EB     |       |      | WB      |      |      |           | NB   |      |      | SB     |      |      |
| HCM Control Delay, s     | 0.1    |       |      | 0.4     |      |      |           | 38.1 |      |      | 38.4   |      |      |
| HCM LOS                  |        |       |      |         |      |      |           | Е    |      |      | E      |      |      |
| Minor Lane/Major Mvmt    | NBLn1  | EBL   | EBT  | EBR WBL | WBT  | WBR  | SBLn1     |      |      |      |        |      |      |
| Capacity (veh/h)         | 146    | 631   |      | - 484   |      | -    | 126       |      |      |      |        |      |      |
| HCM Lane V/C Ratio       | 0.261  | 0.026 | _    | - 0.072 | _    |      | 0.147     |      |      |      |        |      |      |
| HCM Control Delay (s)    | 38.1   | 10.9  | _    | - 13    | _    | _    |           |      |      |      |        |      |      |
| HCM Lane LOS             | 30.1   | В     |      | - 13    | -    | _    | 50.4<br>E |      |      |      |        |      |      |
| HCM 95th %tile Q(veh)    | 1      | 0.1   | -    | - 0.2   | -    | -    | 0.5       |      |      |      |        |      |      |
| HOW SOUL WILL CALACTE    |        | 0.1   | -    | - 0.2   | _    | -    | 0.5       |      |      |      |        |      |      |

| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ntersection<br>nt Delay, s/veh | 9.7      |      |      |        |      |      |      |       |      |      |      |       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|------|------|--------|------|------|------|-------|------|------|------|-------|------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                              |          |      |      |        |      |      |      |       |      |      | 27:  |       |      |
| Traffic Vol, veh/h  17 1215 65 15 970 7 43 0 10 2 Future Vol, veh/h  17 1215 65 15 970 7 43 0 10 2 Conflicting Peds, #hr  0 0 0 0 0 0 0 0 0 0 0 0  Sign Control  Free Free Free Free Free Free Free Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |      | EBR  |        |      | WBR  |      | NBL   |      | NBR  | SBL  | SBT   | SBF  |
| Future Vol, veh/h Conflicting Peds, #hr O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          |      |      |        |      |      |      |       |      |      | _    | - 40- |      |
| Conflicting Peds, #/hr   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |      |      |        |      | •    |      |       | -    |      |      | 0     | 21   |
| Sign Control         Free RTCR         Stop Stop Stop Stop Stop Stop Stop Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |          |      |      |        |      | •    |      |       |      |      |      | 0     | 21   |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              | -        |      | •    | -      |      | -    |      | -     | -    | -    |      | 0     | C    |
| Storage Length   300   -   300   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                              | Free     | Free |      | Free   | Free |      |      | Stop  | Stop |      | Stop | Stop  | Stop |
| Veh in Median Storage, #         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>-</td> <td>-</td> <td>None</td> <td></td> <td>-</td> <td>None</td> <td></td> <td>-</td> <td>-</td> <td>None</td> <td>-</td> <td>-</td> <td>None</td>                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | -        | -    | None |        | -    | None |      | -     | -    | None | -    | -     | None |
| Grade, %         -         0         -         -         0         -         -         0         -         -         -         Peak Hour Factor         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                            |          | -    | -    | 300    |      | -    |      | -     | -    | -    | -    | -     |      |
| Peak Hour Factor         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | -        | -    | -    | -      |      | -    |      | -     |      | -    | -    | 0     |      |
| Heavy Vehicles, %   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rade, %                        |          |      |      |        |      |      |      |       |      |      |      | 0     |      |
| Mynt Flow         18         1321         71         16         1054         8         47         0         11         2           Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1062         0         0         1391         0         0         1953         2488         696         1788         2           Stage 1         -         -         -         -         -         -         1393         1991         1           Stage 2         -         -         -         -         -         560         1095         -         697         1           Critical Hdwy         4.16         -         -         4.16         -         -         7.56         6.56         6.96         7.56         6.56         6.96         7.56         6.56         6.96         7.56         6.56         9.56         7.56         6.56         6.96         7.56         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56 </td <td></td> <td></td> <td></td> <td>92</td> <td></td> <td></td> <td>92</td> <td></td> <td>92</td> <td></td> <td></td> <td></td> <td>92</td> <td>92</td>                                                                                                                                                                                                                                                                                                                                                                             |                                |          |      | 92   |        |      | 92   |      | 92    |      |      |      | 92    | 92   |
| Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         1062         0         0         1391         0         0         1953         2488         696         1788         2           Stage 1         -         -         -         -         -         1393         1393         -         1091         1           Stage 2         -         -         -         -         560         1095         -         697         1           Critical Hdwy         4.16         -         -         4.16         -         7.56         6.56         6.96         7.56         6         6.76         6.56         6.56         6.96         7.56         6         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         0.50 <td>eavy Vehicles, %</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>3</td> <td>3</td>                                                                                                                                                                                                                                                                                                                                                                | eavy Vehicles, %               |          |      | -    |        |      | 3    |      |       | 3    |      |      | 3     | 3    |
| Conflicting Flow All 1062 0 0 1391 0 0 1953 2488 696 1788 2 Stage 1 1393 1393 - 1091 1 Stage 2 1393 1393 - 1091 1 Stage 1 14.16 7.56 6.56 6.96 7.56 6 Critical Hdwy Stg 1 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 - 6.56 5.56 5 | lvmt Flow                      | 18       | 1321 | 71   | 16     | 1054 | 8    |      | 47    | 0    | 11   | 2    | 0     | 23   |
| Conflicting Flow All   1062   0   0   1391   0   0   1953   2488   696   1788   2   2   3   4   4   4   199   - 2   2   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |          |      |      |        |      |      |      |       |      |      |      |       |      |
| Stage 1       -       -       -       -       1393       1091       1         Stage 2       -       -       -       -       -       560       1095       -       697       1         Critical Hdwy       4.16       -       -       4.16       -       -       7.56       6.56       6.96       7.56       6         Critical Hdwy Stg 1       -       -       -       -       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       6.56       5.56       -       0.50       227       223       -       -       -       4.83 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |          |      |      |        |      |      |      |       |      |      |      |       |      |
| Stage 2       -       -       -       -       560 1095       -       697 1         Critical Hdwy       4.16       -       -       4.16       -       -       7.56 6.56 6.96       7.56 6.56         Critical Hdwy Stg 1       -       -       -       -       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.56 5.56       -       6.50 5.56       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onflicting Flow All            | 1062     | 0    | 0    | 1391   | 0    | 0    |      |       |      | 696  |      | 2519  | 531  |
| Critical Hdwy       4.16       -       -       4.16       -       7.56       6.56       6.96       7.56       6       6.66       7.56       6.56       6.56       6.56       7.56       6.56       6.56       7.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       6.56       8.20       6.20       6.20       6.20       6.20       6.20 <t< td=""><td>Stage 1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>1393</td><td>-</td><td>1091</td><td>1091</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                         | Stage 1                        | -        | -    | -    | -      | -    | -    |      |       | 1393 | -    | 1091 | 1091  |      |
| Critical Hdwy Stg 1         -         -         -         -         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.50         2.23         2.21         2.27         2.27         2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stage 2                        |          | -    | -    | -      | -    | -    |      | 560   |      |      | 697  | 1428  | -    |
| Critical Hdwy Stg 2         -         -         -         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         6.56         5.56         -         4.83         -         -         2.27         2.27         2.27         2.27         2.27         2.27         2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ritical Hdwy                   | 4.16     | -    | -    | 4.16   | -    | -    |      | 7.56  | 6.56 | 6.96 | 7.56 | 6.56  | 6.96 |
| Follow-up Hdwy 2.23 2.23 3.53 4.03 3.33 3.53 4 Pot Cap-1 Maneuver 646 483 ~38 28 382 51 Stage 1 148 205 - 227 Stage 2 478 286 - 395 Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ritical Hdwy Stg 1             | -        | -    | -    | -      | -    | -    |      | 6.56  | 5.56 | -    | 6.56 | 5.56  | -    |
| Pot Cap-1 Maneuver         646         -         -         483         -         -         ~38         28         382         51           Stage 1         -         -         -         -         -         148         205         -         227           Stage 2         -         -         -         -         -         478         286         -         395           Platoon blocked, %         -         -         -         -         -         -         -         -         -         395           Mov Cap-1 Maneuver         646         -         -         483         -         -         ~35         26         382         47           Mov Cap-1 Maneuver         -         -         -         -         -         ~35         26         382         47           Mov Cap-2 Maneuver         -         -         -         -         -         -         144         199         -         221         313         373         373         373         373         373         373         373         373         373         373         374         374         374         374         374         374         374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ritical Hdwy Stg 2             | -        | -    | -    | -      | -    | -    |      | 6.56  | 5.56 | -    | 6.56 | 5.56  |      |
| Stage 1       -       -       -       -       -       148       205       -       227         Stage 2       -       -       -       -       -       478       286       -       395         Platoon blocked, %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       47       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ollow-up Hdwy                  | 2.23     | -    | -    | 2.23   | -    | -    |      | 3.53  | 4.03 | 3.33 | 3.53 | 4.03  | 3.33 |
| Stage 2         -         -         -         -         478         286         -         395           Platoon blocked, %         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>ot Cap-1 Maneuver</td><td>646</td><td>-</td><td>-</td><td>483</td><td>-</td><td>-</td><td></td><td>~ 38</td><td>28</td><td>382</td><td>51</td><td>27</td><td>490</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                             | ot Cap-1 Maneuver              | 646      | -    | -    | 483    | -    | -    |      | ~ 38  | 28   | 382  | 51   | 27    | 490  |
| Platoon blocked, %         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1                        | -        | -    | -    | -      | -    | -    |      | 148   | 205  | -    | 227  | 287   |      |
| Mov Cap-1 Maneuver         646         -         -         483         -         -         ~35         26         382         47           Mov Cap-2 Maneuver         -         -         -         -         -         -         -         47           Stage 1         -         -         -         -         -         144         199         -         221           Stage 2         -         -         -         -         -         441         277         -         373           Approach         EB         WB         WB         NB         SB           HCM Control Delay, s         0.1         0.2         \$419.1         19.8           HCM LOS         F         C           Minor Lane/Major Mvmt         NBLn1         EBL         EBR         WBL         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stage 2                        | -        | -    | -    | -      | -    | -    |      | 478   | 286  | -    | 395  | 197   | -    |
| Mov Cap-2 Maneuver         -         -         -         -         -         -         47           Stage 1         -         -         -         -         -         144         199         -         221           Stage 2         -         -         -         -         -         441         277         -         373           Approach         EB         WB         NB         NB         SB           HCM Control Delay, s         0.1         0.2         \$419.1         19.8           HCM LOS         F         C           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | latoon blocked, %              |          | -    | -    |        | -    | -    |      |       |      |      |      |       |      |
| Stage 1         -         -         -         -         144         199         -         221           Stage 2         -         -         -         -         -         -         441         277         -         373           Approach         EB         WB         NB         NB         SB           HCM Control Delay, s         0.1         0.2         \$419.1         19.8           HCM LOS         F         C           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lov Cap-1 Maneuver             | 646      | -    | -    | 483    | -    | -    |      | ~ 35  | 26   | 382  | 47   | 25    | 490  |
| Stage 2         -         -         -         -         -         441         277         -         373           Approach         EB         WB         NB         NB         SB           HCM Control Delay, s         0.1         0.2         \$419.1         19.8           HCM LOS         F         C           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lov Cap-2 Maneuver             | -        | -    | -    | -      | -    | -    |      | ~ 35  | 26   | -    | 47   | 25    |      |
| Approach         EB         WB         NB         SB           HCM Control Delay, s         0.1         0.2         \$419.1         19.8           HCM LOS         F         C           Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stage 1                        | -        | -    | -    | -      | -    | -    |      | 144   | 199  | -    | 221  | 277   |      |
| HCM Control Delay, s 0.1 0.2 \$419.1 19.8 HCM LOS F C  Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1  Capacity (veh/h) 42 646 483 269  HCM Lane V/C Ratio 1.372 0.029 0.034 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stage 2                        | -        | -    | -    | -      | -    | -    |      | 441   | 277  | -    | 373  | 192   | -    |
| HCM Control Delay, s 0.1 0.2 \$419.1 19.8 HCM LOS F C  Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1  Capacity (veh/h) 42 646 483 269  HCM Lane V/C Ratio 1.372 0.029 - 0.034 - 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |          |      |      |        |      |      |      |       |      |      |      |       |      |
| Minor Lane/Major Mvmt         NBLn1         EBL         EBT         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pproach                        | EB       |      |      |        |      |      |      | NB    |      |      | SB   |       |      |
| Minor Lane/Major Mvmt         NBLn1         EBL         EBR         WBL         WBT         WBR SBLn1           Capacity (veh/h)         42         646         -         -         483         -         -         269           HCM Lane V/C Ratio         1.372         0.029         -         -         0.034         -         -         0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CM Control Delay, s            | 0.1      |      |      | 0.2    |      |      | \$ 4 | 419.1 |      |      | 19.8 |       |      |
| Capacity (veh/h) 42 646 483 269<br>HCM Lane V/C Ratio 1.372 0.029 0.034 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CM LOS                         |          |      |      |        |      |      |      | F     |      |      | С    |       |      |
| Capacity (veh/h) 42 646 483 269<br>HCM Lane V/C Ratio 1.372 0.029 0.034 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          |      |      |        |      |      |      |       |      |      |      |       |      |
| HCM Lane V/C Ratio 1.372 0.029 0.034 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |          |      | EBT  |        | WBT  | WBR  |      |       |      |      |      |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |          |      | -    |        | -    | -    |      |       |      |      |      |       |      |
| 11011.0 ( 1.10 1 ( ) ) 4.40 4 40 7 40 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |      | -    |        | -    | -    |      |       |      |      |      |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CM Control Delay (s)           | \$ 419.1 | 10.7 | -    | - 12.7 | -    | -    | 19.8 |       |      |      |      |       |      |
| HCM Lane LOS F B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |          |      | -    |        | -    | -    |      |       |      |      |      |       |      |
| HCM 95th %tile Q(veh) 5.7 0.1 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CM 95th %tile Q(veh)           | 5.7      | 0.1  | -    | - 0.1  | -    | -    | 0.3  |       |      |      |      |       |      |

# 7: Dewdney Avenue & Rose Street

| Intersection             | 0.0       |          |               |            |      |           |      |  |
|--------------------------|-----------|----------|---------------|------------|------|-----------|------|--|
| Int Delay, s/veh         | 0.2       |          |               |            |      |           |      |  |
| Movement                 | EBL       | EBT      |               | WBT        | WBR  | SBL       | SBR  |  |
| Lane Configurations      | ሻ         | <b>^</b> |               | <b>↑</b> ↑ |      | ¥         |      |  |
| Traffic Vol, veh/h       | 27        | 1235     |               | 963        | 23   | 1         | 18   |  |
| Future Vol, veh/h        | 27        | 1235     |               | 963        | 23   | 1         | 18   |  |
| Conflicting Peds, #/hr   | 0         | 0        |               | 0          | 0    | 0         | 0    |  |
| Sign Control             | Free      | Free     |               | Free       | Free | Stop      | Stop |  |
| RT Channelized           | -         | None     |               | -          | None | ·-        | None |  |
| Storage Length           | 300       | -        |               | -          | -    | 0         | -    |  |
| Veh in Median Storage, # | -         | 0        |               | 0          | -    | 0         | -    |  |
| Grade, %                 | -         | 0        |               | 0          | -    | 0         | -    |  |
| Peak Hour Factor         | 92        | 92       |               | 92         | 92   | 92        | 92   |  |
| Heavy Vehicles, %        | 3         | 3        |               | 3          | 3    | 3         | 3    |  |
| Mvmt Flow                | 29        | 1342     |               | 1047       | 25   | 1         | 20   |  |
|                          |           |          |               |            |      |           |      |  |
| Major/Minor              | Major1    |          |               | Major2     |      | Minor2    |      |  |
| Conflicting Flow All     | 1072      | 0        |               | -          | 0    | 1789      | 536  |  |
| Stage 1                  | 1012      | -        |               |            | -    | 1059      | -    |  |
| Stage 2                  | _         | _        |               | _          | _    | 730       | _    |  |
| Critical Hdwy            | 4.16      | _        |               |            | _    | 6.86      | 6.96 |  |
| Critical Hdwy Stg 1      | 4.10      | _        |               | -          | -    | 5.86      | 0.90 |  |
| Critical Hdwy Stg 2      | -         | _        |               |            | -    | 5.86      | _    |  |
| Follow-up Hdwy           | 2.23      | _        |               | -          | -    | 3.53      | 3.33 |  |
| Pot Cap-1 Maneuver       | 640       | -        |               |            | _    | 72        | 486  |  |
| Stage 1                  | 040       | -        |               | -          | -    | 292       | 400  |  |
| Stage 2                  | -         | -        |               | -          | -    | 435       | -    |  |
| Platoon blocked, %       | -         | -        |               | -          | -    | 433       | -    |  |
| Mov Cap-1 Maneuver       | 640       | -        |               | -          | -    | 69        | 486  |  |
| Mov Cap-1 Maneuver       | 040       | -        |               | -          | -    | 69        | 400  |  |
| Stage 1                  | -         | -        |               | -          | -    | 292       | -    |  |
| Stage 2                  | -         | -        |               | -          | -    | 415       | -    |  |
| Slaye 2                  | -         | -        |               | -          | -    | 413       | -    |  |
| Approach                 | EB        |          |               | WB         |      | SB        |      |  |
| HCM Control Delay, s     | 0.2       |          |               | 0          |      | 15.3      |      |  |
| HCM LOS                  | 0.2       |          |               | U          |      | 15.5<br>C |      |  |
| I IOWI LOS               |           |          |               |            |      | U         |      |  |
| Minor Lane/Major Mvmt    | EBL       | EBT      | WBT WBR SBLn1 |            |      |           |      |  |
| Capacity (veh/h)         | 640       |          | 369           |            |      |           |      |  |
| HCM Lane V/C Ratio       | 0.046     | -        | 0.056         |            |      |           |      |  |
| HCM Control Delay (s)    | 10.9      | -        | 15.3          |            |      |           |      |  |
| HCM Lane LOS             | 10.9<br>B | -        | C             |            |      |           |      |  |
| HCM 95th %tile Q(veh)    | 0.1       | -        | 0.2           |            |      |           |      |  |
| HOW JOHN JUHE Q(VEII)    | 0.1       | -        | 0.2           |            |      |           |      |  |

|                                   | •          | <b>→</b>   | •          | •          | +          | •          | •          | <b>†</b>   | ~    | <b>/</b>   | ţ               | ✓    |
|-----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------|------------|-----------------|------|
| Lane Group                        | EBL        | EBT        | EBR        | WBL        | WBT        | WBR        | NBL        | NBT        | NBR  | SBL        | SBT             | SBR  |
| Lane Configurations               | *          | <b>†</b> † | 7          | ሻ          | <b>^</b>   | 7          | ሻ          | <b>^</b>   |      | ሻ          | ተተ <sub>ጉ</sub> |      |
| Traffic Volume (vph)              | 164        | 794        | 165        | 395        | 929        | 203        | 265        | 1338       | 284  | 169        | 1047            | 158  |
| Future Volume (vph)               | 164        | 794        | 165        | 395        | 929        | 203        | 265        | 1338       | 284  | 169        | 1047            | 158  |
| Ideal Flow (vphpl)                | 1800       | 1800       | 1800       | 1800       | 1800       | 1800       | 1800       | 1800       | 1800 | 1800       | 1800            | 1800 |
| Storage Length (m)                | 30.0       |            | 50.0       | 30.0       |            | 30.0       | 90.0       |            | 0.0  | 75.0       |                 | 0.0  |
| Storage Lanes                     | 1          |            | 1          | 1          |            | 1          | 1          |            | 0.0  | 1          |                 | 0.0  |
| Taper Length (m)                  | 20.0       |            |            | 25.0       |            | •          | 35.0       |            |      | 40.0       |                 | Ū    |
| Lane Util. Factor                 | 1.00       | 0.95       | 1.00       | 1.00       | 0.95       | 1.00       | 1.00       | 0.91       | 0.91 | 1.00       | 0.91            | 0.91 |
| Ped Bike Factor                   | 1.00       | 0.00       | 0.97       | 1.00       | 0.00       | 0.97       | 1.00       | 0.99       | 0.01 | 1.00       | 0.99            | 0.01 |
| Frt                               | 1.00       |            | 0.850      | 1.00       |            | 0.850      |            | 0.974      |      |            | 0.980           |      |
| Flt Protected                     | 0.950      |            | 0.000      | 0.950      |            | 0.000      | 0.950      | 0.574      |      | 0.950      | 0.500           |      |
| Satd. Flow (prot)                 | 1695       | 3390       | 1517       | 1695       | 3390       | 1517       | 1695       | 4714       | 0    | 1695       | 4742            | 0    |
| Flt Permitted                     | 0.125      | 5550       | 1017       | 0.111      | 0000       | 1017       | 0.098      | 7/ 17      | U    | 0.108      | 7172            | U    |
| Satd. Flow (perm)                 | 223        | 3390       | 1478       | 198        | 3390       | 1477       | 175        | 4714       | 0    | 193        | 4742            | 0    |
| Right Turn on Red                 | 220        | 3330       | Yes        | 130        | 3330       | Yes        | 175        | 7/17       | Yes  | 133        | 7/72            | Yes  |
| Satd. Flow (RTOR)                 |            |            | 159        |            |            | 123        |            | 43         | 163  |            | 24              | 163  |
| Link Speed (k/h)                  |            | 50         | 133        |            | 50         | 123        |            | 50         |      |            | 50              |      |
| Link Distance (m)                 |            | 458.3      |            |            | 110.3      |            |            | 220.1      |      |            | 211.9           |      |
| Travel Time (s)                   |            | 33.0       |            |            | 7.9        |            |            | 15.8       |      |            | 15.3            |      |
| Confl. Peds. (#/hr)               | 13         | 33.0       | 12         | 12         | 7.9        | 13         | 32         | 13.0       | 20   | 20         | 15.5            | 32   |
| Peak Hour Factor                  | 0.92       | 0.92       | 0.92       | 0.92       | 0.92       | 0.92       | 0.92       | 0.92       | 0.92 | 0.92       | 0.92            | 0.92 |
|                                   | 2%         | 2%         | 2%         | 2%         | 2%         | 2%         | 2%         | 2%         | 2%   | 2%         | 2%              | 2%   |
| Heavy Vehicles (%)                | 178        | 863        | 179        | 429        | 1010       | 221        | 288        | 1454       | 309  | 184        | 1138            | 172  |
| Adj. Flow (vph)                   | 1/0        | 003        | 179        | 429        | 1010       | 221        | 200        | 1454       | 309  | 104        | 1130            | 172  |
| Shared Lane Traffic (%)           | 178        | 863        | 179        | 429        | 1010       | 221        | 288        | 1763       | 0    | 184        | 1310            | 0    |
| Lane Group Flow (vph)             |            |            |            |            |            |            |            |            | U    |            |                 | 0    |
| Turn Type Protected Phases        | pm+pt      | NA         | Perm       | pm+pt      | NA<br>8    | Perm       | pm+pt      | NA<br>2    |      | pm+pt<br>1 | NA              |      |
| Permitted Phases                  | 7          | 4          | 1          | 3          | 0          | 0          | 5<br>2     | 2          |      | 6          | 6               |      |
| Detector Phase                    | 4<br>7     | 4          | 4          | 8          | 8          | 8<br>8     | 5          | 2          |      | 1          | 6               |      |
| Switch Phase                      | ,          | 4          | 4          | 3          | 0          | 0          | 5          | 2          |      | ı          | U               |      |
| Minimum Initial (s)               | 7.0        | 10.0       | 10.0       | 7.0        | 10.0       | 10.0       | 7.0        | 15.0       |      | 8.0        | 15.0            |      |
| Minimum Split (s)                 | 11.0       | 36.5       | 36.5       | 11.0       | 36.5       | 36.5       | 11.0       | 33.5       |      | 12.0       | 33.5            |      |
| Total Split (s)                   | 16.0       | 36.6       | 36.6       | 23.0       | 43.6       | 43.6       | 19.0       | 48.4       |      | 12.0       | 41.4            |      |
|                                   | 13.3%      | 30.5%      | 30.5%      | 19.2%      | 36.3%      | 36.3%      | 15.8%      | 40.3%      |      | 10.0%      | 34.5%           |      |
| Total Split (%)                   | 12.0       | 32.1       | 32.1       | 19.2 %     | 39.1       | 39.1       | 15.0%      | 43.9       |      | 8.0        | 36.9            |      |
| Maximum Green (s) Yellow Time (s) | 3.0        | 3.5        | 3.5        | 3.0        | 3.5        | 3.5        | 3.0        | 3.5        |      | 3.0        | 3.5             |      |
| . ,                               | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        | 1.0        |      | 1.0        | 1.0             |      |
| All-Red Time (s)                  | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |      | 0.0        | 0.0             |      |
| Lost Time Adjust (s)              | 4.0        | 4.5        | 4.5        | 4.0        | 4.5        | 4.5        | 4.0        | 4.5        |      | 4.0        | 4.5             |      |
| Total Lost Time (s)<br>Lead/Lag   | Lead       |            |            |            |            |            |            |            |      |            |                 |      |
| Lead-Lag Optimize?                |            | Lag        | Lag        | Lead       | Lag        | Lag        | Lead       | Lag        |      | Lead       | Lag<br>Yes      |      |
| · .                               | Yes<br>2.0 |      | Yes<br>2.0 | 2.0             |      |
| Vehicle Extension (s)             |            |            |            |            |            |            |            |            |      |            |                 |      |
| Recall Mode                       | None       | C-Max      |      | None       | C-Max           |      |
| Walk Time (s)                     |            | 10.0       | 10.0       |            | 10.0       | 10.0       |            | 10.0       |      |            | 10.0            |      |
| Flash Dont Walk (s)               |            | 22.0       | 22.0       |            | 22.0       | 22.0       |            | 19.0       |      |            | 19.0            |      |
| Pedestrian Calls (#/hr)           | 40.5       | 10         | 10         | FF 4       | 10         | 10         | FC 0       | 10         |      | 45.0       | 20              |      |
| Act Effct Green (s)               | 43.5       | 31.9       | 31.9       | 55.4       | 39.8       | 39.8       | 56.6       | 43.9       |      | 45.6       | 36.9            |      |
| Actuated g/C Ratio                | 0.36       | 0.27       | 0.27       | 0.46       | 0.33       | 0.33       | 0.47       | 0.37       |      | 0.38       | 0.31            |      |
| v/c Ratio                         | 0.82       | 0.96       | 0.35       | 1.31       | 0.90       | 0.39       | 1.05       | 1.01       |      | 1.05       | 0.89            |      |

|                        | •     | <b>→</b> | •    | •      | ←      | •    | 4      | <b>†</b> | ~   | -     | <b>↓</b> | 4   |
|------------------------|-------|----------|------|--------|--------|------|--------|----------|-----|-------|----------|-----|
| Lane Group             | EBL   | EBT      | EBR  | WBL    | WBT    | WBR  | NBL    | NBT      | NBR | SBL   | SBT      | SBR |
| Control Delay          | 55.6  | 65.1     | 9.3  | 185.5  | 52.3   | 18.4 | 99.9   | 60.4     |     | 109.9 | 47.5     |     |
| Queue Delay            | 0.0   | 0.0      | 0.0  | 0.0    | 0.0    | 0.0  | 0.0    | 0.0      |     | 0.0   | 0.0      |     |
| Total Delay            | 55.6  | 65.1     | 9.3  | 185.5  | 52.3   | 18.4 | 99.9   | 60.4     |     | 109.9 | 47.5     |     |
| LOS                    | Е     | Е        | Α    | F      | D      | В    | F      | Е        |     | F     | D        |     |
| Approach Delay         |       | 55.6     |      |        | 82.2   |      |        | 65.9     |     |       | 55.2     |     |
| Approach LOS           |       | Е        |      |        | F      |      |        | Е        |     |       | Ε        |     |
| Queue Length 50th (m)  | 25.6  | 105.4    | 3.5  | ~117.8 | 133.1  | 19.7 | ~59.3  | ~150.3   |     | ~32.2 | 105.7    |     |
| Queue Length 95th (m)  | #59.9 | #144.8   | 21.0 | #174.6 | #163.0 | 44.3 | #113.6 | #186.6   |     | #77.9 | 124.9    |     |
| Internal Link Dist (m) |       | 434.3    |      |        | 86.3   |      |        | 196.1    |     |       | 187.9    |     |
| Turn Bay Length (m)    | 30.0  |          | 50.0 | 30.0   |        | 30.0 | 90.0   |          |     | 75.0  |          |     |
| Base Capacity (vph)    | 230   | 906      | 511  | 328    | 1123   | 571  | 275    | 1751     |     | 176   | 1474     |     |
| Starvation Cap Reductn | 0     | 0        | 0    | 0      | 0      | 0    | 0      | 0        |     | 0     | 0        |     |
| Spillback Cap Reductn  | 0     | 0        | 0    | 0      | 0      | 0    | 0      | 0        |     | 0     | 0        |     |
| Storage Cap Reductn    | 0     | 0        | 0    | 0      | 0      | 0    | 0      | 0        |     | 0     | 0        |     |
| Reduced v/c Ratio      | 0.77  | 0.95     | 0.35 | 1.31   | 0.90   | 0.39 | 1.05   | 1.01     |     | 1.05  | 0.89     |     |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 125

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.31

Intersection Signal Delay: 65.7 Intersection LOS: E
Intersection Capacity Utilization 105.8% ICU Level of Service G

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.



|                                   | ۶     | <b>→</b> | •       | •     | +     | •    | •     | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4       |
|-----------------------------------|-------|----------|---------|-------|-------|------|-------|------------|-------------|----------|----------|---------|
| Lane Group                        | EBL   | EBT      | EBR     | WBL   | WBT   | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations               | ሻ     | <b></b>  | 7       | ሻ     | ĵ»    |      | ሻ     | <b>↑</b> ↑ |             | ኻ        | <b>^</b> | 7       |
| Traffic Volume (vph)              | 419   | 117      | 643     | 26    | 113   | 22   | 708   | 1567       | 21          | 16       | 1084     | 342     |
| Future Volume (vph)               | 419   | 117      | 643     | 26    | 113   | 22   | 708   | 1567       | 21          | 16       | 1084     | 342     |
| Ideal Flow (vphpl)                | 1800  | 1800     | 1800    | 1800  | 1800  | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)                | 40.0  |          | 0.0     | 10.0  |       | 0.0  | 35.0  |            | 60.0        | 45.0     |          | 0.0     |
| Storage Lanes                     | 1     |          | 1       | 1     |       | 0    | 1     |            | 0           | 1        |          | 1       |
| Taper Length (m)                  | 23.0  |          |         | 10.0  |       | -    | 25.0  |            |             | 35.0     |          |         |
| Lane Util. Factor                 | 1.00  | 1.00     | 1.00    | 1.00  | 1.00  | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor                   | 1.00  |          |         |       | 1.00  |      |       |            |             |          |          | 0.92    |
| Frt                               |       |          | 0.850   |       | 0.976 |      |       | 0.998      |             |          |          | 0.850   |
| Flt Protected                     | 0.950 |          |         | 0.950 |       |      | 0.950 |            |             | 0.950    |          |         |
| Satd. Flow (prot)                 | 1695  | 1784     | 1517    | 1695  | 1715  | 0    | 1695  | 3383       | 0           | 1695     | 3390     | 1517    |
| Flt Permitted                     | 0.508 |          |         | 0.676 |       |      | 0.099 |            | •           | 0.122    |          |         |
| Satd. Flow (perm)                 | 903   | 1784     | 1517    | 1206  | 1715  | 0    | 177   | 3383       | 0           | 218      | 3390     | 1394    |
| Right Turn on Red                 | 000   | 1101     | Yes     | 1200  | 11.10 | Yes  |       | 0000       | Yes         | 210      | 0000     | Yes     |
| Satd. Flow (RTOR)                 |       |          | 495     |       | 8     | 100  |       | 2          | 100         |          |          | 290     |
| Link Speed (k/h)                  |       | 50       | 100     |       | 50    |      |       | 50         |             |          | 50       | 200     |
| Link Distance (m)                 |       | 105.7    |         |       | 332.1 |      |       | 329.7      |             |          | 294.1    |         |
| Travel Time (s)                   |       | 7.6      |         |       | 23.9  |      |       | 23.7       |             |          | 21.2     |         |
| Confl. Peds. (#/hr)               | 4     | 7.0      |         |       | 20.5  | 4    | 51    | 20.1       |             |          | 21.2     | 51      |
| Peak Hour Factor                  | 0.92  | 0.92     | 0.92    | 0.92  | 0.92  | 0.92 | 0.92  | 0.92       | 0.92        | 0.92     | 0.92     | 0.92    |
| Heavy Vehicles (%)                | 2%    | 2%       | 2%      | 2%    | 3%    | 5%   | 2%    | 2%         | 2%          | 2%       | 2%       | 2%      |
| Adj. Flow (vph)                   | 455   | 127      | 699     | 28    | 123   | 24   | 770   | 1703       | 23          | 17       | 1178     | 372     |
| Shared Lane Traffic (%)           | 400   | 121      | 033     | 20    | 120   | 24   | 110   | 1700       | 20          | 17       | 1170     | 312     |
| Lane Group Flow (vph)             | 455   | 127      | 699     | 28    | 147   | 0    | 770   | 1726       | 0           | 17       | 1178     | 372     |
| Turn Type                         | pm+pt | NA       | Perm    | pm+pt | NA    | U    | pm+pt | NA         | U           | Perm     | NA       | Perm    |
| Protected Phases                  | 7     | 4        | i Giiii | 3     | 8     |      | 5     | 2          |             | i Giiii  | 6        | i Giiii |
| Permitted Phases                  | 4     | 7        | 4       | 8     | U     |      | 2     |            |             | 6        | U        | 6       |
| Detector Phase                    | 7     | 4        | 4       | 3     | 8     |      | 5     | 2          |             | 6        | 6        | 6       |
| Switch Phase                      | 1     | 7        |         | 3     | U     |      | J     |            |             | U        | U        | U       |
| Minimum Initial (s)               | 7.0   | 10.0     | 10.0    | 7.0   | 10.0  |      | 7.0   | 15.0       |             | 15.0     | 15.0     | 15.0    |
| Minimum Split (s)                 | 11.0  | 14.5     | 14.5    | 11.0  | 36.5  |      | 11.0  | 19.5       |             | 30.5     | 30.5     | 30.5    |
| Total Split (s)                   | 11.0  | 36.5     | 36.5    | 11.0  | 36.5  |      | 30.0  | 72.5       |             | 42.5     | 42.5     | 42.5    |
| Total Split (%)                   | 9.2%  | 30.4%    | 30.4%   | 9.2%  | 30.4% |      | 25.0% | 60.4%      |             | 35.4%    | 35.4%    | 35.4%   |
|                                   | 7.0   | 32.0     | 32.0    | 7.0   | 32.0  |      | 26.0  | 68.0       |             | 38.0     | 38.0     | 38.0    |
| Maximum Green (s) Yellow Time (s) | 3.0   | 3.5      | 3.5     | 3.0   | 3.5   |      | 3.0   | 3.5        |             | 3.5      | 3.5      | 3.5     |
| ` ,                               | 1.0   | 1.0      | 1.0     | 1.0   | 1.0   |      | 1.0   | 1.0        |             | 1.0      | 1.0      |         |
| All-Red Time (s)                  | 0.0   |          | 0.0     |       | 0.0   |      | 0.0   |            |             | 0.0      |          | 1.0     |
| Lost Time Adjust (s)              |       | 0.0      |         | 0.0   |       |      |       | 0.0        |             |          | 0.0      | 0.0     |
| Total Lost Time (s)               | 4.0   | 4.5      | 4.5     | 4.0   | 4.5   |      | 4.0   | 4.5        |             | 4.5      | 4.5      | 4.5     |
| Lead/Lag                          | Lead  | Lag      | Lag     | Lead  | Lag   |      | Lead  |            |             | Lag      | Lag      | Lag     |
| Lead-Lag Optimize?                | Yes   | Yes      | Yes     | Yes   | Yes   |      | Yes   | 2.0        |             | Yes      | Yes      | Yes     |
| Vehicle Extension (s)             | 2.0   | 2.0      | 2.0     | 2.0   | 2.0   |      | 2.0   | 2.0        |             | 2.0      | 2.0      | 2.0     |
| Recall Mode                       | None  | None     | None    | None  | None  |      | None  | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)                     |       |          |         |       | 10.0  |      |       |            |             | 10.0     | 10.0     | 10.0    |
| Flash Dont Walk (s)               |       |          |         |       | 22.0  |      |       |            |             | 16.0     | 16.0     | 16.0    |
| Pedestrian Calls (#/hr)           | 20.0  | 00.5     | 00.5    | 04.0  | 4     |      | 70.4  | 75.0       |             | 25       | 25       | 25      |
| Act Effct Green (s)               | 33.2  | 28.5     | 28.5    | 31.6  | 24.1  |      | 76.4  | 75.9       |             | 38.0     | 38.0     | 38.0    |
| Actuated g/C Ratio                | 0.28  | 0.24     | 0.24    | 0.26  | 0.20  |      | 0.64  | 0.63       |             | 0.32     | 0.32     | 0.32    |
| v/c Ratio                         | 1.54  | 0.30     | 0.95    | 0.08  | 0.42  |      | 1.42  | 0.81       |             | 0.25     | 1.10     | 0.58    |

### 8: Broad Street & Dewdney Avenue

|                        | •      | -     | •      | •    | •     | •   | 4      | <b>†</b> | ~   | -    | <b>↓</b> | 4    |
|------------------------|--------|-------|--------|------|-------|-----|--------|----------|-----|------|----------|------|
| Lane Group             | EBL    | EBT   | EBR    | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL  | SBT      | SBR  |
| Control Delay          | 285.1  | 31.0  | 34.7   | 26.7 | 40.9  |     | 229.8  | 22.5     |     | 41.6 | 97.2     | 12.0 |
| Queue Delay            | 0.0    | 0.0   | 6.4    | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0  | 0.0      | 0.0  |
| Total Delay            | 285.1  | 31.0  | 41.1   | 26.7 | 40.9  |     | 229.8  | 22.5     |     | 41.6 | 97.2     | 12.0 |
| LOS                    | F      | С     | D      | С    | D     |     | F      | С        |     | D    | F        | В    |
| Approach Delay         |        | 126.8 |        |      | 38.7  |     |        | 86.5     |     |      | 76.4     |      |
| Approach LOS           |        | F     |        |      | D     |     |        | F        |     |      | Е        |      |
| Queue Length 50th (m)  | ~142.2 | 25.1  | 91.8   | 4.3  | 26.2  |     | ~258.9 | 180.2    |     | 3.0  | ~165.3   | 14.0 |
| Queue Length 95th (m)  | #206.0 | 38.0  | #138.1 | 10.6 | 44.3  |     | #332.7 | 218.6    |     | 10.2 | #206.6   | 44.2 |
| Internal Link Dist (m) |        | 81.7  |        |      | 308.1 |     |        | 305.7    |     |      | 270.1    |      |
| Turn Bay Length (m)    | 40.0   |       |        | 10.0 |       |     | 35.0   |          |     | 45.0 |          |      |
| Base Capacity (vph)    | 295    | 475   | 767    | 345  | 463   |     | 541    | 2140     |     | 69   | 1073     | 639  |
| Starvation Cap Reductn | 0      | 0     | 47     | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Spillback Cap Reductn  | 0      | 0     | 0      | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Storage Cap Reductn    | 0      | 0     | 0      | 0    | 0     |     | 0      | 0        |     | 0    | 0        | 0    |
| Reduced v/c Ratio      | 1.54   | 0.27  | 0.97   | 0.08 | 0.32  |     | 1.42   | 0.81     |     | 0.25 | 1.10     | 0.58 |

#### Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

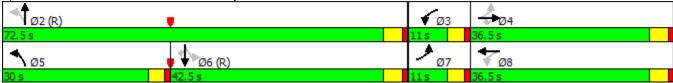
Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.54

Intersection Signal Delay: 91.4 Intersection LOS: F
Intersection Capacity Utilization 122.3% ICU Level of Service H

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



## 2: McIntyre Street & Dewdney Avenue

| Intersection             |            |           |      |               |            |      |        |      |      |      |        |      |      |
|--------------------------|------------|-----------|------|---------------|------------|------|--------|------|------|------|--------|------|------|
| Int Delay, s/veh         | 14.3       |           |      |               |            |      |        |      |      |      |        |      |      |
| Movement                 | EBL        | EBT       | EBR  | WBL           | WBT        | WBR  | N      | NBL  | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations      | ሻ          | ħβ        |      | ሻ             | <b>∱</b> β |      |        |      | 4    |      |        | 4    |      |
| Traffic Vol, veh/h       | 52         | 1166      | 29   | 22            | 1400       | 23   |        | 8    | 2    | 77   | 6      | 1    | 118  |
| Future Vol, veh/h        | 52         | 1166      | 29   | 22            | 1400       | 23   |        | 8    | 2    | 77   | 6      | 1    | 118  |
| Conflicting Peds, #/hr   | 0          | 0         | 0    | 0             | 0          | 0    |        | 0    | 0    | 0    | 0      | 0    | 0    |
| Sign Control             | Free       | Free      | Free | Free          | Free       | Free | S      | Stop | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized           | -          | -         | None | -             | -          | None |        | -    | -    | None | -      | -    | None |
| Storage Length           | 200        | -         | -    | 250           | -          | -    |        | -    | -    | -    | -      | -    | -    |
| Veh in Median Storage, # | ‡ -        | 0         | -    | -             | 0          | -    |        | -    | 0    | -    | -      | 0    | -    |
| Grade, %                 | -          | 0         | -    | -             | 0          | -    |        | -    | 0    | -    | -      | 0    | -    |
| Peak Hour Factor         | 92         | 92        | 92   | 92            | 92         | 92   |        | 92   | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %        | 3          | 3         | 3    | 3             | 3          | 3    |        | 3    | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 57         | 1267      | 32   | 24            | 1522       | 25   |        | 9    | 2    | 84   | 7      | 1    | 128  |
|                          |            |           |      |               |            |      |        |      |      |      |        |      |      |
| Major/Minor              | Major1     |           |      | Major2        |            |      | Min    | or1  |      |      | Minor2 |      |      |
| Conflicting Flow All     | 1547       | 0         | 0    | 1299          | 0          | 0    | 22     | 205  | 2991 | 649  | 2330   | 2994 | 773  |
| Stage 1                  | -          | -         | -    | _             | -          | -    |        | 396  | 1396 | _    | 1582   | 1582 | _    |
| Stage 2                  | -          | -         | -    | -             | -          | -    |        | 809  | 1595 | _    | 748    | 1412 | -    |
| Critical Hdwy            | 4.16       | -         | -    | 4.16          | -          | -    | 7      | .56  | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -          | -         | -    | -             | -          | -    |        | 5.56 | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2      | -          | _         | -    | -             | -          | _    | 6      | 5.56 | 5.56 | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy           | 2.23       | -         | -    | 2.23          | -          | -    | 3      | 3.53 | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 420        | -         | -    | 524           | -          | -    |        | 24   | 13   | 410  | 19     | 13   | 340  |
| Stage 1                  | -          | -         | -    | -             | -          | -    | •      | 147  | 204  | -    | 112    | 166  | -    |
| Stage 2                  | -          | -         | -    | -             | -          | -    | ;      | 338  | 163  | -    | 368    | 201  | -    |
| Platoon blocked, %       |            | -         | -    |               | -          | -    |        |      |      |      |        |      |      |
| Mov Cap-1 Maneuver       | 420        | -         | -    | 524           | -          | -    |        | 12   | 11   | 410  | 11     | 11   | 340  |
| Mov Cap-2 Maneuver       | -          | -         | -    | -             | -          | -    |        | 12   | 11   | -    | 11     | 11   | -    |
| Stage 1                  | -          | -         | -    | -             | -          | -    | •      | 127  | 176  | -    | 97     | 158  | -    |
| Stage 2                  | -          | -         | -    | -             | -          | -    | •      | 199  | 156  | -    | 250    | 174  | -    |
|                          |            |           |      |               |            |      |        |      |      |      |        |      |      |
| Approach                 | EB         |           |      | WB            |            |      |        | NB   |      |      | SB     |      |      |
| HCM Control Delay, s     | 0.6        |           |      | 0.2           |            |      |        | 26.2 |      |      | 166.9  |      |      |
| HCM LOS                  | 0.0        |           |      | 0.2           |            |      |        | F    |      |      | F      |      |      |
| 110111 200               |            |           |      |               |            |      |        | •    |      |      | '      |      |      |
| Minor Lane/Major Mvmt    | NBLn1      | EBL       | EBT  | EBR WBL       | WBT        | WBR: | SBI n1 |      |      |      |        |      |      |
| Capacity (veh/h)         | 84         | 420       |      | - 524         |            |      | 127    |      |      |      |        |      |      |
| HCM Lane V/C Ratio       | 1.126      |           | _    | - 0.046       | _          | _    | 1.07   |      |      |      |        |      |      |
| HCM Control Delay (s)    | 226.2      | 14.9      | _    | - 12.2        | _          |      | 166.9  |      |      |      |        |      |      |
| HCM Lane LOS             | 720.2<br>F | 14.3<br>B | _    | - 12.2<br>- B | _          | _    | F      |      |      |      |        |      |      |
| HCM 95th %tile Q(veh)    | 6.7        | 0.5       | _    | - 0.1         | _          | _    | 7.7    |      |      |      |        |      |      |
| TOWN JOHN JUHIC Q(VGII)  | 0.7        | 0.0       |      | 0.1           |            | -    | 1.1    |      |      |      |        |      |      |

### 4: Cornwall Street & Dewdney Avenue

| Intersection             |          |          |      |         |      |        |       |       |      |      |           |      |      |
|--------------------------|----------|----------|------|---------|------|--------|-------|-------|------|------|-----------|------|------|
| Int Delay, s/veh         | 22.7     |          |      |         |      |        |       |       |      |      |           |      |      |
| Movement                 | EBL      | EBT      | EBR  | WBL     | WBT  | WBR    |       | NBL   | NBT  | NBR  | SBL       | SBT  | SBF  |
| Lane Configurations      | ሻ        | Φ₽       |      | ሻ       | ΦÞ   |        |       |       | 4    |      |           | 4    |      |
| Traffic Vol, veh/h       | 31       | 1172     | 9    | 32      | 1250 | 23     |       | 39    | 0    | 44   | 5         | 0    | 65   |
| Future Vol, veh/h        | 31       | 1172     | 9    | 32      | 1250 | 23     |       | 39    | 0    | 44   | 5         | 0    | 65   |
| Conflicting Peds, #/hr   | 0        | 0        | 0    | 0       | 0    | 0      |       | 0     | 0    | 0    | 0         | 0    | 0    |
| Sign Control             | Free     | Free     | Free | Free    | Free | Free   |       | Stop  | Stop | Stop | Stop      | Stop | Stop |
| RT Channelized           | -        | -        | None | -       | -    | None   |       | -     | -    | None | -         | -    | None |
| Storage Length           | 500      | -        | -    | 300     | -    | -      |       | -     | -    | -    | -         | -    | -    |
| Veh in Median Storage, # | -        | 0        | -    | -       | 0    | -      |       | -     | 0    | -    | -         | 0    | -    |
| Grade, %                 | -        | 0        | -    | -       | 0    | -      |       | -     | 0    | -    | -         | 0    | -    |
| Peak Hour Factor         | 92       | 92       | 92   | 92      | 92   | 92     |       | 92    | 92   | 92   | 92        | 92   | 92   |
| Heavy Vehicles, %        | 3        | 3        | 3    | 3       | 3    | 3      |       | 3     | 3    | 3    | 3         | 3    | 3    |
| Mvmt Flow                | 34       | 1274     | 10   | 35      | 1359 | 25     |       | 42    | 0    | 48   | 5         | 0    | 71   |
|                          |          |          |      |         |      |        |       |       |      |      | -         | -    |      |
| Major/Minor              | Major1   |          |      | Major2  |      |        | М     | inor1 |      |      | Minor2    |      |      |
| Conflicting Flow All     | 1384     | 0        | 0    | 1284    | 0    | 0      |       | 2095  | 2799 | 642  | 2145      | 2792 | 692  |
| Stage 1                  | -        | _        | _    | -       | _    | _      |       | 1346  | 1346 | _    | 1441      | 1441 | _    |
| Stage 2                  | -        | _        | -    | -       | -    | -      |       | 749   | 1453 | -    | 704       | 1351 | _    |
| Critical Hdwy            | 4.16     | -        | -    | 4.16    | -    | -      |       | 7.56  | 6.56 | 6.96 | 7.56      | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -        | _        | _    | -       | _    | _      |       | 6.56  | 5.56 | -    | 6.56      | 5.56 | -    |
| Critical Hdwy Stg 2      | _        | _        | _    | -       | -    | _      |       | 6.56  | 5.56 | _    | 6.56      | 5.56 | _    |
| Follow-up Hdwy           | 2.23     | _        | _    | 2.23    | _    | _      |       | 3.53  | 4.03 | 3.33 | 3.53      | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 486      | _        | _    | 531     | _    | _      |       | ~ 30  | 18   | 414  | 27        | 18   | 384  |
| Stage 1                  | -        | _        | _    | -       | _    | _      |       | 158   | 216  | -    | 138       | 194  | - 00 |
| Stage 2                  | _        | _        | _    | _       | _    | _      |       | 368   | 192  | _    | 391       | 215  | _    |
| Platoon blocked, %       |          | _        | _    |         |      | _      |       | 300   | 132  |      | 331       | 210  |      |
| Mov Cap-1 Maneuver       | 486      | -        | -    | 531     | -    | -      |       | ~ 22  | 16   | 414  | 21        | 16   | 384  |
| Mov Cap-1 Maneuver       | 400      | -        | -    | 551     | -    | -      |       | ~ 22  | 16   | 414  | 21        | 16   | 304  |
| ·                        | -        | -        | -    | -       | -    | -      |       | 147   | 201  | -    | 128       | 181  | -    |
| Stage 1                  | -        | -        | -    | -       | -    | -      |       | 280   | 179  | -    |           | 200  | -    |
| Stage 2                  | -        | -        | -    | -       | -    | -      |       | 200   | 179  | -    | 322       | 200  | -    |
| Approach                 | EB       |          |      | WB      |      |        |       | NB    |      |      | SB        |      |      |
| HCM Control Delay, s     | 0.3      |          |      | 0.3     |      |        | \$ 6  | 85.6  |      |      | 41.6      |      |      |
| HCM LOS                  | 0.0      |          |      | 0.0     |      |        | Ψ     | F     |      |      | F         |      |      |
| TIOW LOO                 |          |          |      |         |      |        |       | !     |      |      | _         |      |      |
| Minor Lane/Major Mvmt    | NBLn1    | EBL      | EBT  | EBR WBL | WBT  | WBR S  | SBLn1 |       |      |      |           |      |      |
| Capacity (veh/h)         | 44       | 486      | -    | - 531   | -    | -      | 172   |       |      |      |           |      |      |
| HCM Lane V/C Ratio       |          | 0.069    | -    | - 0.066 | -    | -      | 0.442 |       |      |      |           |      |      |
| HCM Control Delay (s)    | \$ 685.6 | 13       | -    | - 12.3  | -    | _      | 41.6  |       |      |      |           |      |      |
| HCM Lane LOS             | Ψ 000.0  | В        | _    | - B     | _    | _      | E     |       |      |      |           |      |      |
| HCM 95th %tile Q(veh)    | 9.4      | 0.2      | -    | - 0.2   | -    | -      | 2     |       |      |      |           |      |      |
| Notes                    |          |          |      | - /-    |      |        | _     |       |      |      |           |      |      |
| ~: Volume exceeds capac  |          | elay exc |      |         |      | Not De |       |       |      |      | n platoon |      |      |

| Intersection             | 8.2       |              |         |              |         |          |                |      |      |        |      |      |
|--------------------------|-----------|--------------|---------|--------------|---------|----------|----------------|------|------|--------|------|------|
| •                        |           |              |         |              |         |          |                |      |      |        |      |      |
| Movement                 | EBL       | EBT          | EBR     | WBL          | WBT     | WBR      | NBL            | NBT  | NBR  | SBL    | SBT  | SBF  |
| Lane Configurations      | ሻ         | _ <b>∱</b> } |         | ሻ            | Λħ      |          |                | 4    |      |        | 4    |      |
| Traffic Vol, veh/h       | 16        | 1144         | 57      | 17           | 1176    | 14       | 72             | 0    | 20   | 7      | 0    | 58   |
| Future Vol, veh/h        | 16        | 1144         | 57      | 17           | 1176    | 14       | 72             | 0    | 20   | 7      | 0    | 58   |
| Conflicting Peds, #/hr   | 0         | 0            | 0       | 0            | 0       | 0        | 0              | 0    | 0    | 0      | 0    | C    |
| Sign Control             | Free      | Free         | Free    | Free         | Free    | Free     | Stop           | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized           | -         | -            | None    | -            | -       | None     | -              | -    | None | -      | -    | None |
| Storage Length           | 300       | -            | -       | 300          | -       | -        | -              | -    | -    | -      | -    |      |
| Veh in Median Storage, # | -         | 0            | -       | -            | 0       | -        | -              | 0    | -    | -      | 0    |      |
| Grade, %                 | -         | 0            | -       | -            | 0       | -        | -              | 0    | -    | -      | 0    |      |
| Peak Hour Factor         | 92        | 92           | 92      | 92           | 92      | 92       | 92             | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %        | 3         | 3            | 3       | 3            | 3       | 3        | 3              | 3    | 3    | 3      | 3    | 3    |
| Mvmt Flow                | 17        | 1243         | 62      | 18           | 1278    | 15       | 78             | 0    | 22   | 8      | 0    | 63   |
|                          |           |              |         |              |         |          |                |      |      |        |      |      |
| Major/Minor              | Major1    |              |         | Major2       |         |          | Minor1         |      |      | Minor2 |      |      |
| Conflicting Flow All     | 1293      | 0            | 0       | 1305         | 0       | 0        | 1985           | 2639 | 653  | 1980   | 2663 | 647  |
| Stage 1                  | 1200      | -            | -       | -            | -       | -        | 1309           | 1309 | -    | 1323   | 1323 |      |
| Stage 2                  | _         | _            | _       | -            | _       | _        | 676            | 1330 | _    | 657    | 1340 | _    |
| Critical Hdwy            | 4.16      | _            | -       | 4.16         | _       | _        | 7.56           | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | -         | _            | _       | -            | _       | _        | 6.56           | 5.56 | -    | 6.56   | 5.56 | 0.00 |
| Critical Hdwy Stg 2      | -         | _            | _       | -            | _       | -        | 6.56           | 5.56 | -    | 6.56   | 5.56 | _    |
| Follow-up Hdwy           | 2.23      | _            | _       | 2.23         | _       | _        | 3.53           | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 527       | _            | -       | 521          | _       | _        | ~ 36           | 23   | 408  | 36     | 22   | 411  |
| Stage 1                  | -         | _            | _       | -            | _       | _        | 167            | 225  | -    | 163    | 222  |      |
| Stage 2                  | -         | _            | -       | -            | _       | _        | 407            | 220  | -    | 418    | 218  | _    |
| Platoon blocked, %       |           | _            | _       |              | _       | _        | 401            | LLU  |      | 410    | 210  |      |
| Mov Cap-1 Maneuver       | 527       | _            | _       | 521          | _       |          | ~ 29           | 21   | 408  | 32     | 21   | 411  |
| Mov Cap-1 Maneuver       | -         |              | _       | JZ 1         |         | _        | ~ 29           | 21   |      | 32     | 21   | 711  |
| Stage 1                  | -         | -            | _       | -            | -       |          | 162            | 218  | -    | 158    | 214  | _    |
| · ·                      | _         | _            | -       | -            | -       | -        | 333            | 212  | _    | 383    | 211  |      |
| Stage 2                  | -         | -            | -       | -            | -       | -        | 333            | 212  | -    | 303    | 211  | -    |
| Annroach                 | ГР        |              |         | WD           |         |          | ND             |      |      | CD     |      |      |
| Approach                 | EB        |              |         | WB           |         |          | NB<br>0 4000 0 |      |      | SB     |      |      |
| HCM Control Delay, s     | 0.2       |              |         | 0.2          |         |          | \$ 1038.9      |      |      | 37.1   |      |      |
| HCM LOS                  |           |              |         |              |         |          | F              |      |      | E      |      |      |
|                          | NE        | EDI          | EST     | EDD 14/5:    | 14/57   | MED      | 2DL 4          |      |      |        |      |      |
| Minor Lane/Major Mvmt    | NBLn1     | EBL          | EBT     | EBR WBL      | WBT     | WBR S    |                |      |      |        |      |      |
| Capacity (veh/h)         | 36        | 527          | -       | - 521        | -       | -        | 181            |      |      |        |      |      |
| HCM Lane V/C Ratio       | 2.778     |              | -       | - 0.035      | -       | -        | 0.39           |      |      |        |      |      |
| HCM Control Delay (s)    | \$ 1038.9 | 12.1         | -       | - 12.2       | -       | -        | 37.1           |      |      |        |      |      |
| HCM Lane LOS             | F         | В            | -       | - B          | -       | -        | Е              |      |      |        |      |      |
| HCM 95th %tile Q(veh)    | 11.3      | 0.1          | -       | - 0.1        | -       | -        | 1.7            |      |      |        |      |      |
| Notes                    |           |              |         |              |         |          |                |      |      |        |      |      |
| ~: Volume exceeds capaci | ty \$: De | elay exc     | eeds 30 | fined *: All | major v | olume in | platoon        |      |      |        |      |      |

# 7: Dewdney Avenue & Rose Street

| Intersection             |        |          |     |        |            |      |                                         |      |
|--------------------------|--------|----------|-----|--------|------------|------|-----------------------------------------|------|
| Int Delay, s/veh         | 0.6    |          |     |        |            |      |                                         |      |
| Movement                 | EBL    | EBT      |     |        | WBT        | WBR  | SBL                                     | SBR  |
| Lane Configurations      | ሻ      | <b>^</b> |     |        | <b>↑</b> ↑ | i    | À                                       |      |
| Traffic Vol, veh/h       | 20     | 1178     |     |        | 1141       |      | . 2                                     | 63   |
| Future Vol, veh/h        | 20     | 1178     |     |        | 1141       | 22   | 2                                       | 63   |
| Conflicting Peds, #/hr   | 0      | 0        |     |        | 0          |      |                                         |      |
| Sign Control             | Free   | Free     |     |        | Free       | Free | Stop                                    | Stop |
| RT Channelized           | -      | None     |     |        | -          | None |                                         |      |
| Storage Length           | 300    | -        |     |        | -          | -    | 0                                       | -    |
| Veh in Median Storage, # |        | 0        |     |        | 0          | -    |                                         |      |
| Grade, %                 | -      | 0        |     |        | 0          |      |                                         |      |
| Peak Hour Factor         | 92     | 92       |     |        | 92         |      |                                         |      |
| Heavy Vehicles, %        | 3      | 3        |     |        | 3          |      |                                         |      |
| Mvmt Flow                | 22     | 1280     |     |        | 1240       |      |                                         |      |
|                          |        |          |     |        |            |      |                                         |      |
| Major/Minor              | Major1 |          |     |        | Major2     |      | Minor2                                  |      |
| Conflicting Flow All     | 1264   | 0        |     |        | iviajuiz   | 0    |                                         |      |
|                          | 1204   |          |     |        | -          |      |                                         |      |
| Stage 1                  | -      | -        |     |        | -          | -    | 684                                     |      |
| Stage 2                  | 4.16   | -        |     |        | -          | -    |                                         |      |
| Critical Hdwy            | 4.10   | -        |     |        | -          | -    | 5.86                                    |      |
| Critical Hdwy Stg 1      | -      | -        |     |        | -          | -    | = 00                                    |      |
| Critical Hdwy Stg 2      | 2.23   | -        |     |        | -          | -    |                                         |      |
| Follow-up Hdwy           |        | -        |     |        | -          | -    | 3.53                                    |      |
| Pot Cap-1 Maneuver       | 540    | -        |     |        | -          | -    | 57                                      |      |
| Stage 1                  | -      | -        |     |        | -          | -    | 231                                     | -    |
| Stage 2                  | -      | -        |     |        | -          | -    | 460                                     | -    |
| Platoon blocked, %       | E40    | -        |     |        | -          | -    | -                                       | 404  |
| Mov Cap-1 Maneuver       | 540    | -        |     |        | -          | -    | • • • • • • • • • • • • • • • • • • • • |      |
| Mov Cap-2 Maneuver       | -      | -        |     |        | -          | -    | 55                                      | -    |
| Stage 1                  | -      | -        |     |        | -          | -    | 231                                     | -    |
| Stage 2                  | -      | -        |     |        | -          | -    | 441                                     | -    |
|                          |        |          |     |        |            |      |                                         |      |
| Approach                 | EB     |          |     |        | WB         |      | SB                                      |      |
| HCM Control Delay, s     | 0.2    |          |     |        | 0          |      | 17.9                                    |      |
| HCM LOS                  |        |          |     |        |            |      | С                                       |      |
|                          |        |          |     |        |            |      |                                         |      |
| Minor Lane/Major Mvmt    | EBL    | EBT      | WBT | WBR SI | 3Ln1       |      |                                         |      |
| Capacity (veh/h)         | 540    | _        | _   | _      | 349        |      |                                         |      |
| HCM Lane V/C Ratio       | 0.04   | _        | _   | - (    | ).202      |      |                                         |      |
| HCM Control Delay (s)    | 11.9   | _        | _   | -      | 17.9       |      |                                         |      |
| HCM Lane LOS             | В      | _        | _   | _      | C          |      |                                         |      |
| HCM 95th %tile Q(veh)    | 0.1    | _        | _   | -      | 0.7        |      |                                         |      |
| TOWN JOHN JUHIC Q(VOII)  | 0.1    |          |     |        | J.1        |      |                                         |      |

|                         | ۶     | <b>→</b>   | •       | •     | <b>←</b> | •       | 1     | <b>†</b>   | <i>&gt;</i> | <b>/</b>   | <b>+</b>        | 4    |
|-------------------------|-------|------------|---------|-------|----------|---------|-------|------------|-------------|------------|-----------------|------|
| Lane Group              | EBL   | EBT        | EBR     | WBL   | WBT      | WBR     | NBL   | NBT        | NBR         | SBL        | SBT             | SBR  |
| Lane Configurations     | ሻ     | <b>†</b> † | 7       | ሻ     | <b>^</b> | 7       | ሻ     | ተተኈ        |             | ሻ          | ተተ <sub>ጉ</sub> |      |
| Traffic Volume (vph)    | 144   | 950        | 225     | 210   | 685      | 79      | 122   | 588        | 221         | 220        | 1381            | 112  |
| Future Volume (vph)     | 144   | 950        | 225     | 210   | 685      | 79      | 122   | 588        | 221         | 220        | 1381            | 112  |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800    | 1800  | 1800     | 1800    | 1800  | 1800       | 1800        | 1800       | 1800            | 1800 |
| Storage Length (m)      | 30.0  |            | 50.0    | 30.0  |          | 30.0    | 90.0  |            | 0.0         | 75.0       |                 | 0.0  |
| Storage Lanes           | 1     |            | 1       | 1     |          | 1       | 1     |            | 0           | 1          |                 | 0    |
| Taper Length (m)        | 20.0  |            |         | 25.0  |          |         | 35.0  |            |             | 40.0       |                 | -    |
| Lane Util. Factor       | 1.00  | 0.95       | 1.00    | 1.00  | 0.95     | 1.00    | 1.00  | 0.91       | 0.91        | 1.00       | 0.91            | 0.91 |
| Ped Bike Factor         | 1.00  |            | 0.97    | 1.00  |          | 0.97    | 1.00  | 0.99       |             | 0.99       | 1.00            |      |
| Frt                     |       |            | 0.850   |       |          | 0.850   |       | 0.959      |             |            | 0.989           |      |
| Flt Protected           | 0.950 |            |         | 0.950 |          |         | 0.950 |            |             | 0.950      |                 |      |
| Satd. Flow (prot)       | 1695  | 3390       | 1517    | 1695  | 3390     | 1517    | 1695  | 4625       | 0           | 1695       | 4799            | 0    |
| Flt Permitted           | 0.226 |            |         | 0.098 |          |         | 0.106 | .020       | •           | 0.181      |                 | J    |
| Satd. Flow (perm)       | 402   | 3390       | 1478    | 175   | 3390     | 1477    | 189   | 4625       | 0           | 321        | 4799            | 0    |
| Right Turn on Red       | 102   | 0000       | Yes     | 110   | 0000     | Yes     | 100   | 1020       | Yes         | 021        | 1700            | Yes  |
| Satd. Flow (RTOR)       |       |            | 151     |       |          | 123     |       | 81         | 100         |            | 12              | 100  |
| Link Speed (k/h)        |       | 50         | 101     |       | 50       | 120     |       | 50         |             |            | 50              |      |
| Link Distance (m)       |       | 458.3      |         |       | 110.3    |         |       | 220.1      |             |            | 211.9           |      |
| Travel Time (s)         |       | 33.0       |         |       | 7.9      |         |       | 15.8       |             |            | 15.3            |      |
| Confl. Peds. (#/hr)     | 13    | 00.0       | 12      | 12    | 1.5      | 13      | 32    | 10.0       | 20          | 20         | 10.0            | 32   |
| Peak Hour Factor        | 0.92  | 0.92       | 0.92    | 0.92  | 0.92     | 0.92    | 0.92  | 0.92       | 0.92        | 0.92       | 0.92            | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%         | 2%      | 2%    | 2%       | 2%      | 2%    | 2%         | 2%          | 2%         | 2%              | 2%   |
| Adj. Flow (vph)         | 157   | 1033       | 245     | 228   | 745      | 86      | 133   | 639        | 240         | 239        | 1501            | 122  |
| Shared Lane Traffic (%) | 101   | 1000       | 240     | 220   | 745      | 00      | 100   | 000        | 240         | 200        | 1501            | 122  |
| Lane Group Flow (vph)   | 157   | 1033       | 245     | 228   | 745      | 86      | 133   | 879        | 0           | 239        | 1623            | 0    |
| Turn Type               | pm+pt | NA         | Perm    | pm+pt | NA       | Perm    | pm+pt | NA         | U           | pm+pt      | NA              | U    |
| Protected Phases        | 7     | 4          | I GIIII | 3     | 8        | I CIIII | 5     | 2          |             | 1          | 6               |      |
| Permitted Phases        | 4     | 7          | 4       | 8     | Ü        | 8       | 2     |            |             | 6          | U               |      |
| Detector Phase          | 7     | 4          | 4       | 3     | 8        | 8       | 5     | 2          |             | 1          | 6               |      |
| Switch Phase            | 1     | 7          | 7       | 3     | Ü        | U       | 3     |            |             | '          | U               |      |
| Minimum Initial (s)     | 7.0   | 10.0       | 10.0    | 7.0   | 10.0     | 10.0    | 7.0   | 15.0       |             | 8.0        | 15.0            |      |
| Minimum Split (s)       | 11.0  | 36.5       | 36.5    | 11.0  | 36.5     | 36.5    | 11.0  | 33.5       |             | 12.0       | 33.5            |      |
| Total Split (s)         | 16.0  | 43.0       | 43.0    | 17.0  | 44.0     | 44.0    | 11.0  | 40.0       |             | 20.0       | 49.0            |      |
| Total Split (%)         | 13.3% | 35.8%      | 35.8%   | 14.2% | 36.7%    | 36.7%   | 9.2%  | 33.3%      |             | 16.7%      | 40.8%           |      |
| Maximum Green (s)       | 12.0  | 38.5       | 38.5    | 13.0  | 39.5     | 39.5    | 7.0   | 35.5       |             | 16.0       | 44.5            |      |
| Yellow Time (s)         | 3.0   | 3.5        | 3.5     | 3.0   | 3.5      | 3.5     | 3.0   | 3.5        |             | 3.0        | 3.5             |      |
| All-Red Time (s)        | 1.0   | 1.0        | 1.0     | 1.0   | 1.0      | 1.0     | 1.0   | 1.0        |             | 1.0        | 1.0             |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        | 0.0     | 0.0   | 0.0      | 0.0     | 0.0   | 0.0        |             | 0.0        | 0.0             |      |
| Total Lost Time (s)     | 4.0   | 4.5        | 4.5     | 4.0   | 4.5      | 4.5     | 4.0   | 4.5        |             | 4.0        | 4.5             |      |
| Lead/Lag                |       |            |         |       |          |         |       |            |             | Lead       |                 |      |
| •                       | Lead  | Lag        | Lag     | Lead  | Lag      | Lag     | Lead  | Lag        |             |            | Lag             |      |
| Lead-Lag Optimize?      | Yes   | Yes        | Yes     | Yes   | Yes      | Yes     | Yes   | Yes<br>2.0 |             | Yes<br>2.0 | Yes<br>2.0      |      |
| Vehicle Extension (s)   | 2.0   | 2.0        | 2.0     | 2.0   | 2.0      | 2.0     | 2.0   |            |             |            |                 |      |
| Recall Mode             | None  | None       | None    | None  | None     | None    | None  | C-Max      |             | None       | C-Max           |      |
| Walk Time (s)           |       | 10.0       | 10.0    |       | 10.0     | 10.0    |       | 10.0       |             |            | 10.0            |      |
| Flash Dont Walk (s)     |       | 22.0       | 22.0    |       | 22.0     | 22.0    |       | 19.0       |             |            | 19.0            |      |
| Pedestrian Calls (#/hr) | 40.0  | 10         | 10      | E4.0  | 10       | 10      | 45.0  | 10         |             | FF 0       | 20              |      |
| Act Effct Green (s)     | 49.0  | 38.2       | 38.2    | 54.0  | 40.9     | 40.9    | 45.3  | 37.7       |             | 55.9       | 44.6            |      |
| Actuated g/C Ratio      | 0.41  | 0.32       | 0.32    | 0.45  | 0.34     | 0.34    | 0.38  | 0.31       |             | 0.47       | 0.37            |      |
| v/c Ratio               | 0.57  | 0.96       | 0.43    | 0.94  | 0.65     | 0.15    | 0.83  | 0.58       |             | 0.77       | 0.91            |      |

|                        | •    | <b>→</b> | $\rightarrow$ | •     | •     | •    | 4     | <b>†</b> | ~   | -     | <b>↓</b> | 4   |
|------------------------|------|----------|---------------|-------|-------|------|-------|----------|-----|-------|----------|-----|
| Lane Group             | EBL  | EBT      | EBR           | WBL   | WBT   | WBR  | NBL   | NBT      | NBR | SBL   | SBT      | SBR |
| Control Delay          | 27.8 | 59.3     | 14.7          | 75.1  | 36.8  | 2.3  | 62.9  | 33.4     |     | 37.4  | 43.9     |     |
| Queue Delay            | 0.0  | 0.0      | 0.0           | 0.0   | 0.0   | 0.0  | 0.0   | 0.0      |     | 0.0   | 0.0      |     |
| Total Delay            | 27.8 | 59.3     | 14.7          | 75.1  | 36.8  | 2.3  | 62.9  | 33.4     |     | 37.4  | 43.9     |     |
| LOS                    | С    | Е        | В             | Е     | D     | Α    | Е     | С        |     | D     | D        |     |
| Approach Delay         |      | 48.3     |               |       | 42.3  |      |       | 37.3     |     |       | 43.1     |     |
| Approach LOS           |      | D        |               |       | D     |      |       | D        |     |       | D        |     |
| Queue Length 50th (m)  | 21.2 | 124.6    | 16.0          | 38.7  | 77.9  | 0.0  | 17.7  | 58.8     |     | 34.1  | 130.7    |     |
| Queue Length 95th (m)  | 34.8 | #166.8   | 38.4          | #87.4 | 100.2 | 4.8  | #52.4 | 73.7     |     | #58.0 | 151.9    |     |
| Internal Link Dist (m) |      | 434.3    |               |       | 86.3  |      |       | 196.1    |     |       | 187.9    |     |
| Turn Bay Length (m)    | 30.0 |          | 50.0          | 30.0  |       | 30.0 | 90.0  |          |     | 75.0  |          |     |
| Base Capacity (vph)    | 299  | 1087     | 576           | 243   | 1154  | 584  | 161   | 1507     |     | 334   | 1792     |     |
| Starvation Cap Reductn | 0    | 0        | 0             | 0     | 0     | 0    | 0     | 0        |     | 0     | 0        |     |
| Spillback Cap Reductn  | 0    | 0        | 0             | 0     | 0     | 0    | 0     | 0        |     | 0     | 0        |     |
| Storage Cap Reductn    | 0    | 0        | 0             | 0     | 0     | 0    | 0     | 0        |     | 0     | 0        |     |
| Reduced v/c Ratio      | 0.53 | 0.95     | 0.43          | 0.94  | 0.65  | 0.15 | 0.83  | 0.58     |     | 0.72  | 0.91     |     |

Intersection Summary

Area Type: Other

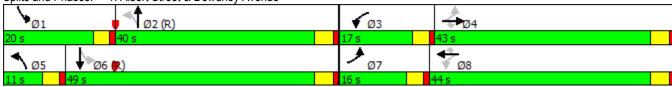
Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 95

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.96

Intersection Signal Delay: 43.2 Intersection LOS: D
Intersection Capacity Utilization 92.3% ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

|                         | ۶      | <b>→</b> | •     | •     | <b>+</b> | •    | •      | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | -√    |
|-------------------------|--------|----------|-------|-------|----------|------|--------|------------|-------------|----------|----------|-------|
| Lane Group              | EBL    | EBT      | EBR   | WBL   | WBT      | WBR  | NBL    | NBT        | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ      | <b></b>  | 7     | ሻ     | 1>       |      | ሻ      | <b>↑</b> ↑ |             | ች        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 365    | 86       | 785   | 7     | 53       | 4    | 635    | 791        | 21          | 13       | 1169     | 299   |
| Future Volume (vph)     | 365    | 86       | 785   | 7     | 53       | 4    | 635    | 791        | 21          | 13       | 1169     | 299   |
| Ideal Flow (vphpl)      | 1800   | 1800     | 1800  | 1800  | 1800     | 1800 | 1800   | 1800       | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)      | 40.0   | , , , ,  | 0.0   | 10.0  |          | 0.0  | 35.0   |            | 60.0        | 45.0     |          | 0.0   |
| Storage Lanes           | 1      |          | 1     | 1     |          | 0    | 1      |            | 0           | 1        |          | 1     |
| Taper Length (m)        | 23.0   |          | •     | 10.0  |          | -    | 25.0   |            |             | 35.0     |          |       |
| Lane Util. Factor       | 1.00   | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00   | 0.95       | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00   |          |       |       | 1.00     |      |        |            |             |          |          | 0.92  |
| Frt                     |        |          | 0.850 |       | 0.990    |      |        | 0.996      |             |          |          | 0.850 |
| Flt Protected           | 0.950  |          |       | 0.950 |          |      | 0.950  |            |             | 0.950    |          |       |
| Satd. Flow (prot)       | 1695   | 1784     | 1517  | 1695  | 1745     | 0    | 1695   | 3377       | 0           | 1695     | 3390     | 1517  |
| Flt Permitted           | 0.627  |          |       | 0.697 |          | -    | 0.103  |            |             | 0.322    |          |       |
| Satd. Flow (perm)       | 1114   | 1784     | 1517  | 1244  | 1745     | 0    | 184    | 3377       | 0           | 575      | 3390     | 1394  |
| Right Turn on Red       |        |          | Yes   |       |          | Yes  |        | •••        | Yes         | 0.0      |          | Yes   |
| Satd. Flow (RTOR)       |        |          | 504   |       | 3        |      |        | 4          |             |          |          | 235   |
| Link Speed (k/h)        |        | 50       |       |       | 50       |      |        | 50         |             |          | 50       |       |
| Link Distance (m)       |        | 105.7    |       |       | 332.1    |      |        | 329.7      |             |          | 294.1    |       |
| Travel Time (s)         |        | 7.6      |       |       | 23.9     |      |        | 23.7       |             |          | 21.2     |       |
| Confl. Peds. (#/hr)     | 4      |          |       |       | 20.0     | 4    | 51     | 20         |             |          |          | 51    |
| Peak Hour Factor        | 0.92   | 0.92     | 0.92  | 0.92  | 0.92     | 0.92 | 0.92   | 0.92       | 0.92        | 0.92     | 0.92     | 0.92  |
| Heavy Vehicles (%)      | 2%     | 2%       | 2%    | 2%    | 3%       | 5%   | 2%     | 2%         | 2%          | 2%       | 2%       | 2%    |
| Adj. Flow (vph)         | 397    | 93       | 853   | 8     | 58       | 4    | 690    | 860        | 23          | 14       | 1271     | 325   |
| Shared Lane Traffic (%) | 001    |          | 000   |       |          |      | 000    | 000        |             |          |          | 020   |
| Lane Group Flow (vph)   | 397    | 93       | 853   | 8     | 62       | 0    | 690    | 883        | 0           | 14       | 1271     | 325   |
| Turn Type               | pm+pt  | NA       | Perm  | pm+pt | NA       | Ů    | pm+pt  | NA         | , ,         | Perm     | NA       | Perm  |
| Protected Phases        | 7      | 4        |       | 3     | 8        |      | 5      | 2          |             | . 0      | 6        | . 0   |
| Permitted Phases        | 4      |          | 4     | 8     |          |      | 2      | _          |             | 6        | · ·      | 6     |
| Detector Phase          | 7      | 4        | 4     | 3     | 8        |      | 5      | 2          |             | 6        | 6        | 6     |
| Switch Phase            | ,      |          |       |       |          |      | Ū      | _          |             |          |          |       |
| Minimum Initial (s)     | 7.0    | 10.0     | 10.0  | 7.0   | 10.0     |      | 7.0    | 15.0       |             | 15.0     | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0   | 14.5     | 14.5  | 11.0  | 36.5     |      | 11.0   | 19.5       |             | 30.5     | 30.5     | 30.5  |
| Total Split (s)         | 11.0   | 36.5     | 36.5  | 11.0  | 36.5     |      | 30.0   | 72.5       |             | 42.5     | 42.5     | 42.5  |
| Total Split (%)         | 9.2%   | 30.4%    | 30.4% | 9.2%  | 30.4%    |      | 25.0%  | 60.4%      |             | 35.4%    | 35.4%    | 35.4% |
| Maximum Green (s)       | 7.0    | 32.0     | 32.0  | 7.0   | 32.0     |      | 26.0   | 68.0       |             | 38.0     | 38.0     | 38.0  |
| Yellow Time (s)         | 3.0    | 3.5      | 3.5   | 3.0   | 3.5      |      | 3.0    | 3.5        |             | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0    | 1.0      | 1.0   | 1.0   | 1.0      |      | 1.0    | 1.0        |             | 1.0      | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0    | 0.0      | 0.0   | 0.0   | 0.0      |      | 0.0    | 0.0        |             | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0    | 4.5      | 4.5   | 4.0   | 4.5      |      | 4.0    | 4.5        |             | 4.5      | 4.5      | 4.5   |
| Lead/Lag                | Lead   | Lag      | Lag   | Lead  | Lag      |      | Lead   | т.5        |             | Lag      | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes    | Yes      | Yes   | Yes   | Yes      |      | Yes    |            |             | Yes      | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0    | 2.0      | 2.0   | 2.0   | 2.0      |      | 2.0    | 2.0        |             | 2.0      | 2.0      | 2.0   |
| Recall Mode             | None   | None     | None  | None  | None     |      | None   | C-Max      |             | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | INOTIC | NOHE     | NOHE  | NONE  | 10.0     |      | INOILE | O-IVIAX    |             | 10.0     | 10.0     | 10.0  |
| Flash Dont Walk (s)     |        |          |       |       | 22.0     |      |        |            |             | 16.0     | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |        |          |       |       | 4        |      |        |            |             | 25       | 25       | 25    |
| Act Effct Green (s)     | 42.7   | 40.8     | 40.8  | 33.0  | 27.6     |      | 68.5   | 68.0       |             | 38.0     | 38.0     | 38.0  |
| Actuated g/C Ratio      | 0.36   | 0.34     | 0.34  | 0.28  | 0.23     |      | 0.57   | 0.57       |             | 0.32     | 0.32     | 0.32  |
| v/c Ratio               | 0.85   | 0.34     | 1.01  | 0.20  | 0.23     |      | 1.60   | 0.37       |             | 0.32     | 1.18     | 0.54  |
| V/O INALIO              | 0.00   | 0.10     | 1.01  | 0.02  | 0.10     |      | 1.00   | 0.40       |             | 0.00     | 1.10     | 0.04  |

|                        | •      | <b>→</b> | •      | •    | ←     | •   | 4      | <b>†</b> | ~   | <b>\</b> | <b>↓</b> | 4    |
|------------------------|--------|----------|--------|------|-------|-----|--------|----------|-----|----------|----------|------|
| Lane Group             | EBL    | EBT      | EBR    | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL      | SBT      | SBR  |
| Control Delay          | 54.4   | 29.8     | 49.5   | 24.9 | 33.3  |     | 306.9  | 16.2     |     | 30.4     | 129.8    | 13.2 |
| Queue Delay            | 0.0    | 0.0      | 0.0    | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0      | 0.0      | 0.0  |
| Total Delay            | 54.4   | 29.8     | 49.5   | 24.9 | 33.3  |     | 306.9  | 16.2     |     | 30.4     | 129.8    | 13.2 |
| LOS                    | D      | С        | D      | С    | С     |     | F      | В        |     | С        | F        | В    |
| Approach Delay         |        | 49.6     |        |      | 32.3  |     |        | 143.7    |     |          | 105.4    |      |
| Approach LOS           |        | D        |        |      | С     |     |        | F        |     |          | F        |      |
| Queue Length 50th (m)  | 77.2   | 14.7     | 105.1  | 1.2  | 10.6  |     | ~217.8 | 60.8     |     | 2.3      | ~189.3   | 15.5 |
| Queue Length 95th (m)  | #156.2 | 30.8     | #210.6 | 4.5  | 21.7  |     | #289.6 | 76.1     |     | 7.5      | #231.1   | 43.3 |
| Internal Link Dist (m) |        | 81.7     |        |      | 308.1 |     |        | 305.7    |     |          | 270.1    |      |
| Turn Bay Length (m)    | 40.0   |          |        | 10.0 |       |     | 35.0   |          |     | 45.0     |          |      |
| Base Capacity (vph)    | 465    | 606      | 848    | 368  | 467   |     | 432    | 1915     |     | 182      | 1073     | 602  |
| Starvation Cap Reductn | 0      | 0        | 0      | 0    | 0     |     | 0      | 0        |     | 0        | 0        | 0    |
| Spillback Cap Reductn  | 0      | 0        | 0      | 0    | 0     |     | 0      | 0        |     | 0        | 0        | 0    |
| Storage Cap Reductn    | 0      | 0        | 0      | 0    | 0     |     | 0      | 0        |     | 0        | 0        | 0    |
| Reduced v/c Ratio      | 0.85   | 0.15     | 1.01   | 0.02 | 0.13  |     | 1.60   | 0.46     |     | 0.08     | 1.18     | 0.54 |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.60

Intersection Signal Delay: 101.1 Intersection LOS: F
Intersection Capacity Utilization 110.1% ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |            |      |         |            |      |           |       |       |        |      |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------|---------|------------|------|-----------|-------|-------|--------|------|--------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6    |            |      |         |            |      |           |       |       |        |      |        |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL    | EBT        | EBR  | WBL     | WBT        | WBR  | NBL       | NBT   | NBR   | SBL    | SBT  | SBR    |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ሻ      | <b>∱</b> ∱ |      | ሻ       | <b>∱</b> } |      |           | र्स   | 7     |        | र्स  | 7      |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27     | 1332       | 32   | 59      | 953        | 15   | 1         | 2     | 26    | 4      | 2    | 21     |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27     | 1332       | 32   | 59      | 953        | 15   | 1         | 2     | 26    | 4      | 2    | 21     |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      | 0          | 0    | 0       | 0          | 0    | 0         | 0     | 0     | 0      | 0    | 0      |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Free   | Free       | Free | Free    | Free       | Free | Stop      | Stop  | Stop  | Stop   | Stop | Stop   |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | -          | None | -       | -          | None | · -       | ·-    | None  | ·-     | -    | None   |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200    | _          | -    | 250     | _          | _    | -         | -     | 0     | -      | -    | 0      |
| Veh in Median Storage, #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 0          | _    | _       | 0          | _    | -         | 0     | _     | -      | 0    | _      |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _      | 0          | _    | _       | 0          | _    | -         | 0     | _     | _      | 0    | _      |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92     | 92         | 92   | 92      | 92         | 92   | 92        | 92    | 92    | 92     | 92   | 92     |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 3          | 3    | 3       | 3          | 3    | 3         | 3     | 3     | 3      | 3    | 3      |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29     | 1448       | 35   | 64      | 1036       | 16   | 1         | 2     | 28    | 4      | 2    | 23     |
| WWIICTIOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20     | 1770       | 00   | 01      | 1000       | 10   |           |       | 20    | 7      |      | 20     |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Major1 |            |      | Major2  |            |      | Minor1    |       |       | Minor2 |      |        |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1052   | 0          | 0    | 1483    | 0          | 0    | 2171      | 2704  | 741   | 1956   | 2713 | 526    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1032   | -          | -    | 1403    | -          | -    | 1524      | 1524  | - 141 | 1172   | 1172 | 520    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      |            |      | -       |            |      | 647       | 1180  | -     | 784    | 1541 | -      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.16   | -          | -    | 4.16    | -          | -    |           | 6.56  |       |        |      | 6.06   |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | -          | -    | 4.10    | -          | -    | 7.56      |       | 6.96  | 7.56   | 6.56 | 6.96   |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | -          | -    | -       | -          | -    | 6.56      | 5.56  | -     | 6.56   | 5.56 | -      |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0.00 | -          | -    | - 0.00  | -          | -    | 6.56      | 5.56  | -     | 6.56   | 5.56 | - 0.00 |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.23   | -          | -    | 2.23    | -          | -    | 3.53      | 4.03  | 3.33  | 3.53   | 4.03 | 3.33   |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 651    | -          | -    | 445     | -          | -    | 26        | 21    | 356   | 38     | 20   | 494    |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -          | -    | -       | -          | -    | 122       | 177   | -     | 203    | 262  | -      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -          | -    | -       | -          | -    | 424       | 260   | -     | 350    | 174  | -      |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -          | -    |         | -          | -    |           |       |       |        |      |        |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 651    | -          | -    | 445     | -          | -    | 19        | 17    | 356   | 27     | 16   | 494    |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -          | -    | -       | -          | -    | 19        | 17    | -     | 27     | 16   | -      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -          | -    | -       | -          | -    | 117       | 169   | -     | 194    | 224  | -      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -          | -    | -       | -          | -    | 343       | 223   | -     | 304    | 166  | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |      |         |            |      |           |       |       |        |      |        |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB     |            |      | WB      |            |      | NB        |       |       | SB     |      |        |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2    |            |      | 0.8     |            |      | 39.7      |       |       | 60.2   |      |        |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |            |      |         |            |      | Е         |       |       | F      |      |        |
| NAIS OF LONG (NAIS - NAIS - NA | NIDI 4 | NIDL O     | EDI  | EDT EDD | MDI        | WOT  | WDD ODL 4 | ODL O |       |        |      |        |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NBLn1  |            | EBL  | EBT EBR |            | WBT  | WBR SBLn1 |       |       |        |      |        |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18     | 356        | 651  |         | 445        | -    | - 22      | 494   |       |        |      |        |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.079      |      |         | •          | -    | - 0.296   |       |       |        |      |        |
| HCM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244.9  | 16         | 10.8 |         |            | -    | - 226.9   | 12.6  |       |        |      |        |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F      | С          | В    |         | В          | -    | - F       | В     |       |        |      |        |
| HCM 95th %tile Q(veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5    | 0.3        | 0.1  |         | 0.5        | -    | - 0.9     | 0.1   |       |        |      |        |

| lutara atian                  |        |          |      |         |            |       |        |      |      |        |      |      |
|-------------------------------|--------|----------|------|---------|------------|-------|--------|------|------|--------|------|------|
| Intersection Int Delay, s/veh | 0.3    |          |      |         |            |       |        |      |      |        |      |      |
| Movement                      | EBL    | EBT      | EBR  | WBL     | WBT        | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations           | LDL    | <b>†</b> | LDIX | WEL     | <b>†</b> } | WDIX. | HDL    | 4    | HOIL | ODL    | 4    | OBIX |
| Traffic Vol, veh/h            | 0      | 1255     | 14   | 0       | 967        | 8     | 0      | 0    | 30   | 0      | 0    | 13   |
| Future Vol, veh/h             | 0      | 1255     | 14   | 0       | 967        | 8     | 0      | 0    | 30   | 0      | 0    | 13   |
| Conflicting Peds, #/hr        | 0      | 0        | 0    | 0       | 0          | 0     | 0      | 0    | 0    | 0      | 0    | 0    |
| Sign Control                  | Free   | Free     | Free | Free    | Free       | Free  | Stop   | Stop | Stop | Stop   | Stop | Stop |
| RT Channelized                | -      | -        | None | -       | -          | None  | -      | -    | None | -      | -    | None |
| Storage Length                | _      | _        | -    | -       | -          | -     | _      | _    | -    | -      | _    | -    |
| Veh in Median Storage, #      | _      | 0        | _    | _       | 0          | _     | _      | 0    | _    | -      | 0    | _    |
| Grade, %                      | _      | 0        | _    | -       | 0          | _     | _      | 0    | _    | -      | 0    | _    |
| Peak Hour Factor              | 92     | 92       | 92   | 92      | 92         | 92    | 92     | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %             | 3      | 3        | 3    | 3       | 3          | 3     | 3      | 3    | 3    | 3      | 3    | 3    |
| Mymt Flow                     | 0      | 1364     | 15   | 0       | 1051       | 9     | 0      | 0    | 33   | 0      | 0    | 14   |
|                               | •      |          |      | •       |            |       | •      |      |      | _      |      |      |
| Major/Minor                   | Major1 |          |      | Major2  |            |       | Minor1 |      |      | Minor2 |      |      |
| Conflicting Flow All          |        | 0        | 0    | -       | _          | 0     | 1898   | 2432 | 690  | 1737   | 2434 | 530  |
| Stage 1                       | -      | -        | _    | -       | -          | _     | 1372   | 1372 | _    | 1055   | 1055 | _    |
| Stage 2                       | -      | -        | _    | -       | -          | _     | 526    | 1060 | _    | 682    | 1379 | -    |
| Critical Hdwy                 | -      | _        | -    | -       | -          | -     | 7.56   | 6.56 | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1           | -      | -        | -    | -       | -          | -     | 6.56   | 5.56 | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2           | -      | -        | -    | -       | -          | -     | 6.56   | 5.56 | -    | 6.56   | 5.56 | -    |
| Follow-up Hdwy                | -      | -        | _    | -       | -          | _     | 3.53   | 4.03 | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver            | 0      | -        | -    | 0       | -          | -     | 42     | 31   | 385  | 55     | 31   | 491  |
| Stage 1                       | 0      | -        | -    | 0       | -          | -     | 152    | 210  | -    | 239    | 298  | -    |
| Stage 2                       | 0      | -        | -    | 0       | -          | -     | 501    | 297  | -    | 404    | 208  | -    |
| Platoon blocked, %            |        | -        | -    |         | -          | -     |        |      |      |        |      |      |
| Mov Cap-1 Maneuver            | -      | -        | -    | -       | -          | -     | 41     | 31   | 385  | 50     | 31   | 491  |
| Mov Cap-2 Maneuver            | -      | -        | -    | -       | -          | -     | 41     | 31   | -    | 50     | 31   | -    |
| Stage 1                       | -      | -        | -    | -       | -          | -     | 152    | 210  | -    | 239    | 298  | -    |
| Stage 2                       | -      | -        | -    | -       | -          | -     | 487    | 297  | -    | 370    | 208  | -    |
|                               |        |          |      |         |            |       |        |      |      |        |      |      |
| Approach                      | EB     |          |      | WB      |            |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s          | 0      |          |      | 0       |            |       | 15.2   |      |      | 12.5   |      |      |
| HCM LOS                       |        |          |      |         |            |       | С      |      |      | В      |      |      |
|                               |        |          |      |         |            |       |        |      |      |        |      |      |
| Minor Lane/Major Mvmt         | NBLn1  | EBT      | EBR  | WBT WBR | SBLn1      |       |        |      |      |        |      |      |
| Capacity (veh/h)              | 385    | -        | -    |         | 491        |       |        |      |      |        |      |      |
| HCM Lane V/C Ratio            | 0.085  | -        | -    |         | 0.029      |       |        |      |      |        |      |      |
| HCM Control Delay (s)         | 15.2   | -        | -    |         | 12.5       |       |        |      |      |        |      |      |
| HCM Lane LOS                  | С      | -        | -    |         | В          |       |        |      |      |        |      |      |
| HCM 95th %tile Q(veh)         | 0.3    | -        | -    |         | 0.1        |       |        |      |      |        |      |      |

| Intersection             |           |      |      |         |           |      |        |      |      |           |      |      |
|--------------------------|-----------|------|------|---------|-----------|------|--------|------|------|-----------|------|------|
| Int Delay, s/veh         | 0.2       |      |      |         |           |      |        |      |      |           |      |      |
| Movement                 | EBL       | EBT  | EBR  | WBL     | WBT       | WBR  | NBL    | NBT  | NBR  | SBL       | SBT  | SBR  |
| Lane Configurations      |           | ħβ   |      |         | ħβ        |      |        | 4    |      |           | 4    |      |
| Traffic Vol, veh/h       | 0         | 1220 | 65   | 0       | 954       | 7    | 0      | 0    | 10   | 0         | 0    | 21   |
| Future Vol, veh/h        | 0         | 1220 | 65   | 0       | 954       | 7    | 0      | 0    | 10   | 0         | 0    | 21   |
| Conflicting Peds, #/hr   | 0         | 0    | 0    | 0       | 0         | 0    | 0      | 0    | 0    | 0         | 0    | 0    |
| Sign Control             | Free      | Free | Free | Free    | Free      | Free | Stop   | Stop | Stop | Stop      | Stop | Stop |
| RT Channelized           | -         | -    | None | -       | -         | None | -      | -    | None | -         | -    | None |
| Storage Length           | -         | -    | -    | -       | -         | -    | -      | -    | -    | -         | -    | -    |
| Veh in Median Storage, # | -         | 0    | _    | -       | 0         | -    | -      | 0    | -    | -         | 0    | -    |
| Grade, %                 | -         | 0    | -    | -       | 0         | -    | -      | 0    | -    | -         | 0    | -    |
| Peak Hour Factor         | 92        | 92   | 92   | 92      | 92        | 92   | 92     | 92   | 92   | 92        | 92   | 92   |
| Heavy Vehicles, %        | 3         | 3    | 3    | 3       | 3         | 3    | 3      | 3    | 3    | 3         | 3    | 3    |
| Mvmt Flow                | 0         | 1326 | 71   | 0       | 1037      | 8    | 0      | 0    | 11   | 0         | 0    | 23   |
|                          |           |      |      |         |           |      |        |      |      |           |      |      |
| Major/Minor              | Major1    |      |      | Major2  |           |      | Minor1 |      |      | Minor2    |      |      |
| Conflicting Flow All     | -         | 0    | 0    | -       |           | 0    | 1879   | 2406 | 698  | 1704      | 2438 | 522  |
| Stage 1                  | _         | -    | -    | _       | -         | -    | 1361   | 1361 | -    | 1041      | 1041 | -    |
| Stage 2                  | _         | _    | _    | _       | _         | _    | 518    | 1045 | _    | 663       | 1397 |      |
| Critical Hdwy            | _         | _    | _    | _       | _         | _    | 7.56   | 6.56 | 6.96 | 7.56      | 6.56 | 6.96 |
| Critical Hdwy Stg 1      | _         | _    | _    | _       | _         | _    | 6.56   | 5.56 | 0.50 | 6.56      | 5.56 | 0.50 |
| Critical Hdwy Stg 2      | _         | _    | _    | _       | -         | -    | 6.56   | 5.56 | _    | 6.56      | 5.56 | _    |
| Follow-up Hdwy           | _         | _    | _    | _       |           | _    | 3.53   | 4.03 | 3.33 | 3.53      | 4.03 | 3.33 |
| Pot Cap-1 Maneuver       | 0         | _    | _    | 0       | _         | -    | 43     | 32   | 381  | 59        | 31   | 497  |
| Stage 1                  | 0         | _    | _    | 0       | _         | _    | 155    | 213  | -    | 244       | 303  | -    |
| Stage 2                  | 0         | _    | _    | 0       | _         | _    | 506    | 302  | _    | 414       | 204  | -    |
| Platoon blocked, %       | · ·       | _    | _    | Ū       |           | _    | 000    | 002  |      |           | 201  |      |
| Mov Cap-1 Maneuver       | _         | _    | _    | _       | _         | _    | 41     | 32   | 381  | 57        | 31   | 497  |
| Mov Cap-2 Maneuver       | _         | _    | _    | _       | _         | _    | 41     | 32   | -    | 57        | 31   | -    |
| Stage 1                  | _         | _    | _    | -       | _         | _    | 155    | 213  | _    | 244       | 303  | _    |
| Stage 2                  | _         | _    | _    | _       | _         | _    | 483    | 302  | _    | 402       | 204  | _    |
|                          |           |      |      |         |           |      |        |      |      |           |      |      |
| Approach                 | EB        |      |      | WB      |           |      | NB     |      |      | SB        |      |      |
| HCM Control Delay, s     | 0         |      |      | 0       |           |      | 14.7   |      |      | 12.6      |      |      |
| HCM LOS                  | U         |      |      | 0       |           |      | В      |      |      | 12.0<br>B |      |      |
| TOW LOO                  |           |      |      |         |           |      |        |      |      |           |      |      |
| Minor Lane/Major Mvmt    | NBLn1     | EBT  | EBR  | WBT WBR | SBLn1     |      |        |      |      |           |      |      |
| Capacity (veh/h)         | 381       |      |      |         | 497       |      |        |      |      |           |      |      |
| HCM Lane V/C Ratio       | 0.029     | _    | _    |         | 0.046     |      |        |      |      |           |      |      |
| HCM Control Delay (s)    | 14.7      | _    | _    |         |           |      |        |      |      |           |      |      |
| HCM Lane LOS             | 14.7<br>B | _    | _    |         | 12.0<br>B |      |        |      |      |           |      |      |
| HCM 95th %tile Q(veh)    | 0.1       | _    | _    |         | 0.1       |      |        |      |      |           |      |      |
| How Jour Julie Q(vell)   | 0.1       | -    |      | -       | 0.1       |      |        |      |      |           |      |      |

# 7: Dewdney Avenue & Rose Street

| Intersection             |             |          |           |            |      |        |      |  |
|--------------------------|-------------|----------|-----------|------------|------|--------|------|--|
|                          | 0.1         |          |           |            |      |        |      |  |
| Movement                 | EBL         | EBT      |           | WBT        | WBR  | SBL    | SBR  |  |
| Lane Configurations      | LDL         | <b>^</b> |           | <b>†</b> ‡ | WBIX | ¥      | ODIT |  |
| Traffic Vol, veh/h       | 0           | 1236     |           | 963        | 23   | 0      | 18   |  |
| Future Vol, veh/h        | 0           | 1236     |           | 963        | 23   | 0      | 18   |  |
| Conflicting Peds, #/hr   | 0           | 0        |           | 0          | 0    | 0      | 0    |  |
| Sign Control             | Free        | Free     |           | Free       | Free | Stop   | Stop |  |
| RT Channelized           | -           | None     |           | -          | None | -      | None |  |
| Storage Length           | _           | -        |           | _          | -    | 0      | -    |  |
| Veh in Median Storage, # | _           | 0        |           | 0          | _    | 0      | -    |  |
| Grade, %                 | _           | 0        |           | 0          | _    | 0      | _    |  |
| Peak Hour Factor         | 92          | 92       |           | 92         | 92   | 92     | 92   |  |
| Heavy Vehicles, %        | 3           | 3        |           | 3          | 3    | 3      | 3    |  |
| Mvmt Flow                | 0           | 1343     |           | 1047       | 25   | 0      | 20   |  |
|                          |             | . 5 . 5  |           | 1011       |      |        |      |  |
| Major/Minor              | Major1      |          |           | Major2     |      | Minor2 |      |  |
| Conflicting Flow All     | - Iviajor i | 0        |           | - IVIUJUIZ | 0    | 1731   | 536  |  |
| Stage 1                  | -           | -        |           | -          | -    | 1059   | -    |  |
| Stage 2                  | -           | _        |           | _          | -    | 672    | -    |  |
| Critical Hdwy            |             |          |           | _          | _    | 6.86   | 6.96 |  |
| Critical Hdwy Stg 1      | _           | _        |           | _          | _    | 5.86   | 0.90 |  |
| Critical Hdwy Stg 2      | _           | _        |           | _          | _    | 5.86   | -    |  |
| Follow-up Hdwy           | _           | _        |           | _          | _    | 3.53   | 3.33 |  |
| Pot Cap-1 Maneuver       | 0           |          |           | _          | _    | 78     | 486  |  |
| Stage 1                  | 0           | _        |           | _          | _    | 292    |      |  |
| Stage 2                  | 0           |          |           | _          | _    | 466    | -    |  |
| Platoon blocked, %       | U           | _        |           | _          | _    | 400    |      |  |
| Mov Cap-1 Maneuver       | -           | _        |           | _          | _    | 78     | 486  |  |
| Mov Cap-1 Maneuver       | _           | _        |           | _          | _    | 78     |      |  |
| Stage 1                  | _           | _        |           | _          | _    | 292    | _    |  |
| Stage 2                  | _           | _        |           | -          | _    | 466    | _    |  |
| Olago Z                  |             |          |           |            |      | 700    |      |  |
| Approach                 | EB          |          |           | WB         |      | SB     |      |  |
| HCM Control Delay, s     | 0           |          |           | 0          |      | 12.7   |      |  |
| HCM LOS                  | U           |          |           | Ū          |      | В      |      |  |
|                          |             |          |           |            |      |        |      |  |
| Minor Lane/Major Mvmt    | EBT         | WBT      | WBR SBLn1 |            |      |        |      |  |
| Capacity (veh/h)         | -           | _        | - 486     |            |      |        |      |  |
| HCM Lane V/C Ratio       | -           | _        | - 0.04    |            |      |        |      |  |
| HCM Control Delay (s)    | _           | -        | - 12.7    |            |      |        |      |  |
| HCM Lane LOS             | -           | -        | - B       |            |      |        |      |  |
| HCM 95th %tile Q(veh)    | _           | -        | - 0.1     |            |      |        |      |  |
| OW SOUT FULLE Q(VOIT)    |             |          | 0.1       |            |      |        |      |  |

|                         | ۶     | <b>→</b>   | •     | •     | <b>←</b>   | •     | 4     | †               | <i>&gt;</i> | <b>&gt;</b> | ţ               | 4    |
|-------------------------|-------|------------|-------|-------|------------|-------|-------|-----------------|-------------|-------------|-----------------|------|
| Lane Group              | EBL   | EBT        | EBR   | WBL   | WBT        | WBR   | NBL   | NBT             | NBR         | SBL         | SBT             | SBR  |
| Lane Configurations     | 7     | <b>†</b> † | 7     | J.    | <b>†</b> † | 7     | 7     | ተተ <sub>ጉ</sub> |             | , j         | ተተ <sub>ጉ</sub> |      |
| Traffic Volume (vph)    | 164   | 794        | 165   | 395   | 929        | 203   | 265   | 1338            | 284         | 169         | 1047            | 158  |
| Future Volume (vph)     | 164   | 794        | 165   | 395   | 929        | 203   | 265   | 1338            | 284         | 169         | 1047            | 158  |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800  | 1800  | 1800       | 1800  | 1800  | 1800            | 1800        | 1800        | 1800            | 1800 |
| Storage Length (m)      | 30.0  |            | 50.0  | 30.0  |            | 30.0  | 90.0  |                 | 0.0         | 75.0        |                 | 0.0  |
| Storage Lanes           | 1     |            | 1     | 1     |            | 1     | 1     |                 | 0           | 1           |                 | 0    |
| Taper Length (m)        | 20.0  |            |       | 25.0  |            |       | 35.0  |                 |             | 40.0        |                 |      |
| Lane Util. Factor       | 1.00  | 0.95       | 1.00  | 1.00  | 0.95       | 1.00  | 1.00  | 0.91            | 0.91        | 1.00        | 0.91            | 0.91 |
| Ped Bike Factor         | 1.00  |            | 0.97  | 1.00  |            | 0.97  |       | 0.99            |             |             | 0.99            |      |
| Frt                     |       |            | 0.850 |       |            | 0.850 |       | 0.974           |             |             | 0.980           |      |
| Flt Protected           | 0.950 |            |       | 0.950 |            |       | 0.950 |                 |             | 0.950       |                 |      |
| Satd. Flow (prot)       | 1695  | 3390       | 1517  | 1695  | 3390       | 1517  | 1695  | 4714            | 0           | 1695        | 4742            | 0    |
| Flt Permitted           | 0.157 |            |       | 0.112 |            |       | 0.103 |                 |             | 0.115       |                 |      |
| Satd. Flow (perm)       | 279   | 3390       | 1478  | 199   | 3390       | 1477  | 184   | 4714            | 0           | 205         | 4742            | 0    |
| Right Turn on Red       |       |            | Yes   |       |            | Yes   |       |                 | Yes         |             |                 | Yes  |
| Satd. Flow (RTOR)       |       |            | 159   |       |            | 123   |       | 42              |             |             | 24              |      |
| Link Speed (k/h)        |       | 50         |       |       | 50         |       |       | 50              |             |             | 50              |      |
| Link Distance (m)       |       | 458.3      |       |       | 110.3      |       |       | 220.1           |             |             | 211.9           |      |
| Travel Time (s)         |       | 33.0       |       |       | 7.9        |       |       | 15.8            |             |             | 15.3            |      |
| Confl. Peds. (#/hr)     | 13    |            | 12    | 12    |            | 13    | 32    |                 | 20          | 20          |                 | 32   |
| Peak Hour Factor        | 0.95  | 0.95       | 0.95  | 0.95  | 0.95       | 0.95  | 0.95  | 0.95            | 0.95        | 0.95        | 0.95            | 0.95 |
| Heavy Vehicles (%)      | 2%    | 2%         | 2%    | 2%    | 2%         | 2%    | 2%    | 2%              | 2%          | 2%          | 2%              | 2%   |
| Adj. Flow (vph)         | 173   | 836        | 174   | 416   | 978        | 214   | 279   | 1408            | 299         | 178         | 1102            | 166  |
| Shared Lane Traffic (%) |       |            |       |       |            |       |       |                 |             |             |                 |      |
| Lane Group Flow (vph)   | 173   | 836        | 174   | 416   | 978        | 214   | 279   | 1707            | 0           | 178         | 1268            | 0    |
| Turn Type               | pm+pt | NA         | Perm  | pm+pt | NA         | Perm  | pm+pt | NA              |             | pm+pt       | NA              |      |
| Protected Phases        | 7     | 4          |       | 3     | 8          |       | 5     | 2               |             | 1           | 6               |      |
| Permitted Phases        | 4     |            | 4     | 8     |            | 8     | 2     |                 |             | 6           |                 |      |
| Detector Phase          | 7     | 4          | 4     | 3     | 8          | 8     | 5     | 2               |             | 1           | 6               |      |
| Switch Phase            |       |            |       |       |            |       |       |                 |             |             |                 |      |
| Minimum Initial (s)     | 7.0   | 10.0       | 10.0  | 7.0   | 10.0       | 10.0  | 7.0   | 15.0            |             | 7.0         | 15.0            |      |
| Minimum Split (s)       | 11.0  | 36.5       | 36.5  | 11.0  | 36.5       | 36.5  | 11.0  | 33.5            |             | 12.0        | 33.5            |      |
| Total Split (s)         | 15.0  | 36.6       | 36.6  | 26.0  | 47.6       | 47.6  | 18.0  | 45.4            |             | 12.0        | 39.4            |      |
| Total Split (%)         | 12.5% | 30.5%      | 30.5% | 21.7% | 39.7%      | 39.7% | 15.0% | 37.8%           |             | 10.0%       | 32.8%           |      |
| Maximum Green (s)       | 11.0  | 32.1       | 32.1  | 22.0  | 43.1       | 43.1  | 14.0  | 40.9            |             | 8.0         | 34.9            |      |
| Yellow Time (s)         | 3.0   | 3.5        | 3.5   | 3.0   | 3.5        | 3.5   | 3.0   | 3.5             |             | 3.0         | 3.5             |      |
| All-Red Time (s)        | 1.0   | 1.0        | 1.0   | 1.0   | 1.0        | 1.0   | 1.0   | 1.0             |             | 1.0         | 1.0             |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0             |             | 0.0         | 0.0             |      |
| Total Lost Time (s)     | 4.0   | 4.5        | 4.5   | 4.0   | 4.5        | 4.5   | 4.0   | 4.5             |             | 4.0         | 4.5             |      |
| Lead/Lag                | Lead  | Lag        | Lag   | Lead  | Lag        | Lag   | Lead  | Lag             |             | Lead        | Lag             |      |
| Lead-Lag Optimize?      | Yes   | Yes        | Yes   | Yes   | Yes        | Yes   | Yes   | Yes             |             | Yes         | Yes             |      |
| Vehicle Extension (s)   | 2.0   | 2.0        | 2.0   | 2.0   | 2.0        | 2.0   | 2.0   | 2.0             |             | 2.0         | 2.0             |      |
| Recall Mode             | None  | None       | None  | None  | None       | None  | None  | C-Max           |             | None        | C-Max           |      |
| Walk Time (s)           |       | 10.0       | 10.0  |       | 10.0       | 10.0  |       | 10.0            |             |             | 10.0            |      |
| Flash Dont Walk (s)     |       | 22.0       | 22.0  |       | 22.0       | 22.0  |       | 19.0            |             |             | 19.0            |      |
| Pedestrian Calls (#/hr) |       | 10         | 10    |       | 10         | 10    |       | 10              |             |             | 20              |      |
| Act Effct Green (s)     | 42.4  | 31.5       | 31.5  | 58.0  | 43.2       | 43.2  | 54.0  | 40.9            |             | 44.0        | 34.9            |      |
| Actuated g/C Ratio      | 0.35  | 0.26       | 0.26  | 0.48  | 0.36       | 0.36  | 0.45  | 0.34            |             | 0.37        | 0.29            |      |
| v/c Ratio               | 0.78  | 0.94       | 0.34  | 1.12  | 0.80       | 0.35  | 1.05  | 1.04            |             | 0.98        | 0.91            |      |

|                        | •     | <b>→</b> | •    | •      | ←     | •    | 4      | <b>†</b> | ~   | -     | <b>↓</b> | 1   |
|------------------------|-------|----------|------|--------|-------|------|--------|----------|-----|-------|----------|-----|
| Lane Group             | EBL   | EBT      | EBR  | WBL    | WBT   | WBR  | NBL    | NBT      | NBR | SBL   | SBT      | SBR |
| Control Delay          | 48.1  | 62.2     | 8.8  | 118.1  | 40.7  | 13.6 | 100.6  | 72.8     |     | 92.1  | 50.7     |     |
| Queue Delay            | 0.0   | 0.0      | 0.0  | 0.0    | 0.0   | 0.0  | 0.0    | 0.0      |     | 0.0   | 0.0      |     |
| Total Delay            | 48.1  | 62.2     | 8.8  | 118.1  | 40.7  | 13.6 | 100.6  | 72.8     |     | 92.1  | 50.7     |     |
| LOS                    | D     | Е        | Α    | F      | D     | В    | F      | Е        |     | F     | D        |     |
| Approach Delay         |       | 52.3     |      |        | 57.1  |      |        | 76.7     |     |       | 55.8     |     |
| Approach LOS           |       | D        |      |        | Е     |      |        | Е        |     |       | Е        |     |
| Queue Length 50th (m)  | 22.5  | 101.0    | 2.6  | ~97.8  | 108.3 | 14.5 | ~58.3  | ~157.3   |     | ~29.3 | 103.6    |     |
| Queue Length 95th (m)  | #52.5 | #137.6   | 19.7 | #159.6 | 134.2 | 33.7 | #111.7 | #187.2   |     | #74.3 | #129.8   |     |
| Internal Link Dist (m) |       | 434.3    |      |        | 86.3  |      |        | 196.1    |     |       | 187.9    |     |
| Turn Bay Length (m)    | 30.0  |          | 50.0 | 30.0   |       | 30.0 | 90.0   |          |     | 75.0  |          |     |
| Base Capacity (vph)    | 230   | 906      | 511  | 370    | 1220  | 610  | 266    | 1634     |     | 181   | 1396     |     |
| Starvation Cap Reductn | 0     | 0        | 0    | 0      | 0     | 0    | 0      | 0        |     | 0     | 0        |     |
| Spillback Cap Reductn  | 0     | 0        | 0    | 0      | 0     | 0    | 0      | 0        |     | 0     | 0        |     |
| Storage Cap Reductn    | 0     | 0        | 0    | 0      | 0     | 0    | 0      | 0        |     | 0     | 0        |     |
| Reduced v/c Ratio      | 0.75  | 0.92     | 0.34 | 1.12   | 0.80  | 0.35 | 1.05   | 1.04     |     | 0.98  | 0.91     |     |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

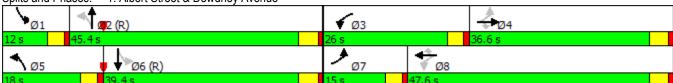
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 125

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.12 Intersection Signal Delay: 62.1

Intersection Signal Delay: 62.1 Intersection LOS: E
Intersection Capacity Utilization 105.8% ICU Level of Service G


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Albert Street & Dewdney Avenue



|                                      | ۶     | <b>→</b> | •       | •     | <b>←</b>       | •    | 1     | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4       |
|--------------------------------------|-------|----------|---------|-------|----------------|------|-------|------------|-------------|----------|----------|---------|
| Lane Group                           | EBL   | EBT      | EBR     | WBL   | WBT            | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations                  | ች     | <b></b>  | 7       | ሻ     | f <sub>a</sub> |      | ሻ     | <b>↑</b> ↑ |             | *        | <b>^</b> | 7       |
| Traffic Volume (vph)                 | 423   | 117      | 648     | 26    | 113            | 22   | 708   | 1567       | 21          | 16       | 1084     | 342     |
| Future Volume (vph)                  | 423   | 117      | 648     | 26    | 113            | 22   | 708   | 1567       | 21          | 16       | 1084     | 342     |
| Ideal Flow (vphpl)                   | 1800  | 1800     | 1800    | 1800  | 1800           | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)                   | 40.0  |          | 0.0     | 10.0  |                | 0.0  | 35.0  |            | 60.0        | 45.0     |          | 0.0     |
| Storage Lanes                        | 1     |          | 1       | 1     |                | 0    | 1     |            | 0           | 1        |          | 1       |
| Taper Length (m)                     | 23.0  |          |         | 10.0  |                | -    | 25.0  |            |             | 35.0     |          |         |
| Lane Util. Factor                    | 1.00  | 1.00     | 1.00    | 1.00  | 1.00           | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor                      | 1.00  |          |         |       | 1.00           |      |       |            |             |          |          | 0.92    |
| Frt                                  |       |          | 0.850   |       | 0.976          |      |       | 0.998      |             |          |          | 0.850   |
| Flt Protected                        | 0.950 |          |         | 0.950 |                |      | 0.950 |            |             | 0.950    |          |         |
| Satd. Flow (prot)                    | 1695  | 1784     | 1517    | 1695  | 1715           | 0    | 1695  | 3383       | 0           | 1695     | 3390     | 1517    |
| Flt Permitted                        | 0.501 |          |         | 0.678 |                |      | 0.107 |            | •           | 0.146    |          |         |
| Satd. Flow (perm)                    | 891   | 1784     | 1517    | 1210  | 1715           | 0    | 191   | 3383       | 0           | 261      | 3390     | 1394    |
| Right Turn on Red                    | 001   | 1101     | Yes     | 1210  | 11.10          | Yes  |       | 0000       | Yes         | 201      | 0000     | Yes     |
| Satd. Flow (RTOR)                    |       |          | 541     |       | 8              | . 00 |       | 2          | . 00        |          |          | 279     |
| Link Speed (k/h)                     |       | 50       | 011     |       | 50             |      |       | 50         |             |          | 50       | 2.0     |
| Link Distance (m)                    |       | 105.7    |         |       | 332.1          |      |       | 329.7      |             |          | 294.1    |         |
| Travel Time (s)                      |       | 7.6      |         |       | 23.9           |      |       | 23.7       |             |          | 21.2     |         |
| Confl. Peds. (#/hr)                  | 4     | 7.0      |         |       | 20.0           | 4    | 51    | 20.7       |             |          | 21.2     | 51      |
| Peak Hour Factor                     | 0.95  | 0.95     | 0.95    | 0.95  | 0.95           | 0.95 | 0.95  | 0.95       | 0.95        | 0.95     | 0.95     | 0.95    |
| Heavy Vehicles (%)                   | 2%    | 2%       | 2%      | 2%    | 3%             | 5%   | 2%    | 2%         | 2%          | 2%       | 2%       | 2%      |
| Adj. Flow (vph)                      | 445   | 123      | 682     | 27    | 119            | 23   | 745   | 1649       | 22          | 17       | 1141     | 360     |
| Shared Lane Traffic (%)              | 110   | 120      | 002     |       | 110            | 20   | 110   | 1010       |             | .,       |          | 000     |
| Lane Group Flow (vph)                | 445   | 123      | 682     | 27    | 142            | 0    | 745   | 1671       | 0           | 17       | 1141     | 360     |
| Turn Type                            | pm+pt | NA       | Perm    | pm+pt | NA             |      | pm+pt | NA         |             | Perm     | NA       | Perm    |
| Protected Phases                     | 7     | 4        | 1 01111 | 3     | 8              |      | 5     | 2          |             | 1 01111  | 6        | 1 01111 |
| Permitted Phases                     | 4     |          | 4       | 8     | J              |      | 2     |            |             | 6        |          | 6       |
| Detector Phase                       | 7     | 4        | 4       | 3     | 8              |      | 5     | 2          |             | 6        | 6        | 6       |
| Switch Phase                         | ,     |          |         |       |                |      | · ·   | _          |             | · ·      |          |         |
| Minimum Initial (s)                  | 7.0   | 10.0     | 10.0    | 7.0   | 10.0           |      | 7.0   | 15.0       |             | 15.0     | 15.0     | 15.0    |
| Minimum Split (s)                    | 11.0  | 14.5     | 14.5    | 11.0  | 36.5           |      | 11.0  | 19.5       |             | 30.5     | 30.5     | 30.5    |
| Total Split (s)                      | 11.0  | 36.5     | 36.5    | 11.0  | 36.5           |      | 33.0  | 72.5       |             | 39.5     | 39.5     | 39.5    |
| Total Split (%)                      | 9.2%  | 30.4%    | 30.4%   | 9.2%  | 30.4%          |      | 27.5% | 60.4%      |             | 32.9%    | 32.9%    | 32.9%   |
| Maximum Green (s)                    | 7.0   | 32.0     | 32.0    | 7.0   | 32.0           |      | 29.0  | 68.0       |             | 35.0     | 35.0     | 35.0    |
| Yellow Time (s)                      | 3.0   | 3.5      | 3.5     | 3.0   | 3.5            |      | 3.0   | 3.5        |             | 3.5      | 3.5      | 3.5     |
| All-Red Time (s)                     | 1.0   | 1.0      | 1.0     | 1.0   | 1.0            |      | 1.0   | 1.0        |             | 1.0      | 1.0      | 1.0     |
| Lost Time Adjust (s)                 | 0.0   | 0.0      | 0.0     | 0.0   | 0.0            |      | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)                  | 4.0   | 4.5      | 4.5     | 4.0   | 4.5            |      | 4.0   | 4.5        |             | 4.5      | 4.5      | 4.5     |
| Lead/Lag                             | Lead  | Lag      | Lag     | Lead  | Lag            |      | Lead  | 7.0        |             | Lag      | Lag      | Lag     |
| Lead-Lag Optimize?                   | Yes   | Yes      | Yes     | Yes   | Yes            |      | Yes   |            |             | Yes      | Yes      | Yes     |
| Vehicle Extension (s)                | 2.0   | 2.0      | 2.0     | 2.0   | 2.0            |      | 2.0   | 2.0        |             | 2.0      | 2.0      | 2.0     |
| Recall Mode                          | None  | None     | None    | None  | None           |      | None  | C-Max      |             | C-Max    | C-Max    | C-Max   |
|                                      | None  | None     | None    | None  | 10.0           |      | None  | C-IVIAX    |             | 10.0     | 10.0     | 10.0    |
| Walk Time (s)<br>Flash Dont Walk (s) |       |          |         |       | 22.0           |      |       |            |             | 16.0     | 16.0     | 16.0    |
|                                      |       |          |         |       | 4              |      |       |            |             | 25       | 25       | 25      |
| Pedestrian Calls (#/hr)              | 31.1  | 26.4     | 26.4    | 29.5  | 22.0           |      | 70 E  | 78.0       |             | 35.0     |          |         |
| Act Effct Green (s)                  |       | 26.4     | 26.4    |       |                |      | 78.5  |            |             |          | 35.0     | 35.0    |
| Actuated g/C Ratio                   | 0.26  | 0.22     | 0.22    | 0.25  | 0.18           |      | 0.65  | 0.65       |             | 0.29     | 0.29     | 0.29    |
| v/c Ratio                            | 1.61  | 0.31     | 0.90    | 0.08  | 0.44           |      | 1.22  | 0.76       |             | 0.22     | 1.15     | 0.60    |

## 8: Broad Street & Dewdney Avenue

|                        | •      | -     | •      | •    | <b>←</b> | •   | •      | <b>†</b> | ~   | -    | <b>↓</b> | 4    |
|------------------------|--------|-------|--------|------|----------|-----|--------|----------|-----|------|----------|------|
| Lane Group             | EBL    | EBT   | EBR    | WBL  | WBT      | WBR | NBL    | NBT      | NBR | SBL  | SBT      | SBR  |
| Control Delay          | 318.0  | 40.2  | 25.9   | 27.8 | 42.9     |     | 141.9  | 19.6     |     | 41.4 | 120.2    | 13.2 |
| Queue Delay            | 0.0    | 0.0   | 0.0    | 0.0  | 0.0      |     | 0.0    | 0.0      |     | 0.0  | 0.0      | 0.0  |
| Total Delay            | 318.0  | 40.2  | 25.9   | 27.8 | 42.9     |     | 141.9  | 19.6     |     | 41.4 | 120.2    | 13.2 |
| LOS                    | F      | D     | С      | С    | D        |     | F      | В        |     | D    | F        | В    |
| Approach Delay         |        | 131.3 |        |      | 40.5     |     |        | 57.3     |     |      | 93.9     |      |
| Approach LOS           |        | F     |        |      | D        |     |        | Е        |     |      | F        |      |
| Queue Length 50th (m)  | ~148.0 | 24.9  | 35.9   | 4.5  | 27.5     |     | ~209.5 | 141.8    |     | 3.1  | ~166.7   | 14.4 |
| Queue Length 95th (m)  | #196.9 | 39.2  | #107.6 | 10.4 | 42.9     |     | #308.9 | 204.8    |     | 10.1 | #208.0   | 45.2 |
| Internal Link Dist (m) |        | 81.7  |        |      | 308.1    |     |        | 305.7    |     |      | 270.1    |      |
| Turn Bay Length (m)    | 40.0   |       |        | 10.0 |          |     | 35.0   |          |     | 45.0 |          |      |
| Base Capacity (vph)    | 277    | 475   | 801    | 325  | 463      |     | 613    | 2198     |     | 76   | 988      | 604  |
| Starvation Cap Reductn | 0      | 0     | 0      | 0    | 0        |     | 0      | 0        |     | 0    | 0        | 0    |
| Spillback Cap Reductn  | 0      | 0     | 0      | 0    | 0        |     | 0      | 0        |     | 0    | 0        | 0    |
| Storage Cap Reductn    | 0      | 0     | 0      | 0    | 0        |     | 0      | 0        |     | 0    | 0        | 0    |
| Reduced v/c Ratio      | 1.61   | 0.26  | 0.85   | 0.08 | 0.31     |     | 1.22   | 0.76     |     | 0.22 | 1.15     | 0.60 |

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.61

Intersection Signal Delay: 84.5 Intersection LOS: F
Intersection Capacity Utilization 122.6% ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue



WSP Canada Inc.

James Sun 07/20/2017

Synchro 9 Report
Page 4

| L. L                          |          |              |      |         |              |      |            |        |      |        |      |      |
|-------------------------------|----------|--------------|------|---------|--------------|------|------------|--------|------|--------|------|------|
| Intersection Int Delay, s/veh | 4.4      |              |      |         |              |      |            |        |      |        |      |      |
| <b>3</b> ,                    |          |              |      |         |              |      |            |        |      |        |      |      |
| Movement                      | EBL      | EBT          | EBR  | WBL     | WBT          | WBR  | NBL        | NBT    | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations           | *        | _ <b>∱</b> } |      | ች       | _ <b>∱</b> } |      |            | सी     | 7    |        | र्भ  | _ 7  |
| Traffic Vol, veh/h            | 52       | 1166         | 29   | 22      | 1400         | 23   | 8          | 2      | 77   | 6      | 1    | 118  |
| Future Vol, veh/h             | 52       | 1166         | 29   | 22      | 1400         | 23   | 8          | 2      | 77   | 6      | 1    | 118  |
| Conflicting Peds, #/hr        | 0        | 0            | 0    | 0       | 0            | 0    | 0          | 0      | 0    | 0      | 0    | 0    |
| Sign Control                  | Free     | Free         | Free | Free    | Free         | Free | Stop       | Stop   | Stop | Stop   | Stop | Stop |
| RT Channelized                | -        | -            | None | -       | -            | None | -          | -      | None | -      | -    | None |
| Storage Length                | 200      | -            | -    | 250     | -            | -    | -          | -      | 0    | -      | -    | 0    |
| Veh in Median Storage, #      | -        | 0            | -    | -       | 0            | -    | -          | 0      | -    | -      | 0    | -    |
| Grade, %                      | -        | 0            | -    | -       | 0            | -    | -          | 0      | -    | -      | 0    | -    |
| Peak Hour Factor              | 95       | 95           | 95   | 95      | 95           | 95   | 95         | 95     | 95   | 95     | 95   | 95   |
| Heavy Vehicles, %             | 3        | 3            | 3    | 3       | 3            | 3    | 3          | 3      | 3    | 3      | 3    | 3    |
| Mvmt Flow                     | 55       | 1227         | 31   | 23      | 1474         | 24   | 8          | 2      | 81   | 6      | 1    | 124  |
|                               |          |              |      |         |              |      |            |        |      |        |      |      |
| Major/Minor                   | Major1   |              |      | Major2  |              |      | Minor1     |        |      | Minor2 |      |      |
| Conflicting Flow All          | 1498     | 0            | 0    | 1258    | 0            | 0    | 2136       | 2896   | 629  | 2256   | 2899 | 749  |
| Stage 1                       | -        | _            | _    | -       | -            | -    | 1352       | 1352   | _    | 1532   | 1532 | _    |
| Stage 2                       | _        | _            | _    | -       | _            | -    | 784        | 1544   | _    | 724    | 1367 | _    |
| Critical Hdwy                 | 4.16     | _            | _    | 4.16    | _            | -    | 7.56       | 6.56   | 6.96 | 7.56   | 6.56 | 6.96 |
| Critical Hdwy Stg 1           | -        | _            | _    | -       | -            | _    | 6.56       | 5.56   | -    | 6.56   | 5.56 | -    |
| Critical Hdwy Stg 2           | -        | -            | _    | _       | _            | -    | 6.56       | 5.56   | _    | 6.56   | 5.56 | _    |
| Follow-up Hdwy                | 2.23     | -            | _    | 2.23    | _            | -    | 3.53       | 4.03   | 3.33 | 3.53   | 4.03 | 3.33 |
| Pot Cap-1 Maneuver            | 439      | _            | _    | 543     | _            | -    | 27         | 15     | 423  | 22     | 15   | 352  |
| Stage 1                       | -        | _            | _    | -       | _            | -    | 157        | 215    | _    | 121    | 175  | _    |
| Stage 2                       | -        | -            | _    | _       | _            | -    | 350        | 173    | _    | 381    | 211  | -    |
| Platoon blocked, %            |          | _            | _    |         | -            | _    |            |        |      |        |      |      |
| Mov Cap-1 Maneuver            | 439      | _            | _    | 543     | _            | _    | 14         | 13     | 423  | 14     | 13   | 352  |
| Mov Cap-2 Maneuver            | -        | _            | _    | -       | _            | _    | 14         | 13     | -    | 14     | 13   | -    |
| Stage 1                       | _        | _            | _    | -       | _            | _    | 137        | 188    | _    | 106    | 168  | _    |
| Stage 2                       | _        | _            | _    | _       | _            | _    | 216        | 166    | _    | 266    | 185  | _    |
| Olugo Z                       |          |              |      |         |              |      | 210        | 100    |      | 200    | 100  |      |
| Approach                      | EB       |              |      | WB      |              |      | NB         |        |      | SB     |      |      |
| HCM Control Delay, s          | 0.6      |              |      | 0.2     |              |      | 71.9       |        |      | 43.3   |      |      |
| HCM LOS                       | 0.0      |              |      | 0.2     |              |      | 7 1.5<br>F |        |      | +0.5   |      |      |
| 110111 200                    |          |              |      |         |              |      | ·          |        |      | _      |      |      |
| Minor Lane/Major Mvmt         | NBLn1    | NRI n2       | EBL  | EBT EBR | WBL          | WBT  | WBR SBLn1  | SBI n2 |      |        |      |      |
| Capacity (veh/h)              | 14       | 423          | 439  |         | 543          | -    | - 14       | 352    |      |        |      |      |
| HCM Lane V/C Ratio            |          | 0.192        |      |         | 0.043        |      | - 0.526    |        |      |        |      |      |
| HCM Control Delay (s)         |          |              | 14.4 |         |              | -    |            | 20.7   |      |        |      |      |
| HCM Lane LOS                  | \$ 506.5 | 15.5         |      |         |              | -    | -\$ 424.4  |        |      |        |      |      |
|                               | F        | C            | В    |         | B            | -    | - F        | C      |      |        |      |      |
| HCM 95th %tile Q(veh)         | 1.8      | 0.7          | 0.4  |         | 0.1          | -    | - 1.3      | 1.6    |      |        |      |      |

# 4: Cornwall Street & Dewdney Avenue

| Int Delay, s/veh   0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Traffic Vol, veh/h         0         1165         9         0         1229         23         0         0         444         0         0         65           Future Vol, veh/h         0         1165         9         0         1229         23         0         0         444         0         0         65           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                           |
| Traffic Vol, veh/h         0         1165         9         0         1229         23         0         0         44         0         0         65           Future Vol, veh/h         0         1165         9         0         1229         23         0         0         44         0         0         65           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                             |
| Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                  |
| Sign Control         Free         None         -         -         None         -         -         None         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         - <th< td=""></th<> |
| RT Channelized       -       None       -       None       -       None       -       None         Storage Length       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       0       -       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       0       -       -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td                                                                                                                                                                                                            |
| Storage Length       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       0       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                            |
| Veh in Median Storage, #       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       0       -       0       0       -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td                                                                                                                                                                                                             |
| Grade, %         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         -         0         0         -         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         0         -         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                     |
| Peak Hour Factor         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95                                                      |
| Heavy Vehicles, %       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                         |
| Mvmt Flow         0 1226         9         0 1294         24         0 0 46         0 0 68           Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         - 0 0 0 1878 2549 618 1919 2542 659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Major/Minor         Major1         Major2         Minor1         Minor2           Conflicting Flow All         -         0         0         -         -         0         1878         2549         618         1919         2542         659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Conflicting Flow All - 0 0 0 1878 2549 618 1919 2542 659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conflicting Flow All - 0 0 0 1878 2549 618 1919 2542 659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Jiaye 1 1231 1231 - 1300 1300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stage 2 647 1318 - 613 1236 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Critical Hdwy 7.56 6.56 6.96 7.56 6.56 6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Critical Hdwy Stg 1 6.56 5.56 - 6.56 5.56 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Critical Hdwy Stg 2 6.56 5.56 - 6.56 5.56 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Follow-up Hdwy 3.53 4.03 3.33 3.53 4.03 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pot Cap-1 Maneuver 0 0 43 26 430 40 26 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stage 1 0 0 186 246 - 167 226 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stage 2 0 0 424 223 - 444 245 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mov Cap-1 Maneuver 36 26 430 36 26 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mov Cap-2 Maneuver 36 26 - 36 26 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stage 1 186 246 - 167 226 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 2 352 223 - 396 245 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HCM Control Delay, s 0 0 14.4 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HCM LOS B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Minor Lane/Major Mvmt NBLn1 EBT EBR WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Capacity (veh/h) 430 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HCM Lane V/C Ratio 0.108 0.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCM Control Delay (s) 14.4 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCM Lane LOS B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCM 95th %tile Q(veh) 0.4 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# 5: Dewdney Avenue & Scarth Street

| Intersection                    |           |          |      |         |           |      |           |      |      |           |      |      |
|---------------------------------|-----------|----------|------|---------|-----------|------|-----------|------|------|-----------|------|------|
| Int Delay, s/veh                | 0.5       |          |      |         |           |      |           |      |      |           |      |      |
| • .                             |           | CDT      | EDD  | WDI     | WDT       | WDD  | NDI       | NDT  | NDD  | CDI       | ODT  | CDD  |
| Movement                        | EBL       | EBT      | EBR  | WBL     | WBT       | WBR  | NBL       | NBT  | NBR  | SBL       | SBT  | SBR  |
| Lane Configurations             | •         | <b>†</b> |      | •       | <b>^</b>  | 4.4  |           | - ♣  | 00   | •         | - ♣  | 50   |
| Traffic Vol, veh/h              | 0         | 1152     | 57   | 0       | -         | 14   | 0         | 0    | 20   | 0         | 0    | 58   |
| Future Vol, veh/h               | 0         | 1152     | 57   | 0       | 1194      | 14   | 0         | 0    | 20   | 0         | 0    | 58   |
| Conflicting Peds, #/hr          | _ 0       | _ 0      | _ 0  | _ 0     | 0         | _ 0  | 0         | 0    | 0    | 0         | 0    | 0    |
| Sign Control                    | Free      | Free     | Free | Free    | Free      | Free | Stop      | Stop | Stop | Stop      | Stop | Stop |
| RT Channelized                  | -         | -        | None | -       | -         | None | -         | -    | None | -         | -    | None |
| Storage Length                  | -         | -        | -    | -       | -         | -    | -         | -    | -    | -         | -    | -    |
| Veh in Median Storage, #        | -         | 0        | -    | -       | 0         | -    | -         | 0    | -    | -         | 0    | -    |
| Grade, %                        | -         | 0        |      | -       | 0         | -    | -         | 0    | -    | -         | 0    | -    |
| Peak Hour Factor                | 95        | 95       | 95   | 95      | 95        | 95   | 95        | 95   | 95   | 95        | 95   | 95   |
| Heavy Vehicles, %               | 3         | 3        | 3    | 3       | 3         | 3    | 3         | 3    | 3    | 3         | 3    | 3    |
| Mvmt Flow                       | 0         | 1213     | 60   | 0       | 1257      | 15   | 0         | 0    | 21   | 0         | 0    | 61   |
|                                 |           |          |      |         |           |      |           |      |      |           |      |      |
| Major/Minor                     | Major1    |          |      | Major2  |           |      | Minor1    |      |      | Minor2    |      |      |
| Conflicting Flow All            |           | 0        | 0    | -       | -         | 0    | 1871      | 2515 | 636  | 1870      | 2537 | 636  |
| Stage 1                         | _         | -        | -    | _       | _         | -    | 1243      | 1243 | -    | 1264      | 1264 | -    |
| Stage 2                         | _         | _        | _    | _       | _         | _    | 628       | 1272 | _    | 606       | 1273 | _    |
| Critical Hdwy                   | _         | _        | _    | _       | -         | _    | 7.56      | 6.56 | 6.96 | 7.56      | 6.56 | 6.96 |
| Critical Hdwy Stg 1             | _         | _        | _    | _       | _         | _    | 6.56      | 5.56 | -    | 6.56      | 5.56 | 0.00 |
| Critical Hdwy Stg 2             | _         | _        | _    | _       | _         | _    | 6.56      | 5.56 | _    | 6.56      | 5.56 | _    |
| Follow-up Hdwy                  | _         | _        | _    | _       | _         | _    | 3.53      | 4.03 | 3.33 | 3.53      | 4.03 | 3.33 |
| Pot Cap-1 Maneuver              | 0         | _        | _    | 0       | _         | _    | 44        | 27   | 418  | 44        | 26   | 418  |
| Stage 1                         | 0         | _        | _    | 0       | _         | _    | 183       | 243  | - 10 | 178       | 237  | -10  |
| Stage 2                         | 0         | _        | _    | 0       | _         | _    | 435       | 235  | _    | 448       | 235  | _    |
| Platoon blocked, %              | U         |          |      | U       | _         | _    | 400       | 200  |      | 770       | 200  |      |
| Mov Cap-1 Maneuver              | _         | _        | _    | _       | _         | _    | 38        | 27   | 418  | 42        | 26   | 418  |
| Mov Cap-1 Maneuver              | _         |          |      | _       | _         | _    | 38        | 27   | - 10 | 42        | 26   | 710  |
| Stage 1                         |           | _        | _    |         |           | _    | 183       | 243  | _    | 178       | 237  | _    |
| Stage 2                         | _         |          |      | _       | _         | _    | 371       | 235  | _    | 425       | 235  |      |
| Stage 2                         | -         | -        | -    | -       | _         | -    | 37.1      | 233  | -    | 425       | 200  | -    |
| Approach                        | EB        |          |      | WB      |           |      | NB        |      |      | SB        |      |      |
|                                 | 0         |          |      | 0       |           |      | 14.1      |      |      | 15.1      |      |      |
| HCM Control Delay, s<br>HCM LOS | U         |          |      | U       |           |      | 14.1<br>B |      |      | 15.1<br>C |      |      |
| Minor Lane/Major Mvmt           | NBLn1     | EBT      | EBR  | WBT WBR | SBLn1     |      |           |      |      |           |      |      |
| Capacity (veh/h)                | 418       |          | -    |         | 418       |      |           |      |      |           |      |      |
| HCM Lane V/C Ratio              | 0.05      |          | _    |         | 0.146     |      |           |      |      |           |      |      |
| HCM Control Delay (s)           | 14.1      |          |      | _<br>   | 15.1      |      |           |      |      |           |      |      |
| HCM Lane LOS                    | 14.1<br>B |          |      | _       | 13.1<br>C |      |           |      |      |           |      |      |
| HCM 95th %tile Q(veh)           | 0.2       | _        | _    |         | 0.5       |      |           |      |      |           |      |      |
| HOW JOHN MILE Q(VEII)           | U.Z       | -        | -    |         | 0.5       |      |           |      |      |           |      |      |

# 7: Dewdney Avenue & Rose Street

| Intersection             | 0.4       |          |           |            |      |        |      |  |
|--------------------------|-----------|----------|-----------|------------|------|--------|------|--|
| Int Delay, s/veh         | 0.4       |          |           |            |      |        |      |  |
| Movement                 | EBL       | EBT      |           | WBT        | WBR  | SBL    | SBR  |  |
| Lane Configurations      |           | <b>^</b> |           | <b>↑</b> ↑ |      | M      |      |  |
| Traffic Vol, veh/h       | 0         |          |           | 1141       | 22   | 0      | 63   |  |
| Future Vol, veh/h        | 0         | 1188     |           | 1141       | 22   | 0      | 63   |  |
| Conflicting Peds, #/hr   | 0         | 0        |           | 0          | 0    | 0      | 0    |  |
| Sign Control             | Free      | Free     |           | Free       | Free | Stop   | Stop |  |
| RT Channelized           | -         | None     |           | -          | None | -      | None |  |
| Storage Length           | -         | -        |           | -          | -    | 0      | -    |  |
| Veh in Median Storage, # | <u> </u>  | 0        |           | 0          | -    | 0      | -    |  |
| Grade, %                 | -         | 0        |           | 0          | -    | 0      | -    |  |
| Peak Hour Factor         | 95        | 95       |           | 95         | 95   | 95     | 95   |  |
| Heavy Vehicles, %        | 3         | 3        |           | 3          | 3    | 3      | 3    |  |
| Mvmt Flow                | 0         | 1251     |           | 1201       | 23   | 0      | 66   |  |
|                          |           |          |           |            |      |        |      |  |
| Major/Minor              | Major1    |          |           | Major2     |      | Minor2 |      |  |
| Conflicting Flow All     | iviajoi i | 0        |           | Majorz     | 0    | 1838   | 612  |  |
| Stage 1                  | -         | -        |           | -          | -    | 1213   | 012  |  |
| Stage 2                  | -         | -        |           | -          | -    | 625    | -    |  |
| Critical Hdwy            | -         | -        |           | -          | -    | 7.56   | 6.96 |  |
| Critical Hdwy Stg 1      | -         | -        |           | -          | -    | 6.56   | 0.90 |  |
| Critical Hdwy Stg 2      | -         | -        |           | -          | -    | 6.56   | -    |  |
| Follow-up Hdwy           | -         | -        |           | -          | -    | 3.53   | 3.33 |  |
| Pot Cap-1 Maneuver       | 0         | -        |           |            | _    | 46     | 434  |  |
| Stage 1                  | 0         | -        |           | -          | -    | 191    | 404  |  |
| Stage 1                  | 0         | -        |           | -          | -    | 437    | -    |  |
| Platoon blocked, %       | U         | -        |           | -          | -    | 431    | -    |  |
| Mov Cap-1 Maneuver       | _         | -        |           | -          | -    | 46     | 434  |  |
| Mov Cap-1 Maneuver       | -         | -        |           | -          | -    | 46     | 434  |  |
| Stage 1                  | -         | -        |           | -          | -    | 191    | -    |  |
| Stage 1                  | -         | _        |           | -          |      | 437    | -    |  |
| Slaye 2                  | -         | -        |           | -          | -    | 437    | -    |  |
| Annroach                 | EB        |          |           | WB         |      | SB     |      |  |
| Approach                 |           |          |           |            |      |        |      |  |
| HCM Control Delay, s     | 0         |          |           | 0          |      | 14.8   |      |  |
| HCM LOS                  |           |          |           |            |      | В      |      |  |
|                          |           |          |           |            |      |        |      |  |
| Minor Lane/Major Mvmt    | EBT       | WBI      | WBR SBLn1 |            |      |        |      |  |
| Capacity (veh/h)         | -         | -        | - 434     |            |      |        |      |  |
| HCM Lane V/C Ratio       | -         | -        | - 0.153   |            |      |        |      |  |
| HCM Control Delay (s)    | -         | -        | - 14.8    |            |      |        |      |  |
| HCM Lane LOS             | -         | -        | - B       |            |      |        |      |  |
| HCM 95th %tile Q(veh)    | -         | -        | - 0.5     |            |      |        |      |  |

| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | ۶             | <b>→</b> | •     | •      | +    | •     | •      | <b>†</b>        | <b>/</b> | <b>/</b> | <b>+</b>        | ✓    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|----------|-------|--------|------|-------|--------|-----------------|----------|----------|-----------------|------|
| Traffic Volume (γρh)   164   794   165   395   929   203   265   1338   284   169   1047   158   158   169   1047   158   158   169   1047   158   158   169   1047   158   158   159   1047   158   158   159   1047   158   158   159   1047   158   158   159   1047   158   158   159   1047   158   158   159   1047   158   159   1047   158   158   159   1047   158   158   159   1047   158   158   159   1047   158   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   159   1  | Lane Group          | EBL           | EBT      | EBR   | WBL    | WBT  | WBR   | NBL    | NBT             | NBR      | SBL      | SBT             | SBR  |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | ች             | 44       | 7     | *      | 44   | 7     | ሻ      | <del>ተ</del> ቀኈ |          | ች        | <del>ተ</del> ቀኄ |      |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |               |          |       |        |      | 203   |        | 1338            | 284      | 169      |                 | 158  |
| Storage Langth (m)   30.0   50.0   30.0   30.0   30.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0    | Future Volume (vph) | 164           | 794      | 165   | 395    |      |       |        |                 | 284      |          | 1047            | 158  |
| Storage Langth (m)   30.0   50.0   30.0   30.0   30.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0   70.0    | ` . ,               | 1800          | 1800     | 1800  | 1800   | 1800 | 1800  | 1800   | 1800            | 1800     | 1800     | 1800            | 1800 |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ <i>,</i>          |               |          | 50.0  | 30.0   |      | 30.0  | 90.0   |                 | 0.0      | 75.0     |                 |      |
| Taper Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |               |          | 1     | 1      |      |       | 1      |                 |          | 1        |                 |      |
| Lane Unil. Factor   1,00   0,95   1,00   1,00   0,95   1,00   0,97   0,99   0,99   1,00   0,99     Ped Bike Factor   0,99   0,87   1,00   0,850   0,850   0,950   0,950     Fit Protected   0,950   0,950   0,950   0,950   0,950     Fit Protected   0,950   0,950   0,950   0,950   0,950     Fit Premitted   0,288   0,1517   1695   3390   1517   1695   3390   1477   360   4714   0   242   4742   0     Fit Permitted   0,288   7es   7 |                     | 20.0          |          |       | 25.0   |      |       | 35.0   |                 |          | 40.0     |                 |      |
| Fith   Frite   Fith   Frite   Fith   Fith  |                     | 1.00          | 0.95     | 1.00  | 1.00   | 0.95 | 1.00  | 1.00   | 0.91            | 0.91     | 1.00     | 0.91            | 0.91 |
| Fit Protected   0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ped Bike Factor     | 0.99          |          | 0.97  | 1.00   |      | 0.97  | 0.99   | 0.99            |          | 1.00     | 0.99            |      |
| Satd. Flow (prot)   1695   3390   1517   1695   3390   1517   1695   3390   1517   1695   3390   1517   1695   3390   1478   0   0.1695   4742   0   0.1695   2742   0   0.1695   2742   0   0.1695   2742   0   0.1695   2742   0   0.1695   2742   0   0.1695   2742   0   0.1695   2742   0   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695   0.1695    | Frt                 |               |          | 0.850 |        |      | 0.850 |        | 0.974           |          |          | 0.980           |      |
| Fit Permitted   Satd. Flow (perm)   Satd. Flow (perm)   Satd. Flow (perm)   Satd. Flow (perm)   Satd. Flow (RTOR)   Satd. Fl | Flt Protected       | 0.950         |          |       | 0.950  |      |       | 0.950  |                 |          | 0.950    |                 |      |
| Satid   Flow (perm)   Sati   Sayo   1478   268   3890   1477   360   4714   0   242   4742   0   Right Turn on Red   748   159   123   141   23   23   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Satd. Flow (prot)   | 1695          | 3390     | 1517  | 1695   | 3390 | 1517  | 1695   | 4714            | 0        | 1695     | 4742            | 0    |
| Right Turn on Red   Sate   Yes   Y | Flt Permitted       | 0.288         |          |       | 0.151  |      |       | 0.203  |                 |          | 0.136    |                 |      |
| Satid. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Satd. Flow (perm)   |               | 3390     | 1478  | 268    | 3390 | 1477  | 360    | 4714            | 0        | 242      | 4742            | 0    |
| Satid. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |               |          | Yes   |        |      | Yes   |        |                 | Yes      |          |                 | Yes  |
| Link Speed (k/h)         50         50         250         211.03         220.1         211.9           Link Distance (m)         456.3         110.3         220.1         211.9           Travel Time (s)         33.0         7.9         15.8         15.3           Confl. Peds. (#hr)         13         12         12         13         32         20         20         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         2.92         2%         2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               |          | 159   |        |      | 123   |        | 41              |          |          | 23              |      |
| Link Distance (m)         458.3         110.3         220.1         211.9           Travel Time (s)         33.0         7.9         15.8         15.3           Confl. Peds. (#hr)         13         12         12         12         13         32         20         20         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               | 50       |       |        | 50   |       |        |                 |          |          |                 |      |
| Travel Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Confil. Peds. (#hhr)         13         12         12         12         12         13         32         20         20         20         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.92         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Peak Hour Factor   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0. | ` '                 | 13            |          | 12    | 12     |      | 13    | 32     |                 | 20       | 20       |                 | 32   |
| Growth Factor         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         70%         20%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%         2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , ,                 |               | 0.92     |       |        | 0.92 |       |        | 0.92            |          |          | 0.92            |      |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Adj. Flow (vph)   125   604   126   301   707   154   202   1018   216   129   797   120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Shared Lane Traffic (%)   Lane Group Flow (vph)   125   604   126   301   707   154   202   1234   0   129   917   0   0   1   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Lane Group Flow (vph)   125   604   126   301   707   154   202   1234   0   129   917   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | -             |          |       |        |      |       |        |                 |          | -        |                 |      |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | 125           | 604      | 126   | 301    | 707  | 154   | 202    | 1234            | 0        | 129      | 917             | 0    |
| Protected Phases         7         4         3         8         5         2         1         6           Permitted Phases         4         4         4         8         8         2         6           Detector Phase         7         4         4         3         8         8         5         2         1         6           Switch Phase           Minimum Initial (s)         7.0         10.0         10.0         7.0         10.0         10.0         7.0         15.0         7.0         15.0           Minimum Split (s)         11.0         36.5         36.5         11.0         36.5         36.5         11.0         33.5         12.0         33.5           Total Split (s)         13.0         36.6         36.6         25.0         48.6         48.6         20.0         43.4         15.0         38.4           Total Split (%)         10.8         30.5%         30.5%         30.5%         40.5%         40.5%         40.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Permitted Phases   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | · · · · · · · |          |       |        |      |       |        |                 |          |          |                 |      |
| Detector Phase   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 4             |          | 4     |        |      | 8     |        |                 |          | 6        |                 |      |
| Switch Phase         Minimum Initial (s)         7.0         10.0         10.0         7.0         10.0         10.0         7.0         15.0         7.0         15.0           Minimum Split (s)         11.0         36.5         36.5         11.0         36.5         36.5         11.0         33.5         12.0         33.5           Total Split (s)         13.0         36.6         36.6         25.0         48.6         48.6         20.0         43.4         15.0         38.4           Total Split (%)         10.8%         30.5%         30.5%         20.8%         40.5%         40.5%         16.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5 <td< td=""><td></td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               | 4        |       |        | 8    |       |        | 2               |          |          | 6               |      |
| Minimum Initial (s)         7.0         10.0         10.0         7.0         10.0         10.0         7.0         15.0         7.0         15.0           Minimum Split (s)         11.0         36.5         36.5         11.0         36.5         36.5         11.0         33.5         12.0         33.5           Total Split (s)         13.0         36.6         36.6         25.0         48.6         48.6         20.0         43.4         15.0         38.4           Total Split (%)         10.8%         30.5%         30.5%         20.8%         40.5%         40.5%         16.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.5         3.0         3.5         3.0         3.5           All-Red Time (s)         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Minimum Split (s)         11.0         36.5         36.5         11.0         36.5         36.5         11.0         33.5         12.0         33.5           Total Split (s)         13.0         36.6         36.6         25.0         48.6         48.6         20.0         43.4         15.0         38.4           Total Split (%)         10.8%         30.5%         30.5%         20.8%         40.5%         40.5%         16.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.5         3.0         3.5         3.0         3.5           All-Red Time (s)         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 7.0           | 10.0     | 10.0  | 7.0    | 10.0 | 10.0  | 7.0    | 15.0            |          | 7.0      | 15.0            |      |
| Total Split (s)         13.0         36.6         36.6         25.0         48.6         48.6         20.0         43.4         15.0         38.4           Total Split (%)         10.8%         30.5%         30.5%         20.8%         40.5%         40.5%         16.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         4.0         4.0         4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Total Split (%)         10.8%         30.5%         30.5%         20.8%         40.5%         40.5%         16.7%         36.2%         12.5%         32.0%           Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.0         3.5           All-Red Time (s)         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Maximum Green (s)         9.0         32.1         32.1         21.0         44.1         44.1         16.0         38.9         11.0         33.9           Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.0         3.5           All-Red Time (s)         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Yellow Time (s)         3.0         3.5         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         3.0         3.5         All-Red Time (s)         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         4.5         4.5         4.0         4.5         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.2         4.0         4.5         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ` ,                 |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Total Lost Time (s)         4.0         4.5         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5         4.0         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ` ,                 |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Lead/Lag         Lead         Lag         Lag         Lead         Lag         Lag         Lag         Lag         Lead         Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Lead-Lag Optimize?         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Vehicle Extension (s)         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Recall Mode         None         None         None         None         None         None         None         C-Max         None         C-Max           Walk Time (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Walk Time (s)       10.0       10.0       10.0       10.0       10.0       10.0         Flash Dont Walk (s)       22.0       22.0       22.0       22.0       19.0       19.0         Pedestrian Calls (#/hr)       10       10       10       10       10       20         Act Effct Green (s)       35.5       26.4       26.4       50.0       37.0       37.0       60.7       48.1       55.0       45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '                 |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Flash Dont Walk (s)       22.0       22.0       22.0       22.0       19.0       19.0         Pedestrian Calls (#/hr)       10       10       10       10       10       20         Act Effct Green (s)       35.5       26.4       26.4       50.0       37.0       37.0       60.7       48.1       55.0       45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 110110        |          |       | 110110 |      |       | 140110 |                 |          | 110110   |                 |      |
| Pedestrian Calls (#/hr)       10       10       10       10       10       10       20         Act Effct Green (s)       35.5       26.4       26.4       50.0       37.0       60.7       48.1       55.0       45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ` '                 |               |          |       |        |      |       |        |                 |          |          |                 |      |
| Act Effct Green (s) 35.5 26.4 26.4 50.0 37.0 60.7 48.1 55.0 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` ,                 |               |          |       |        |      |       |        |                 |          |          |                 |      |
| $\langle \cdot \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ` '                 | 35.5          |          |       | 50.0   |      |       | 60.7   |                 |          | 55.0     |                 |      |
| Aciualeo d/G Kallo 0.50 0.77 0.77 0.47 0.51 0.51 0.51 0.40 0.46 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Actuated g/C Ratio  | 0.30          | 0.22     | 0.22  | 0.42   | 0.31 | 0.31  | 0.51   | 0.40            |          | 0.46     | 0.38            |      |

#### 1: Albert Street & Dewdney Avenue

|                        | •    | <b>→</b> | $\rightarrow$ | •     | •    | •    | •    | <b>†</b> | ~   | -    | <b>↓</b> | 4   |
|------------------------|------|----------|---------------|-------|------|------|------|----------|-----|------|----------|-----|
| Lane Group             | EBL  | EBT      | EBR           | WBL   | WBT  | WBR  | NBL  | NBT      | NBR | SBL  | SBT      | SBR |
| v/c Ratio              | 0.53 | 0.81     | 0.28          | 0.89  | 0.68 | 0.29 | 0.64 | 0.64     |     | 0.58 | 0.51     |     |
| Control Delay          | 30.5 | 53.2     | 4.0           | 56.8  | 39.2 | 8.8  | 27.1 | 31.4     |     | 29.3 | 31.1     |     |
| Queue Delay            | 0.0  | 0.0      | 0.0           | 0.0   | 0.0  | 0.0  | 0.0  | 0.0      |     | 0.0  | 0.0      |     |
| Total Delay            | 30.5 | 53.2     | 4.0           | 56.8  | 39.2 | 8.8  | 27.1 | 31.4     |     | 29.3 | 31.1     |     |
| LOS                    | С    | D        | Α             | Е     | D    | Α    | С    | С        |     | С    | С        |     |
| Approach Delay         |      | 42.6     |               |       | 39.7 |      |      | 30.8     |     |      | 30.9     |     |
| Approach LOS           |      | D        |               |       | D    |      |      | С        |     |      | С        |     |
| Queue Length 50th (m)  | 17.8 | 71.3     | 0.0           | 50.9  | 75.4 | 5.1  | 25.9 | 83.9     |     | 15.8 | 60.2     |     |
| Queue Length 95th (m)  | 27.4 | 86.5     | 8.0           | #88.3 | 88.3 | 18.6 | 45.3 | 111.5    |     | 31.4 | 83.7     |     |
| Internal Link Dist (m) |      | 434.3    |               |       | 86.3 |      |      | 196.1    |     |      | 187.9    |     |
| Turn Bay Length (m)    | 30.0 |          | 50.0          | 30.0  |      | 30.0 | 90.0 |          |     | 75.0 |          |     |
| Base Capacity (vph)    | 241  | 906      | 511           | 361   | 1245 | 620  | 363  | 1915     |     | 249  | 1801     |     |
| Starvation Cap Reductn | 0    | 0        | 0             | 0     | 0    | 0    | 0    | 0        |     | 0    | 0        |     |
| Spillback Cap Reductn  | 0    | 0        | 0             | 0     | 0    | 0    | 0    | 0        |     | 0    | 0        |     |
| Storage Cap Reductn    | 0    | 0        | 0             | 0     | 0    | 0    | 0    | 0        |     | 0    | 0        |     |
| Reduced v/c Ratio      | 0.52 | 0.67     | 0.25          | 0.83  | 0.57 | 0.25 | 0.56 | 0.64     |     | 0.52 | 0.51     |     |

Intersection Summary

Area Type: Other

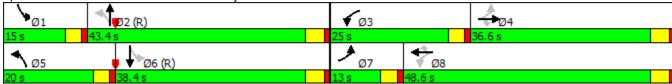
Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 95

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 35.4 Intersection Capacity Utilization 85.0%


Intersection LOS: D
ICU Level of Service E

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.





WSP Canada Inc.

James Sun 07/20/2017

Synchro 9 Report
Page 2

|                         | ۶     | <b>→</b> | •     | •     | <b>←</b> | •    | 4     | †          | <i>&gt;</i> | <b>&gt;</b> | ţ        | 1     |
|-------------------------|-------|----------|-------|-------|----------|------|-------|------------|-------------|-------------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT      | WBR  | NBL   | NBT        | NBR         | SBL         | SBT      | SBR   |
| Lane Configurations     | ሻ     | <b></b>  | 7     | ሻ     | ₽        |      | ሻ     | <b>↑</b> ↑ |             | ሻ           | <b>^</b> | 7     |
| Traffic Volume (vph)    | 423   | 117      | 648   | 26    | 113      | 22   | 708   | 1567       | 21          | 16          | 1084     | 342   |
| Future Volume (vph)     | 423   | 117      | 648   | 26    | 113      | 22   | 708   | 1567       | 21          | 16          | 1084     | 342   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800  | 1800  | 1800     | 1800 | 1800  | 1800       | 1800        | 1800        | 1800     | 1800  |
| Storage Length (m)      | 40.0  |          | 0.0   | 10.0  |          | 0.0  | 35.0  |            | 60.0        | 45.0        |          | 0.0   |
| Storage Lanes           | 1     |          | 1     | 1     |          | 0    | 1     |            | 0           | 1           |          | 1     |
| Taper Length (m)        | 23.0  |          |       | 10.0  |          |      | 25.0  |            |             | 35.0        |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95        | 1.00        | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |       |       | 1.00     |      | 0.98  |            |             |             |          | 0.87  |
| Frt                     |       |          | 0.850 |       | 0.975    |      |       | 0.998      |             |             |          | 0.850 |
| Flt Protected           | 0.950 |          |       | 0.950 |          |      | 0.950 |            |             | 0.950       |          |       |
| Satd. Flow (prot)       | 1695  | 1784     | 1517  | 1695  | 1713     | 0    | 1695  | 3383       | 0           | 1695        | 3390     | 1517  |
| FIt Permitted           | 0.525 |          |       | 0.699 |          |      | 0.121 |            |             | 0.233       |          |       |
| Satd. Flow (perm)       | 933   | 1784     | 1517  | 1247  | 1713     | 0    | 212   | 3383       | 0           | 416         | 3390     | 1326  |
| Right Turn on Red       |       |          | Yes   |       |          | Yes  |       |            | Yes         |             |          | Yes   |
| Satd. Flow (RTOR)       |       |          | 493   |       | 9        |      |       | 2          |             |             |          | 260   |
| Link Speed (k/h)        |       | 50       |       |       | 50       |      |       | 50         |             |             | 50       |       |
| Link Distance (m)       |       | 105.7    |       |       | 332.1    |      |       | 329.7      |             |             | 294.1    |       |
| Travel Time (s)         |       | 7.6      |       |       | 23.9     |      |       | 23.7       |             |             | 21.2     |       |
| Confl. Peds. (#/hr)     | 4     |          |       |       |          | 4    | 51    |            |             |             |          | 51    |
| Peak Hour Factor        | 0.92  | 0.92     | 0.92  | 0.92  | 0.92     | 0.92 | 0.92  | 0.92       | 0.92        | 0.92        | 0.92     | 0.92  |
| Growth Factor           | 70%   | 70%      | 70%   | 70%   | 70%      | 70%  | 70%   | 70%        | 70%         | 70%         | 70%      | 70%   |
| Heavy Vehicles (%)      | 2%    | 2%       | 2%    | 2%    | 3%       | 5%   | 2%    | 2%         | 2%          | 2%          | 2%       | 2%    |
| Adj. Flow (vph)         | 322   | 89       | 493   | 20    | 86       | 17   | 539   | 1192       | 16          | 12          | 825      | 260   |
| Shared Lane Traffic (%) |       |          |       |       |          |      |       |            |             |             |          |       |
| Lane Group Flow (vph)   | 322   | 89       | 493   | 20    | 103      | 0    | 539   | 1208       | 0           | 12          | 825      | 260   |
| Turn Type               | pm+pt | NA       | Perm  | pm+pt | NA       |      | pm+pt | NA         |             | Perm        | NA       | Perm  |
| Protected Phases        | 7     | 4        |       | 3     | 8        |      | 5     | 2          |             |             | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |          |      | 2     |            |             | 6           |          | 6     |
| Detector Phase          | 7     | 4        | 4     | 3     | 8        |      | 5     | 2          |             | 6           | 6        | 6     |
| Switch Phase            |       |          |       |       |          |      |       |            |             |             |          |       |
| Minimum Initial (s)     | 7.0   | 10.0     | 10.0  | 7.0   | 10.0     |      | 7.0   | 15.0       |             | 15.0        | 15.0     | 15.0  |
| Minimum Split (s)       | 11.0  | 14.5     | 14.5  | 11.0  | 36.5     |      | 11.0  | 19.5       |             | 30.5        | 30.5     | 30.5  |
| Total Split (s)         | 11.0  | 36.5     | 36.5  | 11.0  | 36.5     |      | 31.0  | 62.5       |             | 31.5        | 31.5     | 31.5  |
| Total Split (%)         | 10.0% | 33.2%    | 33.2% | 10.0% | 33.2%    |      | 28.2% | 56.8%      |             | 28.6%       | 28.6%    | 28.6% |
| Maximum Green (s)       | 7.0   | 32.0     | 32.0  | 7.0   | 32.0     |      | 27.0  | 58.0       |             | 27.0        | 27.0     | 27.0  |
| Yellow Time (s)         | 3.0   | 3.5      | 3.5   | 3.0   | 3.5      |      | 3.0   | 3.5        |             | 3.5         | 3.5      | 3.5   |
| All-Red Time (s)        | 1.0   | 1.0      | 1.0   | 1.0   | 1.0      |      | 1.0   | 1.0        |             | 1.0         | 1.0      | 1.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |      | 0.0   | 0.0        |             | 0.0         | 0.0      | 0.0   |
| Total Lost Time (s)     | 4.0   | 4.5      | 4.5   | 4.0   | 4.5      |      | 4.0   | 4.5        |             | 4.5         | 4.5      | 4.5   |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag      |      | Lead  |            |             | Lag         | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes      |      | Yes   |            |             | Yes         | Yes      | Yes   |
| Vehicle Extension (s)   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      |      | 2.0   | 2.0        |             | 2.0         | 2.0      | 2.0   |
| Recall Mode             | None  | None     | None  | None  | None     |      | None  | C-Max      |             | C-Max       | C-Max    | C-Max |
| Walk Time (s)           |       |          |       |       | 10.0     |      |       |            |             | 10.0        | 10.0     | 10.0  |
| Flash Dont Walk (s)     |       |          |       |       | 22.0     |      |       |            |             | 16.0        | 16.0     | 16.0  |
| Pedestrian Calls (#/hr) |       |          |       |       | 4        |      |       |            |             | 25          | 25       | 25    |
| Act Effct Green (s)     | 24.9  | 21.6     | 21.6  | 22.5  | 15.0     |      | 75.5  | 75.0       |             | 31.4        | 31.4     | 31.4  |
| Actuated g/C Ratio      | 0.23  | 0.20     | 0.20  | 0.20  | 0.14     |      | 0.69  | 0.68       |             | 0.29        | 0.29     | 0.29  |

|                        | •     | -    | •    | •    | •     | *   | 4      | <b>†</b> | ~   | <b>&gt;</b> | <b>↓</b> | 4    |
|------------------------|-------|------|------|------|-------|-----|--------|----------|-----|-------------|----------|------|
| Lane Group             | EBL   | EBT  | EBR  | WBL  | WBT   | WBR | NBL    | NBT      | NBR | SBL         | SBT      | SBR  |
| v/c Ratio              | 1.24  | 0.25 | 0.71 | 0.07 | 0.43  |     | 0.79   | 0.52     |     | 0.10        | 0.85     | 0.46 |
| Control Delay          | 172.7 | 38.9 | 9.5  | 28.8 | 43.0  |     | 34.5   | 11.1     |     | 32.6        | 47.2     | 6.9  |
| Queue Delay            | 0.0   | 0.0  | 0.0  | 0.0  | 0.0   |     | 0.0    | 0.0      |     | 0.0         | 0.0      | 0.0  |
| Total Delay            | 172.7 | 38.9 | 9.5  | 28.8 | 43.0  |     | 34.5   | 11.1     |     | 32.6        | 47.2     | 6.9  |
| LOS                    | F     | D    | Α    | С    | D     |     | С      | В        |     | С           | D        | Α    |
| Approach Delay         |       | 70.5 |      |      | 40.7  |     |        | 18.3     |     |             | 37.5     |      |
| Approach LOS           |       | Е    |      |      | D     |     |        | В        |     |             | D        |      |
| Queue Length 50th (m)  | ~91.8 | 16.3 | 0.0  | 3.5  | 19.7  |     | 80.4   | 50.8     |     | 1.8         | 82.8     | 0.0  |
| Queue Length 95th (m)  | #93.0 | 26.7 | 25.6 | 7.4  | 28.7  |     | #185.8 | 119.2    |     | 7.4         | #134.3   | 20.5 |
| Internal Link Dist (m) |       | 81.7 |      |      | 308.1 |     |        | 305.7    |     |             | 270.1    |      |
| Turn Bay Length (m)    | 40.0  |      |      | 10.0 |       |     | 35.0   |          |     | 45.0        |          |      |
| Base Capacity (vph)    | 259   | 518  | 790  | 283  | 504   |     | 679    | 2306     |     | 118         | 967      | 564  |
| Starvation Cap Reductn | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0           | 0        | 0    |
| Spillback Cap Reductn  | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0           | 0        | 0    |
| Storage Cap Reductn    | 0     | 0    | 0    | 0    | 0     |     | 0      | 0        |     | 0           | 0        | 0    |
| Reduced v/c Ratio      | 1.24  | 0.17 | 0.62 | 0.07 | 0.20  |     | 0.79   | 0.52     |     | 0.10        | 0.85     | 0.46 |

Intersection Summary

Area Type: Other

Cycle Length: 110 Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.24 Intersection Signal Delay: 36.6 Intersection Capacity Utilization 85.9%

Intersection LOS: D
ICU Level of Service E

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Broad Street & Dewdney Avenue

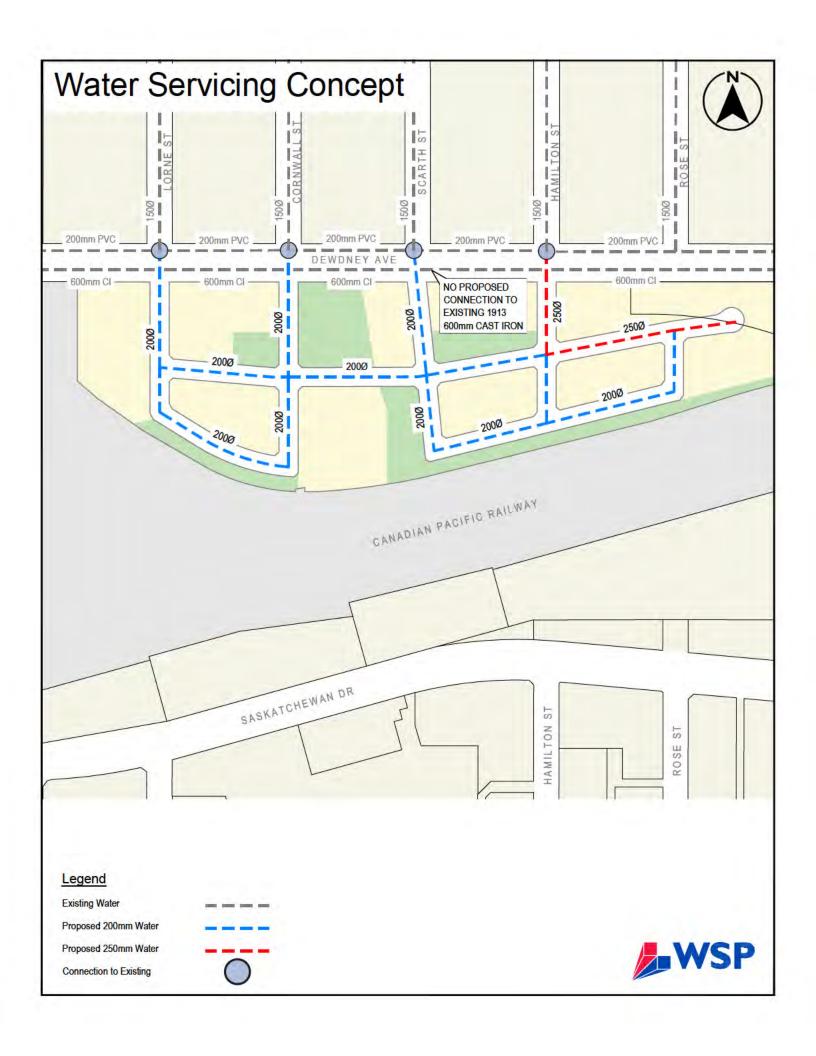


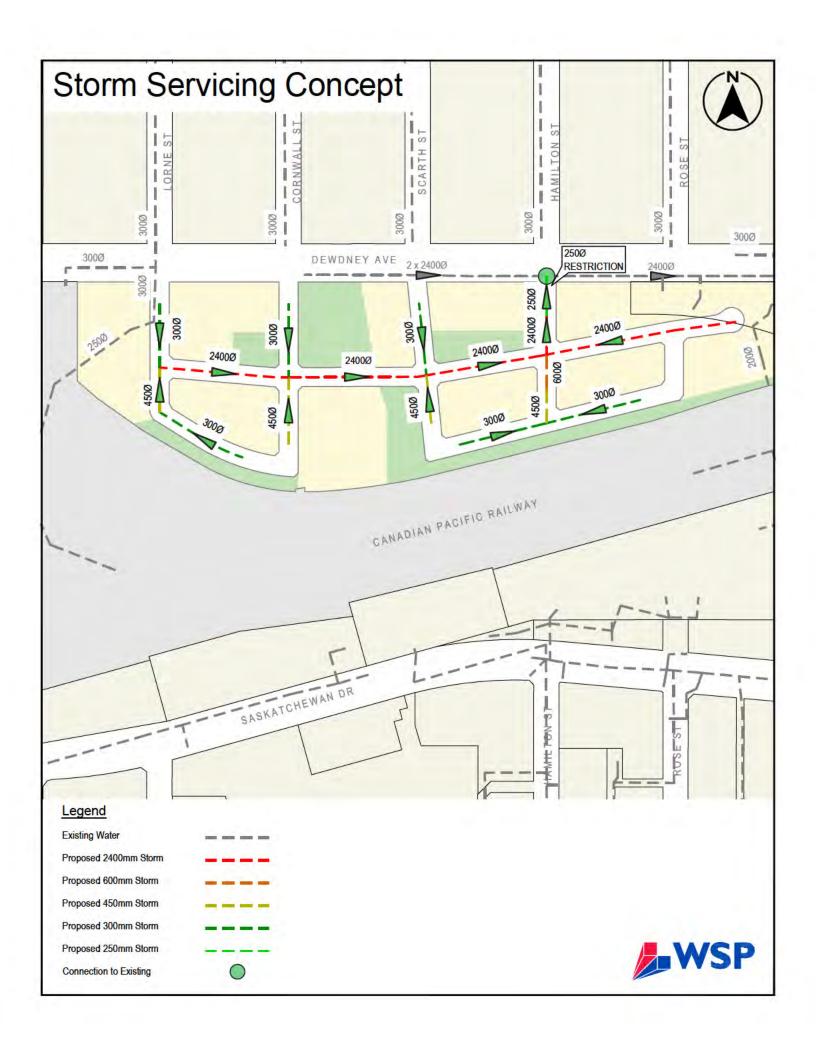
WSP Canada Inc.

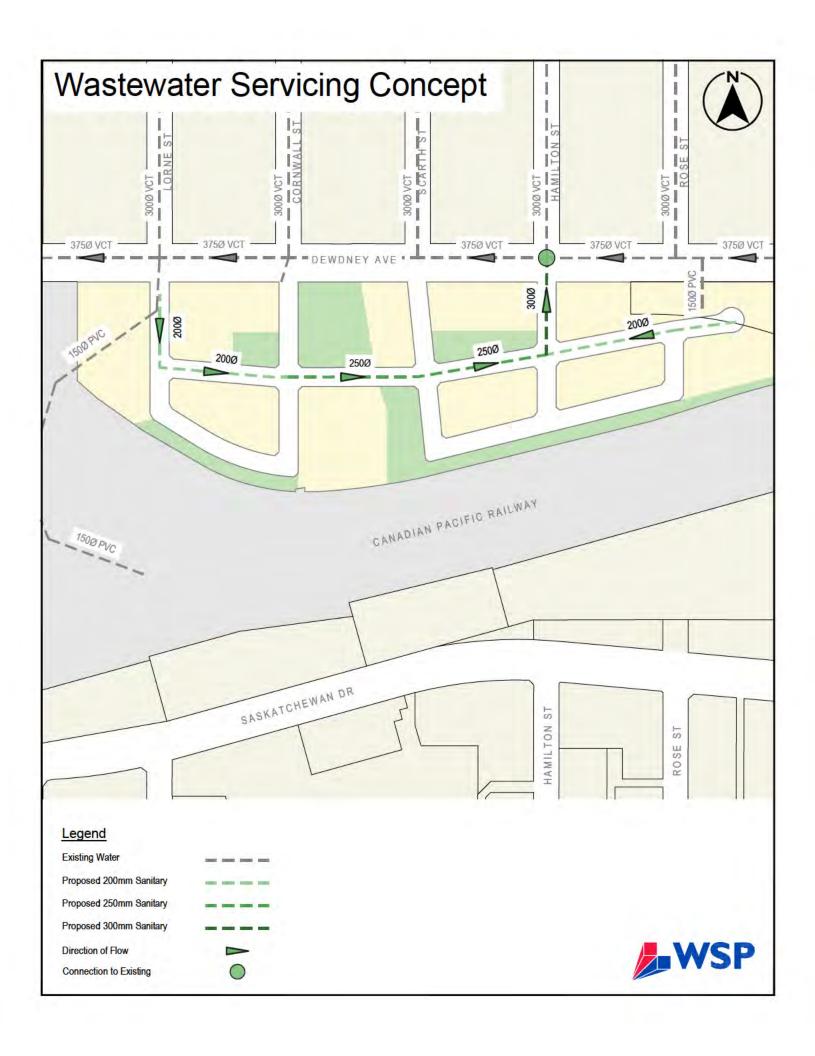
James Sun 07/20/2017

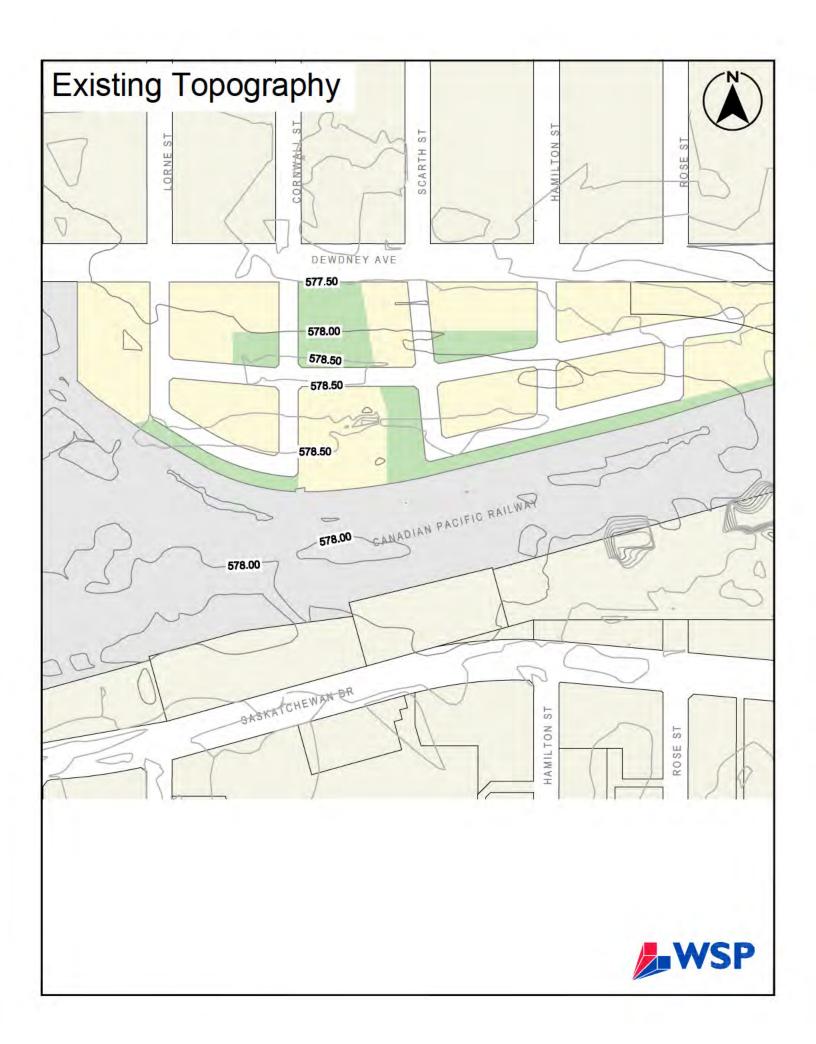
Synchro 9 Report
Page 4

| Intersection Int Delay, s/veh  | 1.7       |             |      |           |            |      |           |           |       |          |              |      |
|--------------------------------|-----------|-------------|------|-----------|------------|------|-----------|-----------|-------|----------|--------------|------|
| Movement                       | EBL       | EBT         | EBR  | WBL       | WBT        | WBR  | NBL       | NBT       | NBR   | SBL      | SBT          | SBR  |
| Lane Configurations            | <u> </u>  | <b>↑</b> 1> | LDIX | VVDL      | <b>↑</b> ₽ | WDIX | NDL<br>1  | 1001<br>F | INDIX | <u> </u> | <del>1</del> | JUIN |
| Traffic Vol, veh/h             | 52        | 1166        | 29   | 22        | 1400       | 23   | 8         | 2         | 77    | 6        | <b>₽</b>     | 118  |
| Future Vol, veh/h              | 52        | 1166        | 29   | 22        | 1400       | 23   | 8         | 2         | 77    | 6        | 1            | 118  |
| Conflicting Peds, #/hr         | 0         | 0           | 0    | 0         | 0          | 0    | 0         | 0         | 0     | 0        | 0            | 0    |
| •                              | Free      | Free        | Free | Free      | Free       | Free |           | Stop      | Stop  |          |              | Stop |
| Sign Control<br>RT Channelized | riee<br>- |             |      | riee<br>- |            | None | Stop      |           | None  | Stop     | Stop         |      |
|                                | 200       | -           | None | 250       | -          |      | -         | -         |       | -        | -            | None |
| Storage Length                 |           | -           | -    |           | 0          | -    | 0         | -         | -     | 0        | _            | -    |
| Veh in Median Storage, #       | -         | 0           | -    | -         |            | -    | -         | 0         | -     | -        | 0            | -    |
| Grade, %                       | -         | 0           | -    | -         | 0          | -    | -         | 0         | -     | -        | 0            | -    |
| Peak Hour Factor               | 92        | 92          | 92   | 92        | 92         | 92   | 92        | 92        | 92    | 92       | 92           | 92   |
| Heavy Vehicles, %              | 3         | 3           | 3    | 3         | 3          | 3    | 3         | 3         | 3     | 3        | 3            | 3    |
| Mvmt Flow                      | 40        | 887         | 22   | 17        | 1065       | 18   | 6         | 2         | 59    | 5        | 1            | 90   |
| Major/Minor                    | Major1    |             |      | Major2    |            |      | Minor1    |           |       | Minor2   |              |      |
| Major/Minor                    | Major1    |             |      | Major2    |            |      |           | 2000      | 455   |          | 0005         |      |
| Conflicting Flow All           | 1083      | 0           | 0    | 909       | 0          | 0    | 1543      | 2093      | 455   | 1630     | 2095         | 541  |
| Stage 1                        | -         | -           | -    | -         | -          | -    | 977       | 977       | -     | 1107     | 1107         | -    |
| Stage 2                        | -         | -           | -    | -         | -          | -    | 566       | 1116      | -     | 523      | 988          | -    |
| Critical Hdwy                  | 4.16      | -           | -    | 4.16      | -          | -    | 7.56      | 6.56      | 6.96  | 7.56     | 6.56         | 6.96 |
| Critical Hdwy Stg 1            | -         | -           | -    | -         | -          | -    | 6.56      | 5.56      | -     | 6.56     | 5.56         | -    |
| Critical Hdwy Stg 2            | -         | -           | -    | -         | -          | -    | 6.56      | 5.56      | -     | 6.56     | 5.56         | -    |
| Follow-up Hdwy                 | 2.23      | -           | -    | 2.23      | -          | -    | 3.53      | 4.03      | 3.33  | 3.53     | 4.03         | 3.33 |
| Pot Cap-1 Maneuver             | 634       | -           | -    | 739       | -          | -    | 77        | 51        | 550   | 67       | 51           | 483  |
| Stage 1                        | -         | -           | -    | -         | -          | -    | 267       | 325       | -     | 222      | 282          | -    |
| Stage 2                        | -         | -           | -    | -         | -          | -    | 474       | 279       | -     | 503      | 321          | -    |
| Platoon blocked, %             |           | -           | -    |           | -          | -    |           |           |       |          |              |      |
| Mov Cap-1 Maneuver             | 634       | -           | -    | 739       | -          | -    | 58        | 47        | 550   | 55       | 47           | 483  |
| Mov Cap-2 Maneuver             | -         | -           | -    | -         | -          | -    | 58        | 47        | -     | 55       | 47           | -    |
| Stage 1                        | -         | -           | -    | -         | -          | -    | 250       | 304       | -     | 208      | 276          | -    |
| Stage 2                        | -         | -           | -    | -         | -          | -    | 376       | 273       | -     | 419      | 301          | -    |
|                                |           |             |      |           |            |      |           |           |       |          |              |      |
| Approach                       | EB        |             |      | WB        |            |      | NB        |           |       | SB       |              |      |
| HCM Control Delay, s           | 0.5       |             |      | 0.2       |            |      | 20.2      |           |       | 18       |              |      |
| HCM LOS                        |           |             |      |           |            |      | С         |           |       | С        |              |      |
|                                |           |             |      |           |            |      |           |           |       |          |              |      |
| Minor Lane/Major Mvmt          | NBLn1 I   | NBLn2       | EBL  | EBT EBR   | WBL        | WBT  | WBR SBLn1 | SBLn2     |       |          |              |      |
| Capacity (veh/h)               | 58        | 433         | 634  |           | 739        | -    | - 55      | 448       |       |          |              |      |
| HCM Lane V/C Ratio             | 0.105     | 0.139       |      |           | 0.023      | -    | - 0.083   |           |       |          |              |      |
| HCM Control Delay (s)          | 74.2      | 14.7        | 11.1 |           | 10         | -    | - 76.3    | 15.1      |       |          |              |      |
| HCM Lane LOS                   | F         | В           | В    |           | Α          | _    | - F       | С         |       |          |              |      |
| HCM 95th %tile Q(veh)          | 0.3       | 0.5         | 0.2  |           | 0.1        | _    | - 0.3     | 0.7       |       |          |              |      |


# 4: Cornwall Street & Dewdney Avenue


| In Delay, siveh   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intersection          |        |     |     |         |          |     |        |      |       |        |     |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-----|-----|---------|----------|-----|--------|------|-------|--------|-----|-------|
| Major   Majo | Int Delay, s/veh      | 0.8    |     |     |         |          |     |        |      |       |        |     |       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | FRI    | FRT | FRR | WRI     | WRT      | WRR | NRI    | NRT  | NRR   | SRI    | SRT | SBR   |
| rraffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |     |     | VVDL    | <u>₩</u> |     | NDL    | וטוו |       | OBL    | ODI | ODIN  |
| truture Vol, veh/h  1165 9 0 1229 23 0 0 44 0 0 0 65  conflicting Peds, #/hr  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 0      |     |     | 0       | 1229     |     | 0      | ٥    |       | 0      | 0   | 65    |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | -      |     |     |         |          |     |        |      |       |        |     |       |
| Free   Stop    | •                     | -      |     |     |         |          |     |        |      |       |        |     |       |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |     |     |         |          |     |        |      |       |        |     |       |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | -      |     |     |         |          |     |        |      |       | -      |     |       |
| Pen in Median Storage, #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | _      |     |     | -       |          |     | _      | _    |       | -      | _   |       |
| Frade, % - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 - 0 - 0 - 0 - 0 - 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | _      | 0   |     | -       | 0        |     | _      | 0    |       | _      | 0   | _     |
| Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |     | -   | -       |          | -   |        |      | -     | -      |     | _     |
| Reavy Vehicles, %   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak Hour Factor      | 92     |     | 92  | 92      |          | 92  | 92     |      | 92    | 92     |     | 92    |
| Major/Minor   Major1   Major2   Minor1   Minor2   Minor3   Minor4   Minor5   Major/Minor   Major4   Minor4   Minor5    |                       |        |     |     |         |          |     |        |      |       |        |     |       |
| Major/Minor   Major1   Major2   Minor1   Minor2   Minor2   Minor3   Major/Minor   Minor2   Minor4   Minor5    | Mvmt Flow             |        |     |     |         |          |     |        |      |       |        |     |       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |     |     |         |          |     |        |      |       |        |     |       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Major/Minor           | Maior1 |     |     | Maior2  |          |     | Minor1 |      |       | Minor2 |     |       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | -      | 0   | 0   |         | _        | 0   |        | _    | 886   | -      |     | 935   |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                     | _      |     |     | _       | _        |     | _      | _    | -     | -      | _   | _     |
| Critical Hdwy Stg 1 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 6.23 - 6.23 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.23 - 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                     | _      | _   | _   | _       | _        | _   |        |      | _     | _      | _   | _     |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | _      | -   | -   | -       | -        | _   | -      | -    | 6.23  | _      | _   | 6.23  |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                     | _      | -   | -   | -       | -        | -   | -      | -    |       | _      | -   | -     |
| Sollow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | -      | _   | -   | _       | -        | -   | -      | -    | -     | -      | -   | _     |
| Pot Cap-1 Maneuver         0         -         -         0         0         342         0         0         320           Stage 1         0         -         -         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         0         0         -         320         0         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>Follow-up Hdwy</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>3.327</td><td>-</td><td>-</td><td>3.327</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Follow-up Hdwy        | -      | -   | -   | -       | -        | -   | -      | -    | 3.327 | -      | -   | 3.327 |
| Stage 1       0       -       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       0       0       -       320       0       0       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 0      | -   | -   | 0       | -        | -   | 0      | 0    |       | 0      | 0   | 320   |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                     | 0      | -   | -   | 0       | -        | -   | 0      | 0    | -     | 0      | 0   | -     |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 0      | -   | -   | 0       | -        | -   | 0      | 0    | -     | 0      | 0   | -     |
| Mov Cap-2 Maneuver         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Platoon blocked, %    |        | -   | -   |         | -        | -   |        |      |       |        |     |       |
| Mov Cap-2 Maneuver         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mov Cap-1 Maneuver    | -      | -   | -   | -       | -        | -   | -      | -    | 342   | -      | -   | 320   |
| Stage 2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>Mov Cap-2 Maneuver</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mov Cap-2 Maneuver    | -      | -   | -   | -       | -        | -   | -      | -    | -     | -      | -   | -     |
| Approach         EB         WB         NB         SB           HCM Control Delay, s         0         0         16.7         18.3           HCM LOS         C         C         C           Minor Lane/Major Mvmt         NBLn1         EBT         EBR         WBT         WBR SBLn1           Capacity (veh/h)         342         -         -         -         320           HCM Lane V/C Ratio         0.098         -         -         -         0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage 1               | -      | -   | -   | -       | -        | -   | -      | -    | -     | -      | -   | -     |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stage 2               | -      | -   | -   | -       | -        | -   | -      | -    | -     | -      | -   | -     |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |        |     |     |         |          |     |        |      |       |        |     |       |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Approach              | EB     |     |     | WB      |          |     | NB     |      |       | SB     |     |       |
| ACM LOS C C  Minor Lane/Major Mvmt NBLn1 EBT EBR WBT WBR SBLn1  Capacity (veh/h) 342 320  HCM Lane V/C Ratio 0.098 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCM Control Delay, s  | 0      |     |     | 0       |          |     | 16.7   |      |       | 18.3   |     |       |
| Capacity (veh/h) 342 320<br>HCM Lane V/C Ratio 0.098 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCM LOS               |        |     |     |         |          |     |        |      |       |        |     |       |
| Capacity (veh/h) 342 320<br>HCM Lane V/C Ratio 0.098 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |     |     |         |          |     |        |      |       |        |     |       |
| ICM Lane V/C Ratio 0.098 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minor Lane/Major Mvmt | NBLn1  | EBT | EBR | WBT_WBR | SBLn1    |     |        |      |       |        |     |       |
| ICM Lane V/C Ratio 0.098 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capacity (veh/h)      | 342    | _   | -   |         | 320      |     | _      |      |       |        |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCM Lane V/C Ratio    |        | -   | -   |         |          |     |        |      |       |        |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCM Control Delay (s) | 16.7   | -   | -   |         |          |     |        |      |       |        |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCM Lane LOS          | С      | -   | -   |         |          |     |        |      |       |        |     |       |
| ICM 95th %tile Q(veh) 0.3 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM 95th %tile Q(veh) | 0.3    | -   | -   |         | 0.5      |     |        |      |       |        |     |       |


| Intersection                    |        |          |      |         |          |      |            |      |                  |           |      |       |
|---------------------------------|--------|----------|------|---------|----------|------|------------|------|------------------|-----------|------|-------|
| Int Delay, s/veh                | 0.5    |          |      |         |          |      |            |      |                  |           |      |       |
| Movement                        | EBL    | EBT      | EBR  | WBL     | WBT      | WBR  | NBL        | NBT  | NBR              | SBL       | SBT  | SBR   |
| Lane Configurations             |        | <b>•</b> | 7    |         | <b>↑</b> | 7    |            |      | 7                |           |      | 7     |
| Traffic Vol, veh/h              | 0      | 1152     | 57   | 0       | 1194     | 14   | 0          | 0    | 20               | 0         | 0    | 58    |
| Future Vol, veh/h               | 0      | 1152     | 57   | 0       | 1194     | 14   | 0          | 0    | 20               | 0         | 0    | 58    |
| Conflicting Peds, #/hr          | 0      | 0        | 0    | 0       | 0        | 0    | 0          | 0    | 0                | 0         | 0    | 0     |
| Sign Control                    | Free   | Free     | Free | Free    | Free     | Free | Stop       | Stop | Stop             | Stop      | Stop | Stop  |
| RT Channelized                  | -      | -        | None | -       | -        | None | ·-         | -    | None             | ·-        | -    | None  |
| Storage Length                  | -      | -        | 200  | -       | -        | 200  | -          | -    | 0                | -         | -    | 0     |
| Veh in Median Storage, #        | -      | 0        | -    | -       | 0        | -    | -          | 0    | -                | -         | 0    | -     |
| Grade, %                        | -      | 0        | -    | -       | 0        | -    | -          | 0    | _                | -         | 0    | _     |
| Peak Hour Factor                | 92     | 92       | 92   | 92      | 92       | 92   | 92         | 92   | 92               | 92        | 92   | 92    |
| Heavy Vehicles, %               | 3      | 3        | 3    | 3       | 3        | 3    | 3          | 3    | 3                | 3         | 3    | 3     |
| Mymt Flow                       | 0      | 877      | 43   | 0       | 908      | 11   | 0          | 0    | 15               | 0         | 0    | 44    |
| WWW.CT IOW                      | · ·    | 011      | 10   | J       | 000      |      | v          | v    | 10               |           | ·    |       |
| Major/Minor                     | Major1 |          |      | Major2  |          |      | Minor1     |      |                  | Minor2    |      |       |
| Conflicting Flow All            | -      | 0        | 0    | -       | _        | 0    | -          |      | 877              | -         | _    | 908   |
| Stage 1                         | _      | -        | -    | -       | _        | _    | -          | -    | -                | -         | _    | -     |
| Stage 2                         | _      | _        | _    | _       | _        | _    | _          | _    | _                | _         | _    | _     |
| Critical Hdwy                   | _      | _        | _    | _       | _        | -    | -          | _    | 6.23             | -         | _    | 6.23  |
| Critical Hdwy Stg 1             | _      | _        | _    | _       | _        | _    | _          | _    | 0.20             | _         | _    | 0.20  |
| Critical Hdwy Stg 2             | _      | _        | _    | _       | _        |      | _          | _    |                  | -         | _    |       |
| Follow-up Hdwy                  | _      | _        | _    | _       | _        | _    | -          | _    | 3.327            | _         | _    | 3.327 |
| Pot Cap-1 Maneuver              | 0      | _        | _    | 0       | -        | _    | 0          | 0    | 346              | 0         | 0    | 332   |
| Stage 1                         | 0      | _        | -    | 0       | _        | -    | 0          | 0    | J <del>4</del> 0 | 0         | 0    | 332   |
| Stage 2                         | 0      |          | -    | 0       | -        | -    | 0          | 0    | -                | 0         | 0    | -     |
| Platoon blocked, %              | U      | -        | -    | U       |          | -    | U          | U    | -                | U         | U    | -     |
|                                 |        |          | _    |         | -        | -    |            |      | 346              |           |      | 332   |
| Mov Cap-1 Maneuver              | -      | -        | -    | -       | -        | -    | -          | -    | 340              | -         | -    | JJ2   |
| Mov Cap-2 Maneuver              | -      | -        | -    | -       | -        | -    | -          | -    | -                | -         | -    | -     |
| Stage 1                         | -      | -        | -    | -       | -        | -    | -          | -    | -                | -         | -    | -     |
| Stage 2                         | -      | -        | -    | -       | -        | -    | -          | -    | -                | -         | -    | -     |
| Annroach                        | ГР     |          |      | WD      |          |      | ND         |      |                  | CD        |      |       |
| Approach                        | EB     |          |      | 0       |          |      | NB<br>15.0 |      |                  | SB        |      |       |
| HCM Control Delay, s<br>HCM LOS | 0      |          |      | U       |          |      | 15.9<br>C  |      |                  | 17.5<br>C |      |       |
| TIOW LOS                        |        |          |      |         |          |      | · ·        |      |                  | U         |      |       |
| Minor Lane/Major Mvmt           | NBLn1  | EBT      | EBR  | WBT WBR | SBLn1    |      |            |      |                  |           |      |       |
| Capacity (veh/h)                | 346    | -        | _    |         | 332      |      |            |      |                  |           |      |       |
| HCM Lane V/C Ratio              | 0.044  | _        | _    |         | 0.133    |      |            |      |                  |           |      |       |
| HCM Control Delay (s)           | 15.9   | _        | _    |         |          |      |            |      |                  |           |      |       |
| HCM Lane LOS                    | C      | _        | _    |         | 17.5     |      |            |      |                  |           |      |       |
| HCM 95th %tile Q(veh)           | 0.1    | _        |      |         | 0.5      |      |            |      |                  |           |      |       |
| HOW JOHN WHILE Q(VEH)           | 0.1    | -        | _    |         | 0.5      |      |            |      |                  |           |      |       |


# 7: Dewdney Avenue & Rose Street

| Intersection                       |        |          |               |          |      |        |       |  |
|------------------------------------|--------|----------|---------------|----------|------|--------|-------|--|
| Int Delay, s/veh                   | 0.4    |          |               |          |      |        |       |  |
| Movement                           | EBL    | EBT      |               | WBT      | WBR  | SBL    | SBR   |  |
| Lane Configurations                |        | <b>^</b> |               | <b>†</b> | 7    |        | 7     |  |
| Traffic Vol, veh/h                 | 0      | 1188     |               | 1141     | 22   | 0      | 63    |  |
| Future Vol, veh/h                  | 0      | 1188     |               | 1141     | 22   | 0      | 63    |  |
| Conflicting Peds, #/hr             | 0      | 0        |               | 0        | 0    | 0      | 0     |  |
| Sign Control                       | Free   | Free     |               | Free     | Free | Stop   | Stop  |  |
| RT Channelized                     | -      | None     |               | -        | None | -      | None  |  |
| Storage Length                     | -      | -        |               | -        | 200  | -      | 0     |  |
| Veh in Median Storage, #           |        | 0        |               | 0        | -    | 0      | -     |  |
| Grade, %                           | _      | 0        |               | 0        | -    | 0      | _     |  |
| Peak Hour Factor                   | 92     | 92       |               | 92       | 92   | 92     | 92    |  |
| Heavy Vehicles, %                  | 3      | 3        |               | 3        | 3    | 3      | 3     |  |
| Mvmt Flow                          | 0      | 904      |               | 868      | 17   | 0      | 48    |  |
|                                    | - 0    | JU-7     |               | 000      | - 17 | 0      | 70    |  |
| Major/Minor                        | Maia=1 |          |               | Mais=0   |      | Minor  |       |  |
| Major/Minor                        | Major1 |          |               | Major2   |      | Minor2 | 200   |  |
| Conflicting Flow All               | -      | 0        |               | -        | 0    | -      | 868   |  |
| Stage 1                            | -      | -        |               | -        | -    | -      | -     |  |
| Stage 2                            | -      | -        |               | -        | -    | -      | -     |  |
| Critical Hdwy                      | -      | -        |               | -        | -    | -      | 6.23  |  |
| Critical Hdwy Stg 1                | -      | -        |               | -        | -    | -      | -     |  |
| Critical Hdwy Stg 2                | -      | -        |               | -        | -    | -      | -     |  |
| Follow-up Hdwy                     | -      | -        |               | -        | -    | -      | 3.327 |  |
| Pot Cap-1 Maneuver                 | 0      | -        |               | -        | -    | 0      | 350   |  |
| Stage 1                            | 0      | -        |               | -        | -    | 0      | -     |  |
| Stage 2                            | 0      | -        |               | -        | -    | 0      | -     |  |
| Platoon blocked, %                 |        | -        |               | -        | -    |        |       |  |
| Mov Cap-1 Maneuver                 | -      | -        |               | -        | -    | -      | 350   |  |
| Mov Cap-2 Maneuver                 | -      | -        |               | -        | -    | -      | -     |  |
| Stage 1                            | -      | -        |               | -        | -    | -      | -     |  |
| Stage 2                            | -      | -        |               | -        | -    | -      | -     |  |
|                                    |        |          |               |          |      |        |       |  |
| Approach                           | EB     |          |               | WB       |      | SB     |       |  |
| HCM Control Delay, s               | 0      |          |               | 0        |      | 16.9   |       |  |
| HCM LOS                            |        |          |               |          |      | C      |       |  |
|                                    |        |          |               |          |      |        |       |  |
| Minor Lane/Major Mvmt              | FRT    | W/RT     | WBR SBLn1     |          |      |        |       |  |
| Capacity (veh/h)                   | -      | וטיי     | - 350         |          |      |        |       |  |
| HCM Lane V/C Ratio                 | -      | -        | - 0.137       |          |      |        |       |  |
|                                    | -      | -        |               |          |      |        |       |  |
| HCM Control Delay (s) HCM Lane LOS | -      | -        | - 16.9<br>- C |          |      |        |       |  |
|                                    | -      | -        | - 0.5         |          |      |        |       |  |
| HCM 95th %tile Q(veh)              | -      | -        | - 0.5         |          |      |        |       |  |









### CITY OF REGINA

# RRI - RAILYARD RENEWAL PROJECT SERVICING REPORT







# RRI - RAILYARD RENEWAL PROJECT SERVICING REPORT

CITY OF REGINA

PROJECT NO.: 151-09273-00 DATE: FEBRUARY 2018

WSP 395 MAXWELL CRESCENT REGINA, SK, CANADA S4N 5X9

TEL:: +1 306 585-1990 FAX: +1 306 585-9113 WSP.COM



February 1, 2018

CITY OF REGINA City of Regina 2476 Victoria Avenue PO Box 1790 Regina, SK S4P 3C8

Attention: Mitchel Kolbeck, Coordinator, Regina Revitalization Initiative

Subject: RRI - Railyard Renewal Project - Servicing Report

We are pleased to present you our report regarding the proposed servicing of the lands encompassed within the Railyard Renewal Project, located in Regina, Saskatchewan.

If you have any questions regarding this report, please contact us.

Sincerely,

Jordan Stepan, E.I.T.

Design Engineer, Infrastructure

Bob Brockmeyer, P.Eng. Director, Infrastructure

WSP ref.: 151-09273-00

# SIGNATURES

PREPARED BY

ordan Stepan, E.I.T.

Design Engineer, Infrastructure

REVIEWED BY

Bob Brockmeyer, P.Eng.

Director, Infrastructure



This report was prepared by WSP for the account of the CITY OF REGINA, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

# EXECUTIVE SUMMARY

WSP Canada Inc. was asked by the City of Regina to compile a Servicing Report for the Railyard Renewal Project to assist in the planning of the redevelopment of approximately 7 hectares of land in the centre of Regina. The Railyard Renewal project revolves around the redevelopment of a decommissioned railyard, previously owned by the Canadian Pacific Railway, into a multi-use area that will connect the Warehouse District to Downtown Regina. This report aims to provide concept servicing strategies for water, wastewater and stormwater servicing within the development while also outlining the potential impacts that the development will have on the existing level of service within the existing City of Regina networks.

#### **Water Servicing**

The City of Regina water network was modeled under both the current operating conditions, and the conditions presented when the demands required for the full buildout of the railyard lands were added to the model. The results of this analysis show that the entire extents of the railyard development can be serviced through existing City of Regina infrastructure without significantly impacting the existing serviceability of the surrounding area. The proposed development ties two 300mm services into the property from an existing 600mm watermain at the intersections of Dewdney Avenue and Lorne Street, and Dewdney Avenue and Hamilton Street. The remainder of the proposed water servicing system is a network of 250mm water mains that satisfy domestic consumption and fire flow demands throughout the development.

#### **Wastewater Servicing**

Currently there are no sanitary sewer mains within the proposed development area that are suitable to be tied into for servicing of the development. To service the development, a connection to the existing 375mm sanitary sewer main at the intersection of Hamilton Street and Dewdney Avenue can be made, in conjunction with the construction of the Railyard Renewal Project's internal sanitary sewer network. Existing topography, as well as the existing of invert elevations at the tie-in point of the existing 375 sanitary sewer main allow the entire extents of the Railyard Renewal Project to be service via gravity flow; there is no need for an internal lift station to service wastewater flows produced within the project area.

#### Storm Water Servicing

The proposed development was modelled under 1 in 5 and 1 in 25 year storm events to determine a storm water management strategy for the project area. To summarize, an internal underground network that ties into oversized in-line detention storage is proposed to service the development for both design storms. This system will discharge at a restricted release rate to existing underground detention storage for the existing Broad Street Lift Station running west to east along Dewdney Avenue. Existing topography, as well as the existing of invert elevations at the tie-in point of the existing storm main, allow the entire extents of the railyard development to be service via gravity flow; there is no need for an internal lift station to service storm water flows.



# TABLE OF CONTENTS

| 1      | SERVICING STRATEGY             | 1        |
|--------|--------------------------------|----------|
| 1.1    | Introduction                   | 1        |
| 1.1.1  | Site Context                   | 1        |
| 1.2    | Water Servicing                | 3        |
| 1.2.1  | Introduction                   | 3        |
| 1.2.2  | Existing Conditions            | 3        |
| 1.2.3  | Proposed Development           | 3        |
| 1.2.4  | Watercad Analysis              | 5        |
| 1.2.5  | Timing of Capital Improvements | 6        |
| 1.3    | Wastewater Servicing           | <b>7</b> |
| 1.3.1  | Introduction                   | 7        |
| 1.3.2  | Existing Conditions            | 7        |
| 1.3.3  | Proposed Development           | 7        |
| 1.3.4  | Timing of Capital Improvements | 10       |
| 1.4    | Stormwater Servicing           | 11       |
| 1.4.1  | Introduction                   | 11       |
| 1.4.2  | Existing Conditions            | 11       |
| 1.4.3  | Proposed Development           | 13       |
| 1.4.4  | Timing of Capital Improvements | 15       |
| Shallo | w Utility Servicing            | 16       |
| 1.4.5  | Electrical Servicing           | 16       |
| 1.4.6  | Natural Gas Servicing          | 16       |
| BIBLI  | OGRAPHY                        | 17       |



#### **TABLES**

| TABLE 1: PEAK DAY DEMAND SUMMARY             | 5 |
|----------------------------------------------|---|
| TABLE 2: PEAK HOUR DEMAND SUMMARY            | 5 |
| TABLE 3: PEAK DAY DEMAND + FIRE FLOW SUMMARY | 6 |
| TABLE 5: PEAK WASTEWATER FLOW SUMMARY        | 8 |

#### **FIGURES**

| FIGURE 1: SITE AREA                     | 2  |
|-----------------------------------------|----|
| FIGURE 2: WATER SERVICING CONCEPT       |    |
| FIGURE 3: SANITARY SERVICING CONCEPT    | 9  |
| FIGURE 4: EXISTING TOPOGRAPHY           | 12 |
| FIGURE 5: STORM WATER SERVICING CONCEPT | 14 |

# 1 SERVICING STRATEGY

#### 1.1 INTRODUCTION

#### 1.1.1 SITE CONTEXT

The Railyard Renewal Project revolves around the redevelopment of a 7 ha (hectare) concept plan area located in the heart of Regina. The land, obtained from the City of Regina in 2012 from Canadian Pacific Railway, is defined by Dewdney Avenue to the north, Broad Street to the east, and Canadian Pacific Railway owned land to the south and west. Refer to Figure 1 for further clarification on the extent of land to be developed. As outlined in the following report, all 7 ha of land can be sufficiently serviced by existing City of Regina infrastructure under the currently proposed development scheme.

The broader secondary area encompasses land to the south and west of the concept plan area outlined above. The secondary area is bound by Dewdney to the north, Broad Street to the east, the southern edge of the Canadian Pacific Railway Lands to the south and Albert Street to the west. The secondary area is outside of the scope of this report, and will require an additional servicing report should the decision be made to develop it further.

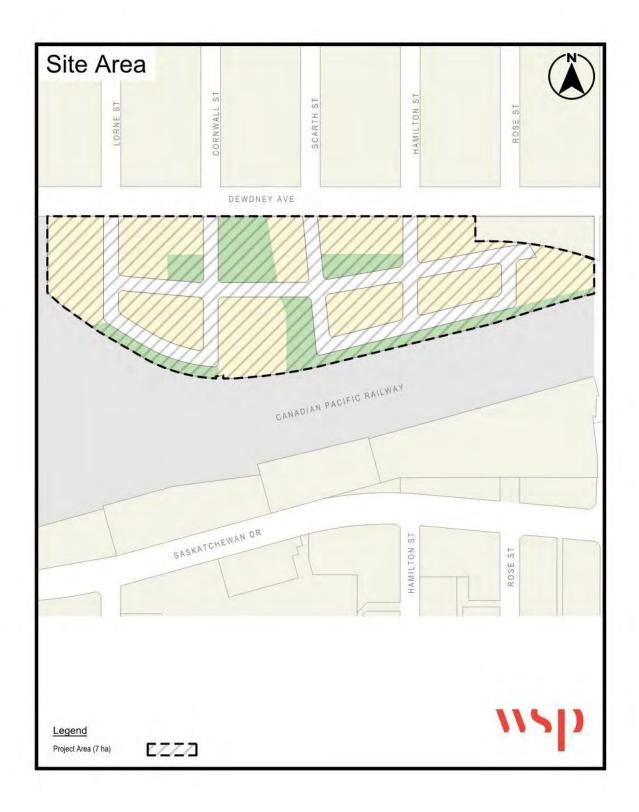



Figure 1: Site Area

#### 1.2 WATER SERVICING

#### 1.2.1 INTRODUCTION

The following outlines the proposed water servicing concept for the full buildout of the railyard lands under the current development scheme. The City of Regina water network was modeled under both the current operating conditions, and the conditions presented when the demands required for the full buildout of the railyard lands are added to the model. The results of this analysis, as outlined below, show that the entire extents of the railyard can be serviced through existing City of Regina infrastructure without significantly impacting the existing serviceability of the surrounding area.

#### 1.2.2 EXISTING CONDITIONS

There are currently no water mains within the railyard development suitable for servicing connections. Water servicing for the proposed development is available via an existing 600mm cast iron water main. This main is located along Dewdney Avenue running west to east.

#### 1.2.3 PROPOSED DEVELOPMENT

Water servicing may be provided to this development as shown in the water servicing concept shown in Figure 2. The following connections to the existing 600mm water main along Dewdney Avenue are proposed:

- 300 mm water main connected to the existing 600 mm water main at the intersection of Lorne Street and Dewdney Avenue
- 300 mm water main connected to the existing 600 mm water main at the intersection of Hamilton Street and Dewdney Avenue



**Figure 2: Water Servicing Concept** 

#### 1.2.4 WATERCAD ANALYSIS

The Railyard Renewal Project water distribution system was modelled in Bentley WaterCAD V8i SELECTseries 5. The model was integrated into the City of Regina base model 'CoR\_WaterCAD\_Scenario-2015\_Version-2017', received from the City of Regina on June 14, 2017. The city water distribution system was modelled in WaterCAD under the Peak Day, Peak Hour, and Peak Day + Fire Flow scenarios. The system was modeled both before and after the additional demands of the railyard development were added to the model, in order to determine the effect that the railyard development will have on the level of service of the city system.

#### **PEAK DAY DEMAND**

Within the railyard lands, all nodes satisfy the Peak Day Demand requirements as defined by the City of Regina Development Standards Manual. Table 1: Peak Day Demand Summary, compares results from the pre-development and post-development scenarios modelled in WaterCAD.

**Table 1: Peak Day Demand Summary** 

| Peak Day Demand Summary                     |                 |                 |                |  |  |  |  |
|---------------------------------------------|-----------------|-----------------|----------------|--|--|--|--|
| Pre-Development Post-Development Difference |                 |                 |                |  |  |  |  |
| Number of Nodes < 280 kPa                   | 2/4634 (0.04%)  | 2/4647 (0.04%)  | 0/4647 (0.00%) |  |  |  |  |
| Number of Nodes with Pressure Drop > 17 kPa | N/A             | 0/13 (0%)       | N/A            |  |  |  |  |
| Maximum Pressure (kPa)                      | 509.1 (J-13950) | 509.1 (J-13950) | 0.0            |  |  |  |  |
| Minimum Pressure (kPa)                      | 259.7 (J-9460)  | 259.7 (J-9460)  | 0.0            |  |  |  |  |

<sup>\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

The addition of the demands imposed by the full buildout of the railyard under the current development scheme does not increase the amount of peak day demand deficiencies.

#### **PEAK HOUR DEMAND**

Within the railyard lands, all nodes satisfy the Peak Day Demand requirements as defined by the City of Regina Development Standards Manual. Table 2: Peak Hour Demand Summary, compares results from the pre-development and post-development scenarios modelled in WaterCAD.

**Table 2: Peak Hour Demand Summary** 

| Peak Hour Demand Summary                      |                 |                  |                |  |  |  |  |  |
|-----------------------------------------------|-----------------|------------------|----------------|--|--|--|--|--|
|                                               | Pre-Development | Post-Development | Difference     |  |  |  |  |  |
| Number of Nodes < 269.4 kPa                   | 73/4634 (1.58%) | 73/4647 (1.57%)  | 0/4647 (0.00%) |  |  |  |  |  |
| Number of Nodes with Pressure Drop > 27.6 kPa | N/A             | 0/13 (0%)        | N/A            |  |  |  |  |  |
| Maximum Pressure (kPa)                        | 497.7 (J-13950) | 493.8 (J-13950)  | 0.0            |  |  |  |  |  |
| Minimum Pressure (kPa)                        | 182.6 (J-9460)  | 182.5 (J-9460)   | -0.1           |  |  |  |  |  |
| Number of Pipes with Velocities > 1.5 m/s     | 11/6348 (0.25%) | 11/6365 (0.25%)  | 0/6365 (0.00%) |  |  |  |  |  |
| Maximum Velocity (m/s)                        | 2.98 (P-2115)   | 2.97 (P-2115)    | -0.1           |  |  |  |  |  |

<sup>\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

The addition of the railyards development to the City of Regina base WaterCAD model does not increase the amount of peak hour demand deficiencies.

#### **PEAK DAY DEMAND + FIRE FLOW**

Within the railyard development, all nodes satisfy the peak day demand + fire flow requirements outlined in the City of Regina Development Standards Manual. Level 3 fire flows of 250 L/s were applied to each node of the development in accordance with anticipated zoning and the requirements outlined in the City of Regina Development Standards Manual. The model was run with a velocity constraint of 3.2 m/s applied to all pipes within the system. Table 3: Peak Day Demand + Fire Flow Summary, compares results from the pre-development and post-development scenarios modelled in WaterCAD.

Table 3: Peak Day Demand + Fire Flow Summary

| Peak Day Demand + Fire Flow Summary         |                    |                    |                |  |  |  |  |  |
|---------------------------------------------|--------------------|--------------------|----------------|--|--|--|--|--|
| Pre-Development Post-Development Difference |                    |                    |                |  |  |  |  |  |
| Number of PDD+FF Node Deficiencies          | 1062/4634 (22.92%) | 1062/4647 (22.85%) | 0/4647 (0.00%) |  |  |  |  |  |
| Number of Pipes with Velocities > 3.2 m/s   | 0/6348 (0.00%)     | 0/6365 (0.00%)     | 0/6365 (0.00%) |  |  |  |  |  |
| Maximum Velocity (m/s)                      | 1.7 (P-18060)      | 1.7 (P-18060)      | 0.0            |  |  |  |  |  |

<sup>\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

The addition of the railyard development produced no additional fire flow deficiencies from pre-development conditions.

#### 1.2.5 TIMING OF CAPITAL IMPROVEMENTS

No additional water mains or other water network infrastructure upgrades are needed to adequately service the full buildout of the railyard development. Construction of water servicing for the railyard development can begin by tying into the existing 600mm cast iron water main currently running along Dewdney Avenue, at the intersections outlined in Figure 2. Both 300mm tie-ins will be required for the first phase of the development. From there, the internal water distribution system may be constructed as required to service the additional phases and eventual full buildout of the railyard lands.

It is important to note that the existing 600mm cast iron watermain was constructed in 1913, Due to the pipes age, it is recommended that the City of Regina conducts an asset management review of the watermain and considers full replacement of the main while the south side of Dewdney Avenue is reconstructed to accommodate the proposed development. Also note that there is an existing 200mm asbestos cement service stubbing into the development from the existing 200mm PVC watermain running along the North side of Dewdney Avenue. This service stubs south from the intersection of Lorne Street and Dewdney Avenue. A WaterCAD analysis was run using this existing service and it was determined that neither it, or any additional services off of the existing 200mm PVC watermain running along the North side of Dewdney would provide sufficient fire flow throughout the development. With this being the case, the existing 200mm asbestos cement service should be cut and capped at the main at the time of construction of the proposed 300mm service at the same intersection.

<sup>\*\*</sup>Level 3 fire flows of 250 L/s applied to each node as outlined in the City of Regina DSM

#### 1.3 WASTEWATER SERVICING

#### 1.3.1 INTRODUCTION

The following outlines the proposed wastewater servicing concept for the full buildout of the railyard lands under the current development scheme. In conjunction with previously submitted City of Regina Strategic Sanitary Sewer Assessment conducted by Stantec in 2014, the following recommendations are proposed in order to adequately service the anticipated wastewater flows produced by the railyard development.

#### 1.3.2 EXISTING CONDITIONS

Wastewater servicing near the proposed development site is available via an existing 1907 clay tile 375mm sanitary sewer main. This existing sewer main is located in Dewdney Avenue running east to west to the intersection of Dewdney Avenue and Albert Street. The wastewater then travels north via a clay tile 450mm sanitary sewer main, until it reaches the 7th Avenue Trunk.

#### CITY OF REGINA STRATEGIC SANITARY SEWER ASSESSMENT (STANTEC, 2014)

#### Surcharge State Analysis - 25 Year Event

The routing that leads to the 7th Avenue trunk, as well as the 7th Avenue trunk itself, currently experience backwater conditions. Backwater conditions are described as "Sewer surcharged – peak flow within free flow capacity of the sewer (i.e. under backwater conditions)". Additionally, certain portions of the routing and 7th Avenue trunk experience bottleneck conditions. Bottleneck conditions are described as "Sewer surcharged – peak flow greater than free flow capacity of the sewer (i.e. sewer is under capacity and causes bottleneck)".

#### <u>Hydraulic Grade Line Evaluation - 25 Year Event</u>

The majority of the routing that leads to the 7th Avenue trunk, as well as the 7th Avenue trunk itself, currently experience a hydraulic grade line that is located more than 2 meters below ground. Areas that have a hydraulic grade line that is located more than 2 meters below ground are areas where basement flooding is least likely to occur.

#### Recommendations

Further analysis that is outside of the scope of this report will be required to determine which, if any, of the following recommendations made in the 2014 City of Regina Strategic Sanitary Sewer Assessment will be required to ensure that the proposed Railyard Renewal Project doesn't impact the current level of service of the downstream system.

- Wascana Trunk upgrade from 1200mm to 1350mm from the connection of the 7th Avenue Trunk to the junction with the South Trunk
- South Trunk upgrade from 1250mm to 1800mm from the cross connection to the junction with the Wascana Trunk
- 7th Avenue Trunk Upgrade from 750mm to 1200mm from Albert Street to the connection to the Wascana Trunk

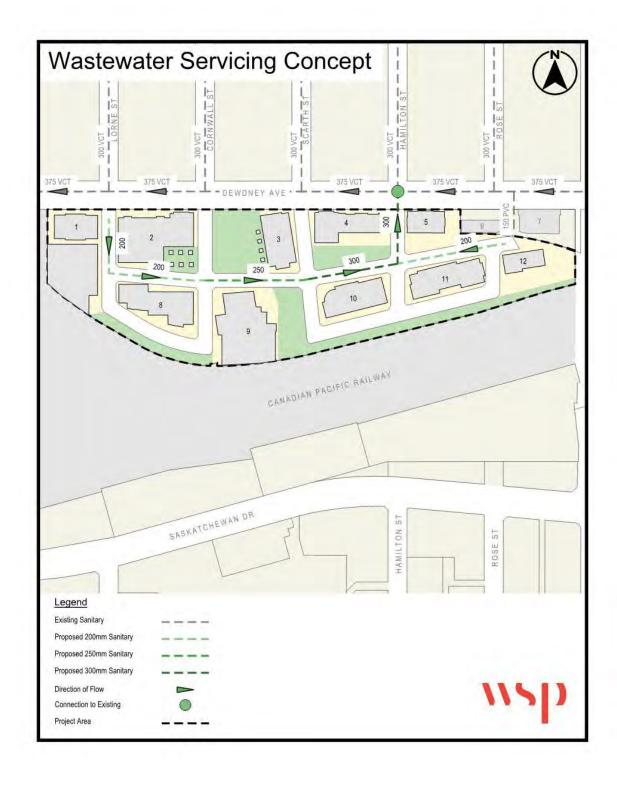
#### 1.3.3 PROPOSED DEVELOPMENT

The Railyard Renewal Project wastewater flows can be conveyed via a gravity collection system to the existing City of Regina 375mm sanitary sewer main, located along Dewdney Avenue. Wastewater servicing may be provided to this development as shown in the wastewater servicing concept illustrated in Figure 3. The following connection to the existing 375mm sanitary sewer main is proposed:

 300 mm sanitary sewer main connected to the existing 375 mm sanitary sewer main at the intersection of Hamilton Street and Dewdney Avenue

Inflow from weeping tiles and foundation drains will be pumped to the surface, and not to the underground wastewater system. Wet weather inflows will be limited to the 21,000 L/ha/day allowance as stated in the City of Regina Development Standards Manual. Table 5 outlines anticipated the peak wastewater flows produced by the development.

**Table 4: Peak Wastewater Flow Summary** 


|          | Gross |              |              |         | Average | Peak   |              | Peak  |
|----------|-------|--------------|--------------|---------|---------|--------|--------------|-------|
|          | Area* | Residential  | Commercial   | Gross   | Flow*** | Flow   | Infiltration | Flow  |
| Building | (ha)  | Population** | Population** | Density | (LPCD)  | Factor | **** (L/s)   | (L/s) |
| 1        | 0.67  | 97           | 230          | 488.06  | 386.07  | 4.06   | 0.16         | 6.10  |
| 2        | 0.74  | 400          | 178          | 781.08  | 295.52  | 3.94   | 0.18         | 7.97  |
| 3        | 0.80  | 0            | 178          | 222.50  | 454.00  | 4.17   | 0.19         | 4.09  |
| 4        | 0.66  | 323          | 253          | 872.73  | 325.59  | 3.94   | 0.16         | 8.72  |
| 5        | 0.28  | 174          | 134          | 1100.00 | 324.63  | 4.07   | 0.07         | 4.78  |
| 6        | EXST  | EXST         | EXST         | EXST    | EXST    | EXST   | EXST         | EXST  |
| 7        | EXST  | EXST         | EXST         | EXST    | EXST    | EXST   | EXST         | EXST  |
| 8        | 0.83  | 783          | 48           | 1001.20 | 238.23  | 3.85   | 0.20         | 9.02  |
| 9        | 0.97  | 0            | 352          | 362.89  | 454.00  | 4.05   | 0.24         | 7.72  |
| 10       | 0.70  | 623          | 48           | 958.57  | 241.38  | 3.91   | 0.17         | 7.49  |
| 11       | 0.81  | 606          | 0            | 748.15  | 225.00  | 3.93   | 0.20         | 6.40  |
| 12       | 0.50  | 197          | 0            | 394.00  | 225.00  | 4.15   | 0.12         | 2.25  |
| Totals   | 6.96  | 3203         | 1421         | -       | -       | -      | -            | 64.55 |

<sup>\*</sup>Gross areas include building footprint and surrounding lands

<sup>\*\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

<sup>\*\*\*</sup>Weighted average based on population type as outlined in the City of Regina DSM (225Lpcd - Residential, 454Lpcd - Other Uses)

<sup>\*\*\*\*</sup>Limited to 21,000 L/ha/day as outlined in the City of Regina DSM



**Figure 3: Sanitary Servicing Concept** 

#### 1.3.4 TIMING OF CAPITAL IMPROVEMENTS

Currently there are no sanitary sewer mains within the proposed development area that are suitable to be tied into for servicing of the development. To service the development, a connection to the existing 375mm sanitary sewer main at the intersection of Hamilton Street and Dewdney Avenue can be made, in conjunction with the construction of the Railyard Renewal Project's internal sanitary sewer network. Existing topography, as well as the existing of invert elevations at the tie-in point of the existing 375 sanitary sewer main allow the entire extents of the Railyard Renewal Project to be service via gravity flow; there is no need for an internal lift station to service wastewater flows produced within the project area. Further analysis that is outside of the scope of this report will be required to determine what, if any, of the recommendations made in the 2014 City of Regina Strategic Sanitary Sewer Assessment will be required to ensure that the current level of service of the downstream system is not impacted by the buildout of the Railyard Renewal Project.

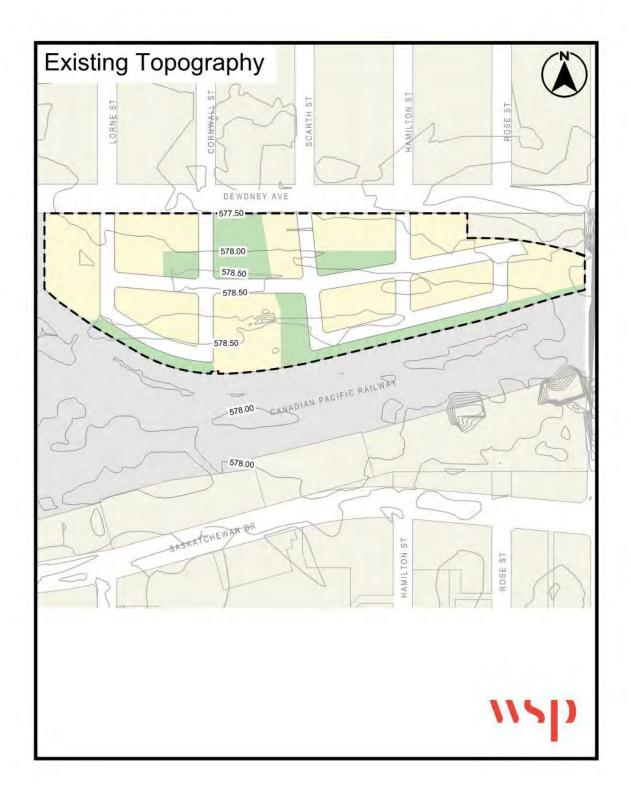
It is important to note that there is an existing 150mm sanitary line constructed in 2001 that cuts through the Railyard property from the intersection of Lorne Street and Dewdney Avenue to the Canadian Pacific Railway lands to the southwest. This line is likely to conflict with the development of the Railyard lands, and consequently will need to be relocated if it is still active.

# 1.4 STORMWATER SERVICING

#### 1.4.1 INTRODUCTION

The following outlines the proposed storm water servicing concept for the full buildout of the railyard lands under the current development scheme. The project area was modelled in PCSWMM Professional 2D under both 1:5 year and 1:25 year storm events. As is outlined below, the entire extents of the railyard lands can be serviced via gravity flow to existing City of Regina storm infrastructure located along Dewdney Avenue.

## 1.4.2 EXISTING CONDITIONS


The plan area was formerly occupied by a railway intermodal facility, which has now been decommissioned. The general topography is such that a gentle slope exists from the west to east portion of the site. A small localized hill exists at the southcentral boundary of the site. The existing contours of the proposed development are shown in Figure 4.

The Broad Street underpass is located immediately to the east of the proposed development site. A storm water pump station is located at the underpass which services the area to the south, and the proposed development site. A 2400mm CSP is located along the south edge of the Dewdney Avenue right of way between Cornwall Street and Broad Street, providing detention for the Broad Street Pump Station.

#### **CITY OF REGINA DRAINAGE MASTERPLAN REPORT (KGS GROUP, 2009)**

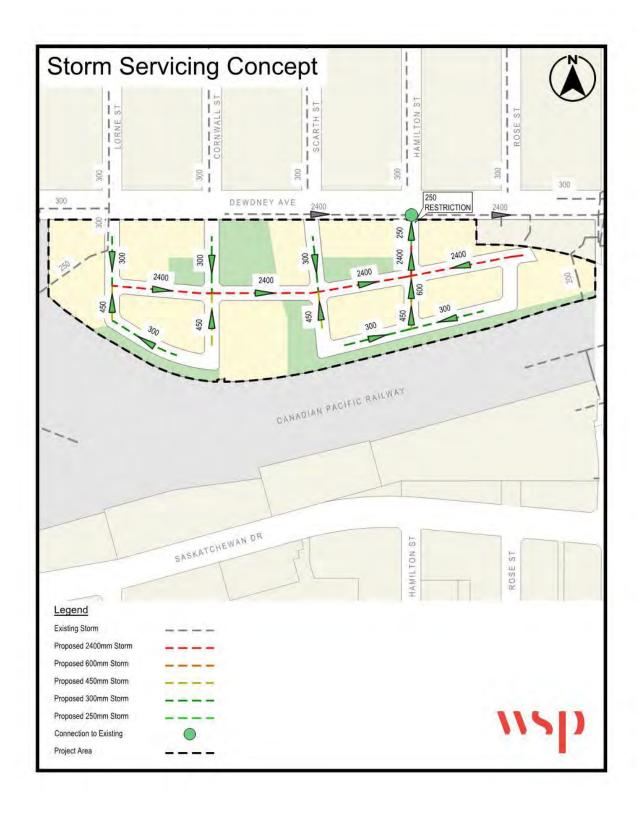
Storm Water Drainage System within Regina

The Railyard Renewal Project is located in the Central Regina Area -Master Plan Area 1. This area consists of a minor system that drains into Wascana Creek at various outfall locations. The Central Regina Area does not have an overall grade pattern that forms a major system for storm water drainage. This results in storm water ponding at low spots, which eventually drain into the minor system, as minor system capacity becomes available. The east quadrant of the Central Regina Area has a relief trunk that carries excess minor system flow to the North Storm Channel.



**Figure 4: Existing Topography** 

#### 1.4.3 PROPOSED DEVELOPMENT


The City of Regina's storm water management strategy follows the urban dual drainage concept whereby the minor (piped) system conveys flows generated by the 1:5 year storm event, and the major (surface) system manages flows generated by the 1:25 year event, for an infill development. The City of Regina requires that the storm water management system be designed to manage flows generated by the 24 hour 1:25 year design storm. Storm water flows for this development were modelled using PCSWMM Professional 2D and the 1:25 year 24 hour City of Regina design storm. Based on these simulations, the post development 24 hour 1 in 25 year runoff volume is 5,900 m<sup>3</sup>.

Storm water storage that is available for the proposed development site to manage the 5,900 m<sup>3</sup> 24 hour 1 in 25 year runoff volume is as follows:

- Pipe storage 2,250 m<sup>3</sup>
- Roadway ponded area storage 1,150 m³
- 'City of Regina Standard for Drainage from Building site and Parking Lot Developments' requirement of 50mm storage depth over the individual site 2,550 m³

The proposed storm water servicing concept is outlined in Figure 5. In order to provide the required storage, while also minimizing impacts on existing storm water network, the following connection to existing storm water infrastructure is proposed:

 250 mm storm water restrictor connected to the existing 2400mm storm water CSP at the intersection of Hamilton Street and Dewdney Avenue



**Figure 5: Storm Water Servicing Concept** 

#### 1.4.4 TIMING OF CAPITAL IMPROVEMENTS

Currently there are no storm sewer mains within the proposed development suitable to be connected to. The restricted connection to the existing 2400mm storm water sewer is required to be constructed in conjunction with the railyard project internal minor system. Existing topography, as well as the existing of invert elevations at the tie-in point of the existing 2400 storm main, allow the entire extents of the railyard development to be service via gravity flow; there is no need for an internal lift station to service storm water flows. Further analysis that is outside of the scope of this report may be needed to ensure that the additional flows produced by this development can be handled by the existing capacity of the Broad Street Lift Station. It is anticipated, however, that the use of onsite storage and a restricted outfall that the additional flows produced by this development will not affect the current level of service of the lift station.

It is important to note that there are existing 250mm and 300mm storm lines that cut through the Railyard property from the intersection of Lorne Street and Dewdney Avenue to the Canadian Pacific Railway lands to the southwest. These lines are likely to conflict with the development of the Railyard lands, and consequently will need to be relocated if they are still active. Similarly, there is an existing 200mm storm line at the East end of the property that will likely need to be decommissioned and removed to accommodate the construction of Building 12 in the current concept plan.

# SHALLOW UTILITY SERVICING

#### 1.4.5 ELECTRICAL SERVICING

SaskPower infrastructure currently does not exist within the Railyard Renewal Project site. The proposed development could potentially be serviced from existing infrastructure located at the intersection of Broad Street and Dewdney Avenue. Once a proposed plan of subdivision is created for the Railyard Renewal Project, it will be forwarded to the utility corporations for their use in detailed design of the infrastructure needed to service the proposed development.

### 1.4.6 NATURAL GAS SERVICING

SaskEnergy infrastructure currently exists within the Railyard Renewal Project site. Once a proposed plan of subdivision is created for the Railyard Renewal Project, it will be forwarded to the utility corporations for their use in detailed design of the infrastructure needed to service the proposed development.

# **BIBLIOGRAPHY**

KGS Group. (December, 2009). Regina Drainage Master Pan Report – Final Report. Stantec. (2014). City of Regina Strategic Sanitary Sewer Assessment.



# **TECHNICAL MEMO**

**TO:** City of Regina

FROM: WSP Canada Inc.

SUBJECT: RRI Railyard Renewal Project Servicing Report - Large Footprint Building

**DATE:** May 17, 2019

The following technical memo is presented in response to the City of Regina's request to determine how the servicing requirements change for the RRI Railyard Site with the alteration of the site layout to accommodate a large footprint building. For the purposes of this assessment it was assumed the large footprint building would be a 10,000-seat arena. This memo is intended to be an Appendix to the original Servicing Report dated February 2018. In collaboration with the City, a revised site layout was achieved to fit a 130m x 100m arena in the northwest corner of the site with limited onsite parking surrounding it. To accommodate the arena and adjacent parking, Building's 1, 2 and 8 from the original concept site layout were removed from the site plan. The updated site plan is illustrated in Figure 1.

The revised site layout was analyzed for water, storm water and wastewater servicing requirements in alignment with the criteria outlined in the City of Regina Development Standards Manual (DSM) 2010.

395 Maxwell Crescent Regina, SK, Canada S4N 5X9

T: +1 306 585-1990 F: +1 306 585-9113



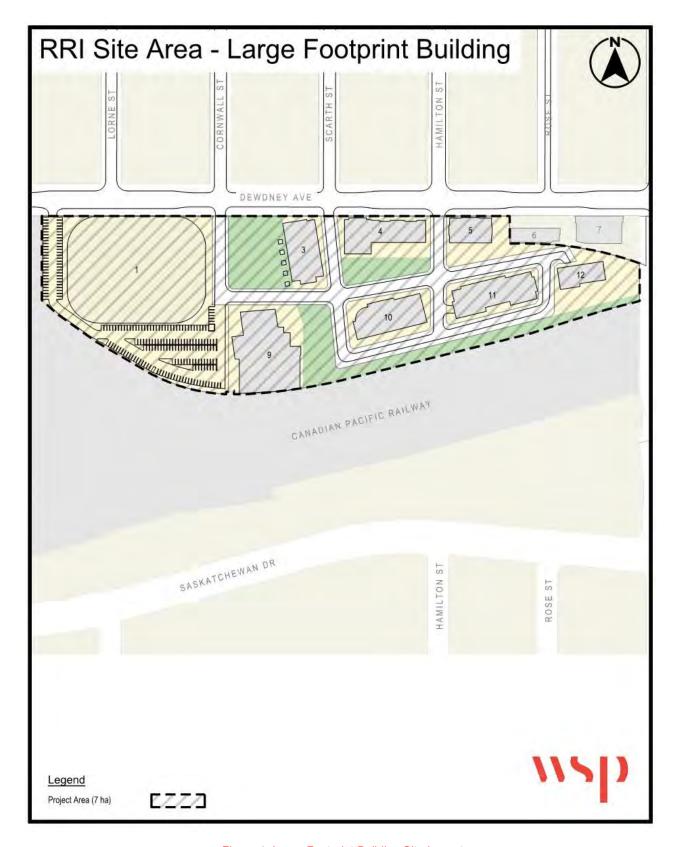



Figure 1: Large Footprint Building Site Layout



#### WATER SERVICING

The following section outlines the proposed water servicing concept for the full buildout of the railyard lands under the revised large footprint building site layout. The Citywide water network was modelled in WaterCAD to determine the effect that the proposed development would have on the existing network. Similar to the original proposed site layout, and as outlined below, the revised large footprint building site layout can be serviced by existing City of Regina infrastructure without significantly impacting the existing serviceability of the surrounding area.

#### **ANALYSIS**

The Railyard Renewal Project water distribution system was modelled in Bentley WaterCAD CONNECT Edition. The model was integrated into the City of Regina base model 'CoR\_WaterCAD\_Scenario-2015\_Version-2017', received from the City of Regina on June 14, 2017. The city water distribution system was modelled in WaterCAD under the Peak Day, Peak Hour, and Peak Day + Fire Flow scenarios in alignment with criteria outlined in the City of Regina Development Standards Manual (DSM). The system was modeled both before and after the additional demands of the railyard development were added to the model to determine the effect the railyard development will have on the level of service of the city system. Figure 2 outlines the updated WaterCAD Network within the railyard lands.

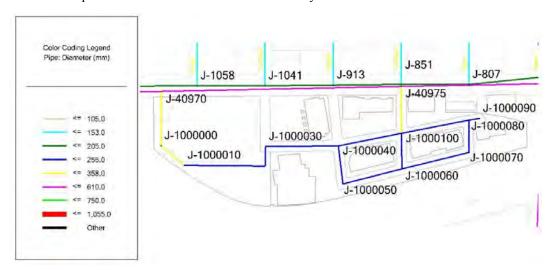



Figure 2: WaterCAD Network - Large Footprint Building Site Layout

Similar to the analysis done for the original site layout, design populations were calculated by multiplying the projected floor use of each building provided by Urban Strategies by the following criteria as outlined in the City of Regina DSM:

- Residential (Apartments) 1 person/35m<sup>2</sup>
- Commercial 1 person/ 23m<sup>2</sup>

A design population of 10,000 persons was provided by the City for the large footprint building. These populations were evenly applied as per capita unit demands to nodes adjacent to each building within the WaterCAD model, based on the differing uses.



#### PEAK DAY DEMAND

The City of Regina DSM requires the following criteria to be satisfied under the Peak Day Demand Scenario:

| Minimum Allowable Pressure      | ≥ 280.0 kPa |
|---------------------------------|-------------|
| Maximum Allowable Pressure Drop | < 17 kPa    |

The model was run under the Peak Day Demand Scenario for anticipated conditions at full buildout of the revised railyard site plan. As summarized in Table 1, the addition of the development does not increase the Peak Day Demand deficiencies within the existing City system. Refer to Appendix A for full details on Peak Day Demand results.

Table 1: Peak Day Demand Summary

| Peak Day Demand Summary                     |                 |                  |                |  |  |
|---------------------------------------------|-----------------|------------------|----------------|--|--|
|                                             | Pre-Development | Post-Development | Difference     |  |  |
| Number of Nodes < 280 kPa                   | 2/4634 (0.04%)  | 2/4647 (0.04%)   | 0/4647 (0.00%) |  |  |
| Number of Nodes with Pressure Drop > 17 kPa | N/A             | 0/12 (0%)        | N/A            |  |  |
| Maximum Pressure (kPa)                      | 509.1 (J-13950) | 509.1 (J-13950)  | 0.0            |  |  |
| Minimum Pressure (kPa)                      | 259.7 (J-9460)  | 259.5 (J-9460)   | -0.2           |  |  |

<sup>\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

#### PEAK HOUR DEMAND

The City of Regina DSM requires the following criteria to be satisfied under the Peak Hour Demand Scenario:

| Minimum Allowable Pressure      | .≥ 269.4 kPa |
|---------------------------------|--------------|
| Maximum Allowable Pressure Drop | . ≤ 27.6 kPa |
| Maximum Allowable Pipe Velocity | . < 1.5 m/s  |

The model was run under the Peak Hour Demand Scenario for anticipated conditions at full buildout of the revised railyard site plan. As summarized in Table 2, pressures and velocities reported at all nodes and pipes satisfy the above criteria. the addition of the development does not increase the Peak Hour Demand deficiencies within the existing City system. Refer to Appendix B for full details on Peak Hour Demand results.

Table 2: Peak Hour Demand Summary

| Peak Hour Demand Summary                      |                                  |                 |                |  |  |
|-----------------------------------------------|----------------------------------|-----------------|----------------|--|--|
|                                               | Pre-Development Post-Development |                 | Difference     |  |  |
| Number of Nodes < 269.4 kPa                   | 73/4634 (1.58%)                  | 73/4647 (1.57%) | 0/4647 (0.00%) |  |  |
| Number of Nodes with Pressure Drop > 27.6 kPa | N/A                              | 0/12 (0%)       | N/A            |  |  |
| Maximum Pressure (kPa)                        | 497.7 (J-13950)                  | 497.7 (J-13950) | 0.0            |  |  |
| Minimum Pressure (kPa)                        | 182.6 (J-9460)                   | 182.2 (J-9460)  | -0.4           |  |  |
| Number of Pipes with Velocities > 1.5 m/s     | 11/6348 (0.25%)                  | 11/6364 (0.03%) | 0/6364 (0.00%) |  |  |
| Maximum Velocity (m/s)                        | 2.98 (P-2115)                    | 3.00 (P-2115)   | 0.02           |  |  |



\*Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

#### PEAK DAY DEMAND + FIRE FLOW

The City of Regina DSM requires the following criteria to be satisfied under the Peak Day Demand + Fire Flow Scenario for the anticipated zoning for the railyard lands:

| Fire Flow at Each Node          | $.\geq 250 \text{ L/s}$ |
|---------------------------------|-------------------------|
| Maximum Allowable Pipe Velocity | $. \le 3.2 \text{ m/s}$ |

The model was run under the Peak Day Demand + Fire Flow Scenario for anticipated conditions at full buildout of the revised railyard site plan. The fire flow simulation was run with a maximum velocity constraint of 3.2 m/s applied to every pipe within the model. As summarized in Table 3, the addition of the development does not increase the Peak Day Demand + Fire Flow deficiencies within the existing City system. Refer to Appendix C for full details on Peak Day Demand + Fire Flow results.

Table 3: Peak Day Demand + Fire Flow Summary

| Peak Day Demand + Fire Flow Summary       |                                  |                    |                |  |  |
|-------------------------------------------|----------------------------------|--------------------|----------------|--|--|
|                                           | Pre-Development Post-Development |                    |                |  |  |
| Number of PDD+FF Node Deficiencies        | 1062/4634 (22.92%)               | 1062/4647 (22.85%) | 0/4647 (0.00%) |  |  |
| Number of Pipes with Velocities > 3.2 m/s | 0/6348 (0.00%)                   | 0/6364 (0.00%)     | 0/6364 (0.00%) |  |  |
| Maximum Velocity (m/s)                    | 1.7 (P-18060)                    | 1.7 (P-18060)      | 0.0            |  |  |

<sup>\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

#### PROPOSED DEVELOPMENT

Water servicing may be provided to this development as shown in the water servicing concept shown in Figure 3. The following connections to the existing 600mm water main along Dewdney Avenue are proposed:

- 300 mm water main connected to the existing 600 mm water main at the western extents of the railyard lands along Dewdney Avenue
- 300 mm water main connected to the existing 600 mm water main at the intersection of Hamilton Street and Dewdney Avenue

The original concept showed a 300 mm watermain connection at the intersection of Lorne Street and Dewdney Avenue. Due to the location of the building, the proposed connection would be made along the western extents of the development; west of the Lorne Street and Dewdney Avenue intersection.

<sup>\*\*</sup>Level 3 fire flows of 250 L/s applied to each node as outlined in the City of Regina DSM



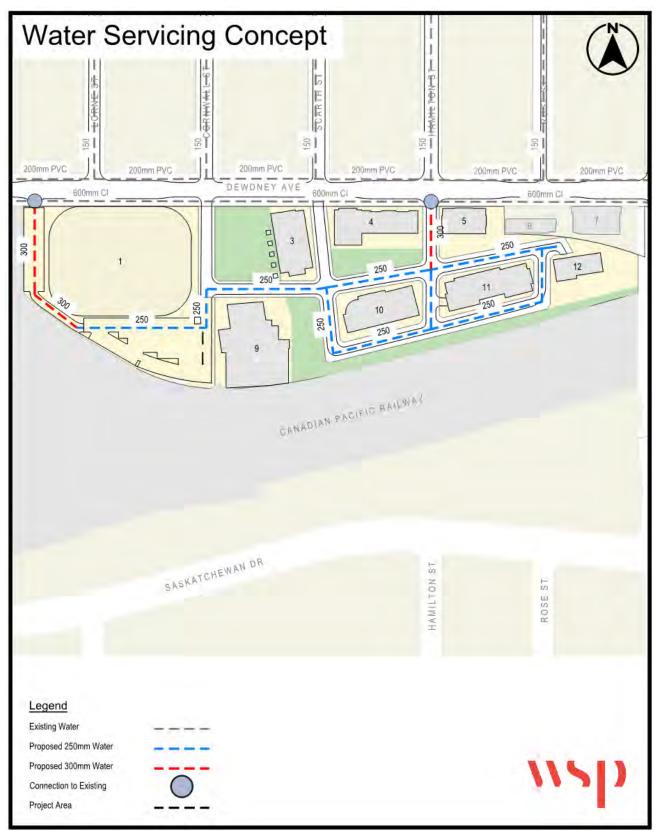



Figure 3: Water Servicing Concept



#### WATER SERVICING SUMMARY

No additional water mains or other water network infrastructure upgrades are needed to adequately service the full buildout of the railyard development. Construction of water servicing for the railyard development can begin by tying into the existing 600mm cast iron water main currently running along Dewdney Avenue, at the intersections outlined in Figure 3. Both 300mm tie-ins will be required for the first phase of the development. From there, the internal water distribution system may be constructed as required to service the additional phases and eventual full buildout of the railyard lands.

It is important to note that the existing 600mm cast iron watermain was constructed in 1913. Due to the pipes age, it is recommended that the City of Regina complete an asset management review of the watermain and considers full replacement of the main while the south side of Dewdney Avenue is reconstructed to accommodate the proposed development. Also note that there is an existing 200mm asbestos cement service stubbing into the development from the existing 200mm PVC watermain running along the North side of Dewdney Avenue. This service stubs south from the intersection of Lorne Street and Dewdney Avenue. A WaterCAD analysis was run using this existing service and it was determined that neither it, or any additional services off of the existing 200mm PVC watermain running along the North side of Dewdney would provide sufficient fire flow throughout the development. With this being the case, the existing 200mm asbestos cement service should be cut and capped at the main at the time of construction of the proposed 300mm service at the same intersection.



# WASTEWATER SERVCING

The following outlines the proposed wastewater servicing concept for the full buildout of the railyard lands under the revised large footprint building site layout.

#### **ANALYSIS**

Similar to the analysis for the original site layout, design wastewater flows were calculated using the Harmon Method as outlined in the City of Regina DSM. Inflow from weeping tiles and foundation drains will be pumped to the surface, and not to the underground wastewater system resulting in wet weather inflows limited to the 21,000 L/ha/day allowance outlined in the DSM.

Derivation of the design average wastewater flows for the large footprint building are based off the following assumptions in alignment with the National Plumbing Code:

- 10,000 Occupants (50% Male, 50% Female) A3 Occupancy
- 10 Concessions
- 10 Janitor Rooms
- 10 Hose Bibs for General Water Use
- 6 Dressing Rooms (Each with 1 urinal, 1 toilet and 4 showers)

Table 4 outlines the design fixture summary based on the above assumptions. Using these fixtures, the average wastewater flow projections at a full occupancy of 10,000 is 270USGPM (147.18Lpcd).

Table 4: Large Footprint Building Design Fixture Summary

| Water Closets                 | 80 |
|-------------------------------|----|
| Urinals                       | 30 |
| Lavatories                    | 60 |
| General use sinks             | 10 |
| Dishwashers/Dishwashing sinks | 10 |
| Janitor Sinks                 | 10 |
| Showers                       | 36 |
| Hose Bibbs                    | 10 |

Table 5 outlines anticipated the peak wastewater flows produced by the development.



Table 5: Design Wastewater Flow Summary

| Building    | Gross<br>Area*<br>(ha) | Residential<br>Population** | Commercial<br>Population** | Gross<br>Density | Average<br>Flow***<br>(LPCD) | Peak<br>Flow<br>Factor | Infiltration**** (L/s) | Peak<br>Flow<br>(L/s) |
|-------------|------------------------|-----------------------------|----------------------------|------------------|------------------------------|------------------------|------------------------|-----------------------|
| 1<br>(LFPB) | 2.24                   | 0                           | 10000                      | 4464.29          | 147.18                       | 2.95                   | 0.54                   | 50.88                 |
| 3           | 0.80                   | 0                           | 178                        | 222.50           | 454.00                       | 4.17                   | 0.19                   | 4.09                  |
| 4           | 0.66                   | 323                         | 253                        | 872.73           | 325.59                       | 3.94                   | 0.16                   | 8.72                  |
| 5           | 0.28                   | 174                         | 134                        | 1100.00          | 324.63                       | 4.07                   | 0.07                   | 4.78                  |
| 6           | EXST                   | EXST                        | EXST                       | EXST             | EXST                         | EXST                   | EXST                   | EXST                  |
| 7           | EXST                   | EXST                        | EXST                       | EXST             | EXST                         | EXST                   | EXST                   | EXST                  |
| 9           | 0.97                   | 0                           | 352                        | 362.89           | 454.00                       | 4.05                   | 0.24                   | 7.72                  |
| 10          | 0.70                   | 623                         | 48                         | 958.57           | 241.38                       | 3.91                   | 0.17                   | 7.49                  |
| 11          | 0.81                   | 606                         | 0                          | 748.15           | 225.00                       | 3.93                   | 0.20                   | 6.40                  |
| 12          | 0.50                   | 197                         | 0                          | 394.00           | 225.00                       | 4.15                   | 0.12                   | 2.25                  |
| Totals      | 6.96                   | 1923                        | 10965                      | _                | _                            | -                      | -                      | 92.33                 |

<sup>\*</sup>Gross areas include building footprint and surrounding lands

#### PROPOSED DEVELOPMENT

The Railyard Renewal Project wastewater flows can be conveyed via a gravity collection system to the existing City of Regina 375mm sanitary sewer main, located along Dewdney Avenue. Wastewater servicing may be provided to this development as shown in the wastewater servicing concept illustrated in Figure 4. The following connections to the existing 375mm sanitary sewer main are proposed:

- 250 mm sanitary sewer main connected to the existing 375 mm sanitary sewer main at the intersection of Hamilton Street and Dewdney Avenue
- 300 mm sanitary sewer main connected to the existing 375 mm sanitary sewer main at the western extents of the railyard lands along Dewdney Avenue

The original concept has all sewage flows conveyed to a central point and discharging to the 375 mm VCT sewer pipe on Dewdney Avenue at Hamilton Street. Due to the land use changes created by the large footprint building, it is more economical to service the large footprint building directly from the 375 mm VCT sewer on Dewdney Avenue. Two connections to the Dewdney Avenue sewer are proposed.

<sup>\*\*</sup>Population projections calculated by multiplying concept floor areas provided by Urban Strategies by densities outlined in the City of Regina DSM (1 person/35 m² - Apartments, 1 person/23 m² - Commercial)

<sup>\*\*\*</sup>Weighted average based on population type as outlined in the City of Regina DSM (225Lpcd - Residential, 454Lpcd - Other Uses). Large Footprint Building (BLD 1) average flow based off the assumptions outlined above.

<sup>\*\*\*\*</sup>Limited to 21,000 L/ha/day as outlined in the City of Regina DSM



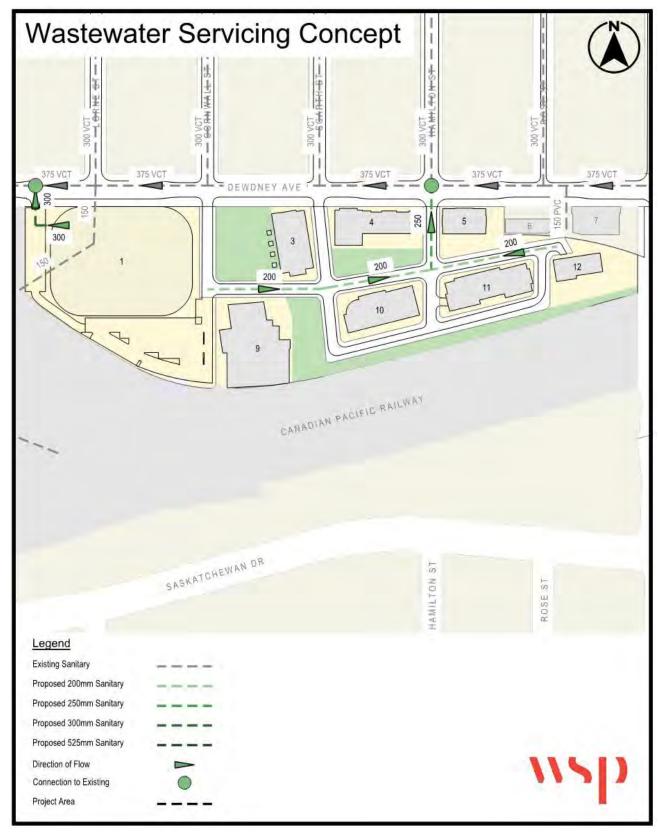



Figure 4: Wastewater Servicing Concept



#### WASTEWATER SERVICING SUMMARY

Currently there are no sanitary sewer mains within the proposed development area that are suitable to be tied into for servicing of the development. To service the development, connections to the existing 375mm sanitary sewer main along Dewdney Avenue can be made, in conjunction with the construction of the Railyard Renewal Project's internal sanitary sewer network. Existing topography, as well as the existing of invert elevations at the tie-in points of the existing 375 sanitary sewer main allow the entire extents of the Railyard Renewal Project to be service via gravity flow; there is no need for an internal lift station to service wastewater flows produced within the project area.

It is important to note that there is an existing 150mm sanitary line constructed in 2001 that cuts through the Railyard property from the intersection of Lorne Street and Dewdney Avenue to the Canadian Pacific Railway lands to the southwest. This line is likely to conflict with the development of the Railyard lands, and consequently will need to be relocated if it is still active.

Computer modelling, that is outside the scope of this report, will need to be done during detailed design to determine the full impact that the additional wastewater flows will have on the surrounding sanitary sewer infrastructure. On-site storage may be required to attenuate peak wet weather sanitary flows entering the existing City system.



#### STORM WATER SERVICING

The following outlines the proposed storm water servicing concept for the full buildout of the railyard lands under the revised large footprint building site layout. The City of Regina's storm water management strategy follows the urban dual drainage concept whereby the minor (piped) system conveys flows generated by the 1:5 year storm event, and the major (surface) system manages flows generated by the 1:25 year event, for an infill development. As is outlined below, the entire extents of the revised layout for the railyard lands can be serviced via gravity flow to existing City of Regina storm infrastructure located along Dewdney Avenue.

#### **ANALYSIS**

In order to minimize impact on the existing storm water system, on-site storm water management is required to detain flows produced by a 24-hour 1:25 year event. Storm water flows for this development were modelled using PCSWMM 2017 Professional 2D. City of Regina design 1:25 year 24-hour storm event was input into the model based on design storm data outlined in KGS's City of Regina Drainage Masterplan Report (2009). Refer to Appendix D for details on design storm data.

With the updated site layout, average projected percent imperviousness increased from 80.0% to 86.2% for the extents of the site in comparison to the original site. This increased imperviousness resulted 1:25 year 24-hour storm runoff increasing from 5,900m³ to 6,200m³ within the PCSWMM Model. Additional on-site storage is required to detain the additional runoff. A summary of the on-site storage available to detain the required 6,200m³ is as follows:

- Pipe Storage 2,490m<sup>3</sup>
- Roadway ponded area storage 1,000 m<sup>3</sup>
- 'City of Regina Standard for Drainage from Building site and Parking Lot Developments' requirement of 50mm storage depth over the individual site 2,800 m<sup>3</sup>

The majority of the surface of the existing site consists of a granular material with some vegetation growing through. The predevelopment imperviousness of the site was assumed to be 70% based on these conditions. Existing grading of the site directs sheet flows from the site to Dewdney Avenue where they are serviced by the existing major and minor systems along the roadway corridor. This minor and major system directs these flows to the North. Based on the above assumptions, the modelled peak predevelopment flow rates discharged from the site during a 1:25 year storm event are 310L/s/Ha.

The post development average site imperviousness based on the updated concept site plan is 86.2%. The resulting peak post-development flows produced by the site are 326L/s/Ha. As stated above, the majority of these flows will be stored on site, with a restricted minor system outfall discharging flows to the existing minor system at rates equivalent to flows produced by a 1:5 year storm event. The proposed minor system discharge point, as outlined below, is to the existing 2400mm detention pipe running west to east along Dewdney Avenue directly upstream of the Broad Street Lift Station.



# PROPOSED DEVELOPMENT

The proposed storm water servicing concept is outlined in Figure 5. Similar to the proposed storm water servicing for the original site layout, to provide the required storage while also minimizing impacts on existing storm water network, the following connection to existing storm water infrastructure is proposed:

• 250 mm storm water restrictor connected to the existing 2400mm storm water CSP at the intersection of Hamilton Street and Dewdney Avenue.

Changes made relative to the storm water servicing concept for the original site layout are as follows:

- Underground inline storage updated to 2400mm x 2400mm box sections from the 2400mm diameter circular section to increase underground inline storage.
- Alignment and sizing of west most undergrounds updated to service runoff captured within the parking fields adjacent to the large footprint building.





Figure 5: Storm Water Servicing Concept



#### STORMWATER SERVICING SUMMARY

To summarize, with regards to the storm water servicing concept, no dramatic changes are necessary to accommodate the large footprint building site layout. Between the combination of onsite inline underground storage, individual on-site parcel storage, and additional surface storage within the internal roadways, there is enough detention storage to accommodate the 1:25 year 24-hour storm detention requirement outlined in the City of Regina DSM.

Currently there are no storm sewer mains within the proposed development suitable to be connected to. The restricted connection to the existing 2400mm storm water sewer is required to be constructed in conjunction with the railyard project internal minor system. Existing topography, as well as the existing of invert elevations at the tie-in point of the existing 2400 storm main, allow the entire extents of the railyard development to be service via gravity flow; there is no need for an internal lift station to service storm water flows. Further analysis that is outside of the scope of this report may be needed to ensure that the additional flows produced by this development can be handled by the existing capacity of the Broad Street Lift Station. It is anticipated, however, that the use of onsite storage and a restricted outfall that release flows at rates equivalent to a 1:5 year storm event, that the current level of service of the lift station will not be impacted by this development.

It is important to note that there are existing 250mm and 300mm storm lines that cut through the Railyard property from the intersection of Lorne Street and Dewdney Avenue to the Canadian Pacific Railway lands to the southwest. These lines are likely to conflict with the development of the Railyard lands, and consequently will need to be relocated if they are still active. Similarly, there is an existing 200mm storm line at the East end of the property that will likely need to be decommissioned and removed to accommodate the construction of Building 12 in the current concept plan.



# CONCLUSION

The revised site plan updated to accommodate a large footprint building does not significantly impact the serviceability of the railyard lands for water, wastewater and storm water perspective. Preliminary concept servicing schematics for water, wastewater and storm water servicing are shown on Figures 3, 4 and 5 respectively.

Water servicing will require:

- 300 mm water main connected to the existing 600 mm water main at the western extents of the railyard lands along Dewdney Avenue.
- 300 mm water main connected to the existing 600 mm water main at the intersection of Hamilton Street and Dewdney Avenue.

Wastewater Servicing will require:

- 250 mm sanitary sewer main connected to the existing 375 mm sanitary sewer main at the intersection of Hamilton Street and Dewdney Avenue.
- 300 mm sanitary sewer main connected to the existing 375 mm sanitary sewer main at the western extents of the railyard lands along Dewdney Avenue.

Storm Water Servicing will require:

- Underground inline storage updated to 2400mm x 2400mm box sections from the 2400mm diameter circular section to increase underground inline storage.
- Alignment and sizing of west most undergrounds updated to service runoff captured within the parking fields adjacent to the large footprint building.
- A restricted outlet at Dewdney Avenue to control storm water flows during major rain events.

All three adequately service the proposed development with respect to the criteria outlined in the City of Regina DSM. Refer to the accompanying information presented throughout the Appendices for further detail on modelling results.

#### **ADDITIONAL ANALYSIS**

This amendment was prepared to evaluate the relative impact a large footprint building would have on the proposed Railyard Lands development for infrastructure planning purposes. Additional analysis is required during detailed design once land uses are finalized. The full scope of the analysis is to be determined by the Engineer at the time of detailed design; however, the following is recommended as a minimum:

- Analyse the existing sewage flows during wet weather events within the 375 mm VCT sanitary sewer on Dewdney Avenue with respect to the sewage flows generated by this development.
- Analyse the existing storm water flows in the existing 2400 mm sewer on Dewdney Avenue with respect to the additional flows generated by this development.
- Verify the capacity of the Broad Street Storm Water Lift Station to verify existing and future capacity of this development.



If you have any questions about the information presented in this memo, please don't hesitate to contact me.

Jordan Stepan, P.Eng.

Engineer, Land Development

Chad Bialobzyski, P.Eng. Manager, Infrastructure